

#### Welcome to E-XFL.COM

#### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Details                         |                                                         |
|---------------------------------|---------------------------------------------------------|
| Product Status                  | Active                                                  |
| Core Processor                  | MPC8xx                                                  |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                          |
| Speed                           | 66MHz                                                   |
| Co-Processors/DSP               | Communications; CPM, Security; SEC                      |
| RAM Controllers                 | DRAM                                                    |
| Graphics Acceleration           | No                                                      |
| Display & Interface Controllers | -                                                       |
| Ethernet                        | 10Mbps (3), 10/100Mbps (2)                              |
| SATA                            | -                                                       |
| USB                             | USB 2.0 (1)                                             |
| Voltage - I/O                   | 3.3V                                                    |
| Operating Temperature           | 0°C ~ 95°C (TA)                                         |
| Security Features               | Cryptography                                            |
| Package / Case                  | 357-BBGA                                                |
| Supplier Device Package         | 357-PBGA (25x25)                                        |
| Purchase URL                    | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc885vr66 |
|                                 |                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# 1 Overview

The MPC885/MPC880 is a versatile single-chip integrated microprocessor and peripheral combination that can be used in a variety of controller applications and communications and networking systems. The MPC885/MPC880 provides enhanced ATM functionality, an additional fast Ethernet controller, a USB, and an encryption block.

Table 1 shows the functionality supported by MPC885/MPC880.

| Part   | Cache (       | Kbytes) | Ethe    | ernet  | SCC | SMC | SMC | SMC                             | SMC    |  | USB | ATM Support | Security |
|--------|---------------|---------|---------|--------|-----|-----|-----|---------------------------------|--------|--|-----|-------------|----------|
| Fait   | I Cache D Cac |         | 10BaseT | 10/100 | 300 |     |     |                                 | Engine |  |     |             |          |
| MPC885 | 8             | 8       | Up to 3 | 2      | 3   | 2   | 1   | Serial ATM and UTOPIA interface | Yes    |  |     |             |          |
| MPC880 | 8             | 8       | Up to 2 | 2      | 2   | 2   | 1   | Serial ATM and UTOPIA interface | No     |  |     |             |          |

Table 1. MPC885 Family

# 2 Features

The MPC885/MPC880 is comprised of three modules that each use the 32-bit internal bus: a MPC8xx core, a system integration unit (SIU), and a communications processor module (CPM).

The following list summarizes the key MPC885/MPC880 features:

- Embedded MPC8xx core up to 133 MHz
- Maximum frequency operation of the external bus is 80 MHz (in 1:1 mode)
  - The 133-MHz core frequency supports 2:1 mode only.
  - The 66-/80-MHz core frequencies support both the 1:1 and 2:1 modes.
- Single-issue, 32-bit core (compatible with the Power Architecture definition) with thirty-two 32-bit general-purpose registers (GPRs)
  - The core performs branch prediction with conditional prefetch and without conditional execution.
  - 8-Kbyte data cache and 8-Kbyte instruction cache (see Table 1)
    - Instruction cache is two-way, set-associative with 256 sets in 2 blocks
    - Data cache is two-way, set-associative with 256 sets
    - Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks.
    - Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and are lockable on a cache block basis.
  - MMUs with 32-entry TLB, fully associative instruction and data TLBs
  - MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and 16 protection groups
  - Advanced on-chip emulation debug mode



Features

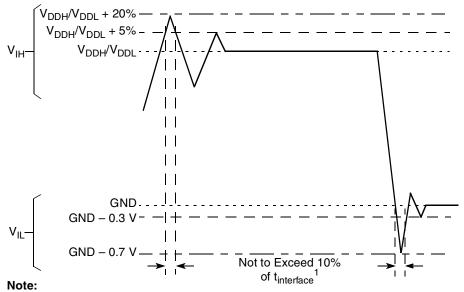
- Flexible data buffers with multiple buffers per frame
- Automatic retransmission upon transmit error
- The USB host controller has the following features:
  - Supports control, bulk, interrupt, and isochronous data transfers
  - CRC16 generation and checking
  - NRZI encoding/decoding with bit stuffing
  - Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and data rate configuration). Note that low-speed operation requires an external hub.
  - Flexible data buffers with multiple buffers per frame
  - Supports local loop back mode for diagnostics (12 Mbps only)
- Serial peripheral interface (SPI)
  - Supports master and slave modes
  - Supports multiple-master operation on the same bus
- Inter-integrated circuit (I<sup>2</sup>C) port
  - Supports master and slave modes
  - Supports a multiple-master environment
- Time-slot assigner (TSA)
  - Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
  - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined
  - 1- or 8-bit resolution
  - Allows independent transmit and receive routing, frame synchronization, and clocking
  - Allows dynamic changes
  - Can be internally connected to four serial channels (two SCCs and two SMCs)
- Parallel interface port (PIP)
  - Centronics interface support
  - Supports fast connection between compatible ports on MPC885/MPC880 and other MPC8xx devices
- PCMCIA interface
  - Master (socket) interface, release 2.1-compliant
  - Supports two independent PCMCIA sockets
  - 8 memory or I/O windows supported
- Debug interface
  - Eight comparators: four operate on instruction address, two operate on data address, and two
    operate on data
  - Supports conditions:  $= \neq < >$
  - Each watchpoint can generate a break point internally.
- Normal high and normal low power modes to conserve power

**Maximum Tolerated Ratings** 



# 3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC885/MPC880. Table 2 displays the maximum tolerated ratings, and Table 3 displays the operating temperatures.


| Rating                      | Symbol                                                     | Value                         | Unit |
|-----------------------------|------------------------------------------------------------|-------------------------------|------|
| Supply voltage <sup>1</sup> | V <sub>DDH</sub>                                           | -0.3 to 4.0                   | V    |
|                             | V <sub>DDL</sub>                                           | -0.3 to 2.0                   | V    |
|                             | VDDSYN                                                     | -0.3 to 2.0                   | V    |
|                             | Difference between $V_{\text{DDL}}$ and $V_{\text{DDSYN}}$ | <100                          | mV   |
| Input voltage <sup>2</sup>  | V <sub>in</sub>                                            | GND – 0.3 to V <sub>DDH</sub> | V    |
| Storage temperature range   | T <sub>stg</sub>                                           | -55 to +150                   | °C   |

### Table 2. Maximum Tolerated Ratings

 $^{1}\,$  The power supply of the device must start its ramp from 0.0 V.

<sup>2</sup> Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. See Section 8, "Power Supply and Power Sequencing." Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than V<sub>DDH</sub>. This restriction applies to power up and normal operation (that is, if the MPC885/MPC880 is unpowered, a voltage greater than 2.5 V must not be applied to its inputs).

Figure 3 shows the undershoot and overshoot voltages at the interfaces of the MPC885/MPC880.



1. t<sub>interface</sub> refers to the clock period associated with the bus clock interface.

Figure 3. Undershoot/Overshoot Voltage for  $\rm V_{DDH}$  and  $\rm V_{DDL}$ 



## 7.6 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

# 8 Power Supply and Power Sequencing

This section provides design considerations for the MPC885/MPC880 power supply. The MPC885/MPC880 has a core voltage ( $V_{DDL}$ ) and PLL voltage ( $V_{DDSYN}$ ), which both operate at a lower voltage than the I/O voltage  $V_{DDH}$ . The I/O section of the MPC885/MPC880 is supplied with 3.3 V across  $V_{DDH}$  and  $V_{SS}$  (GND).

The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST\_B, TMS, MII\_TXEN, and MII\_MDIO are 5 V tolerant. All inputs cannot be more than 2.5 V greater than V<sub>DDH</sub>. In addition, 5-V tolerant pins cannot exceed 5.5 V and remaining input pins cannot exceed 3.465 V. This restriction applies to power up/down and normal operation.

One consequence of multiple power supplies is that when power is initially applied the voltage rails ramp up at different rates. The rates depend on the nature of the power supply, the type of load on each power supply, and the manner in which different voltages are derived. The following restrictions apply:

- $V_{DDL}$  must not exceed  $V_{DDH}$  during power up and power down.
- V<sub>DDL</sub> must not exceed 1.9 V, and V<sub>DDH</sub> must not exceed 3.465 V.

These cautions are necessary for the long-term reliability of the part. If they are violated, the electrostatic discharge (ESD) protection diodes are forward-biased, and excessive current can flow through these diodes. If the system power supply design does not control the voltage sequencing, the circuit shown Figure 5 can be added to meet these requirements. The MUR420 Schottky diodes control the maximum potential difference between the external bus and core power supplies on power up, and the 1N5820 diodes regulate the maximum potential difference on power down.



**Bus Signal Timing** 

| Num  | Characteristic                                                                                                                                                       | 33    | MHz   | 40 MHz |       | 66 MHz |       | 80 MHz |       | Unit |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|-------|--------|-------|--------|-------|------|
| NUM  | Characteristic                                                                                                                                                       | Min   | Мах   | Min    | Мах   | Min    | Мах   | Min    | Мах   | Unit |
| B27a | A(0:31) and BADDR(28:30) to $\overline{CS}$ asserted<br>GPCM ACS = 11, TRLX = 1<br>(MIN = 1.50 × B1 - 2.00)                                                          | 43.50 | _     | 35.50  | _     | 20.70  | _     | 16.75  |       | ns   |
| B28  | CLKOUT rising edge to $\overline{\text{WE}}(0:3)$ negated GPCM write access CSNT = 0 (MAX = $0.00 \times B1 + 9.00$ )                                                | —     | 9.00  | —      | 9.00  | —      | 9.00  | —      | 9.00  | ns   |
| B28a | CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM<br>write access TRLX = 0, CSNT = 1, EBDF = 0<br>(MAX = $0.25 \times B1 + 6.80$ )                            | 7.60  | 14.30 | 6.30   | 13.00 | 3.80   | 10.50 | 3.13   | 9.93  | ns   |
| B28b | CLKOUT falling edge to $\overline{CS}$ negated GPCM write<br>access TRLX = 0, CSNT = 1 ACS = 10 or<br>ACS = 11, EBDF = 0 (MAX = $0.25 \times B1 + 6.80$ )            | —     | 14.30 | _      | 13.00 | —      | 10.50 | _      | 9.93  | ns   |
| B28c | CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM<br>write access TRLX = 0, CSNT = 1 write access<br>TRLX = 0, CSNT = 1, EBDF = 1<br>(MAX = 0.375 × B1 + 6.6) | 10.90 | 18.00 | 10.90  | 18.00 | 5.20   | 12.30 | 4.69   | 11.29 | ns   |
| B28d | CLKOUT falling edge to $\overline{CS}$ negated GPCM write<br>access TRLX = 0, CSNT = 1, ACS = 10, or<br>ACS = 11, EBDF = 1 (MAX = 0.375 × B1 + 6.6)                  | —     | 18.00 | _      | 18.00 | —      | 12.30 | _      | 11.30 | ns   |
| B29  | $\overline{WE}$ (0:3) negated to D(0:31) High-Z GPCM write<br>access, CSNT = 0, EBDF = 0<br>(MIN = 0.25 × B1 - 2.00)                                                 | 5.60  | _     | 4.30   |       | 1.80   |       | 1.13   | _     | ns   |
| B29a | $\overline{WE}$ (0:3) negated to D(0:31) High-Z GPCM write<br>access, TRLX = 0, CSNT = 1, EBDF = 0<br>(MIN = 0.50 × B1 - 2.00)                                       | 13.20 | _     | 10.50  | _     | 5.60   | _     | 4.25   | _     | ns   |
| B29b | $\overline{\text{CS}}$ negated to D(0:31) High-Z GPCM write<br>access, ACS = 00, TRLX = 0 & CSNT = 0<br>(MIN = 0.25 × B1 - 2.00)                                     | 5.60  | _     | 4.30   | _     | 1.80   |       | 1.13   | —     | ns   |
| B29c | $\overline{\text{CS}}$ negated to D(0:31) High-Z GPCM write<br>access, TRLX = 0, CSNT = 1, ACS = 10, or<br>ACS = 11 EBDF = 0 (MIN = 0.50 × B1 - 2.00)                | 13.20 | _     | 10.50  |       | 5.60   | _     | 4.25   | _     | ns   |
| B29d | $\overline{WE}$ (0:3) negated to D(0:31) High-Z GPCM write<br>access, TRLX = 1, CSNT = 1, EBDF = 0<br>(MIN = 1.50 × B1 - 2.00)                                       | 43.50 | _     | 35.50  |       | 20.70  |       | 16.75  | _     | ns   |
| B29e | $\overline{\text{CS}}$ negated to D(0:31) High-Z GPCM write<br>access, TRLX = 1, CSNT = 1, ACS = 10, or<br>ACS = 11 EBDF = 0 (MIN = 1.50 × B1 - 2.00)                | 43.50 | _     | 35.50  | _     | 20.70  | _     | 16.75  | _     | ns   |
| B29f | $\overline{\text{WE}}(0:3)$ negated to D(0:31) High-Z GPCM write<br>access, TRLX = 0, CSNT = 1, EBDF = 1<br>(MIN = 0.375 × B1 - 6.30) <sup>7</sup>                   | 5.00  | _     | 3.00   | _     | 0.00   | _     | 0.00   |       | ns   |
| B29g | $\overline{\text{CS}}$ negated to D(0:31) High-Z GPCM write<br>access, TRLX = 0, CSNT = 1 ACS = 10 or<br>ACS = 11, EBDF = 1 (MIN = 0.375 × B1 - 6.30) <sup>7</sup>   | 5.00  | _     | 3.00   |       | 0.00   |       | 0.00   |       | ns   |

### Table 9. Bus Operation Timings (continued)



| Num | Characteristic                                                                                                                                                      | 33   | MHz | 40 MHz |     | 66 MHz |     | 80 MHz |     | Unit |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--------|-----|--------|-----|--------|-----|------|
| Num | Characteristic                                                                                                                                                      |      | Max | Min    | Max | Min    | Max | Min    | Max | Unit |
| B36 | A(0:31), BADDR(28:30), and D(0:31) to $\overline{\text{GPL}}$ valid, as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 × B1 - 2.00) | 5.60 |     | 4.30   | _   | 1.80   |     | 1.13   |     | ns   |
| B37 | UPWAIT valid to CLKOUT falling edge <sup>9</sup><br>(MIN = $0.00 \times B1 + 6.00$ )                                                                                | 6.00 | —   | 6.00   |     | 6.00   | —   | 6.00   | _   | ns   |
| B38 | CLKOUT falling edge to UPWAIT valid $^9$<br>(MIN = 0.00 × B1 + 1.00)                                                                                                | 1.00 | —   | 1.00   |     | 1.00   | —   | 1.00   | _   | ns   |
| B39 | $\overline{\text{AS}}$ valid to CLKOUT rising edge <sup>10</sup><br>(MIN = 0.00 × B1 + 7.00)                                                                        | 7.00 | _   | 7.00   |     | 7.00   | _   | 7.00   |     | ns   |
| B40 | A(0:31), TSIZ(0:1), RD/ $\overline{WR}$ , $\overline{BURST}$ , valid to<br>CLKOUT rising edge (MIN = $0.00 \times B1 + 7.00$ )                                      | 7.00 | —   | 7.00   | -   | 7.00   | _   | 7.00   | —   | ns   |
| B41 | $\overline{\text{TS}}$ valid to CLKOUT rising edge (setup time)<br>(MIN = 0.00 × B1 + 7.00)                                                                         | 7.00 | —   | 7.00   |     | 7.00   | —   | 7.00   | _   | ns   |
| B42 | CLKOUT rising edge to $\overline{\text{TS}}$ valid (hold time)<br>(MIN = 0.00 × B1 + 2.00)                                                                          | 2.00 | —   | 2.00   | _   | 2.00   | _   | 2.00   | _   | ns   |
| B43 | $\overline{\text{AS}}$ negation to memory controller signals negation (MAX = TBD)                                                                                   | —    | TBD | —      | TBD | _      | TBD | —      | TBD | ns   |

#### Table 9. Bus Operation Timings (continued)

<sup>1</sup> For part speeds above 50 MHz, use 9.80 ns for B11a.

<sup>2</sup> The timing required for BR input is relevant when the MPC885/MPC880 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC885/MPC880 is selected to work with the external bus arbiter.

<sup>3</sup> For part speeds above 50 MHz, use 2 ns for B17.

<sup>4</sup> The D(0:31) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.

<sup>5</sup> For part speeds above 50 MHz, use 2 ns for B19.

<sup>6</sup> The D(0:31) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the user-programmable machine (UPM) in the memory controller, for data beats where DLT3 = 1 in the RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

<sup>7</sup> This formula applies to bus operation up to 50 MHz.

<sup>8</sup> The timing B30 refers to  $\overline{CS}$  when ACS = 00 and to  $\overline{CS}$  and  $\overline{WE}(0:3)$  when CSNT = 0.

<sup>9</sup> The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 21.

<sup>10</sup> The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 24.



**Bus Signal Timing** 

Figure 6 provides the control timing diagram.

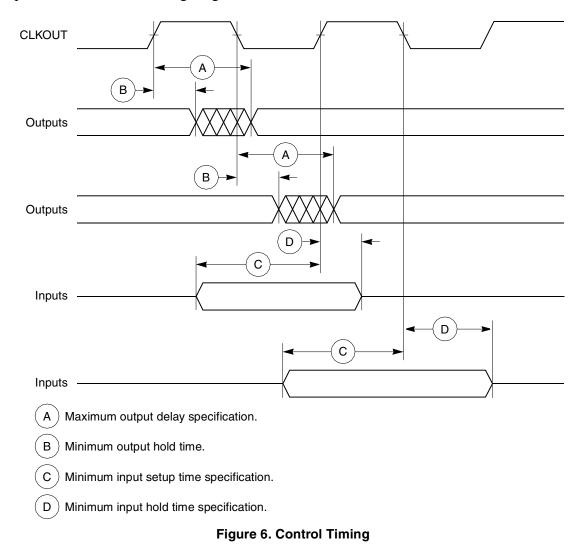



Figure 7 provides the timing for the external clock.

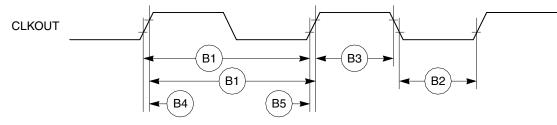



Figure 7. External Clock Timing



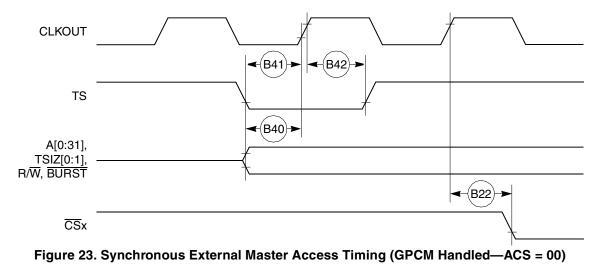



Figure 23 provides the timing for the synchronous external master access controlled by the GPCM.

Figure 24 provides the timing for the asynchronous external master memory access controlled by the GPCM.

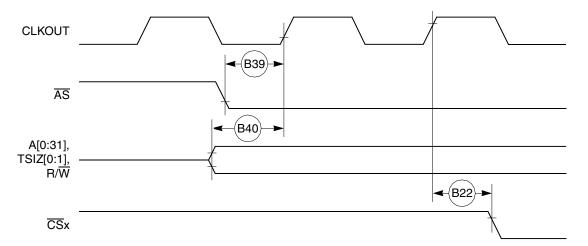





Figure 25 provides the timing for the asynchronous external master control signals negation.

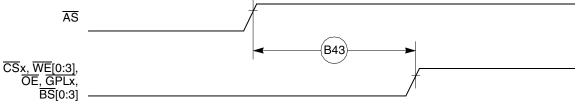
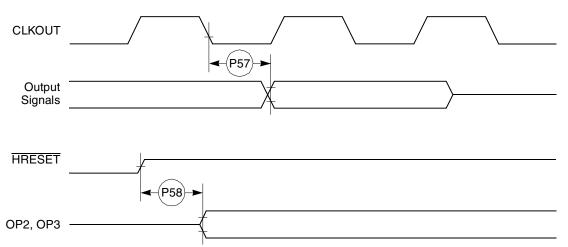



Figure 25. Asynchronous External Master—Control Signals Negation Timing



Bus Signal Timing


## Table 12 shows the PCMCIA port timing for the MPC885/MPC880.

| Num | Characteristic                                                               | 33 MHz |       | 40 MHz |       | 66 MHz |       | 80 MHz |       | Unit |
|-----|------------------------------------------------------------------------------|--------|-------|--------|-------|--------|-------|--------|-------|------|
| Num |                                                                              | Min    | Мах   | Min    | Max   | Min    | Мах   | Min    | Max   | Unit |
| P57 | CLKOUT to OPx valid<br>(MAX = $0.00 \times B1 + 19.00$ )                     | _      | 19.00 | _      | 19.00 | -      | 19.00 | -      | 19.00 | ns   |
| P58 | HRESET negated to OPx drive <sup>1</sup><br>(MIN = $0.75 \times B1 + 3.00$ ) | 25.70  | -     | 21.70  | _     | 14.40  | _     | 12.40  | _     | ns   |
| P59 | IP_Xx valid to CLKOUT rising edge (MIN = $0.00 \times B1 + 5.00$ )           | 5.00   | _     | 5.00   | _     | 5.00   | —     | 5.00   | _     | ns   |
| P60 | CLKOUT rising edge to IP_Xx invalid<br>(MIN = $0.00 \times B1 + 1.00$ )      | 1.00   | _     | 1.00   |       | 1.00   |       | 1.00   |       | ns   |

### Table 12. PCMCIA Port Timing

<sup>1</sup> OP2 and OP3 only.

## Figure 31 provides the PCMCIA output port timing for the MPC885/MPC880.



### Figure 31. PCMCIA Output Port Timing

Figure 32 provides the PCMCIA input port timing for the MPC885/MPC880.

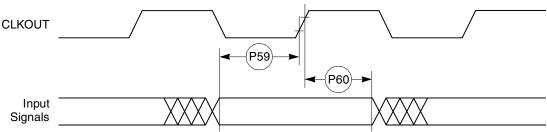



Figure 32. PCMCIA Input Port Timing



## Table 14 shows the reset timing for the MPC885/MPC880.

Table 14. Reset Timing

| Niumo | Characteristic                                                                                                                                  | 33     | MHz   | 40 M   | MHz   | 66 I   | ИНz   | 80 MHz |       | Unit |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|-------|--------|-------|--------|-------|------|
| Num   | Characteristic                                                                                                                                  | Min    | Мах   | Min    | Мах   | Min    | Max   | Min    | Max   | Unit |
| R69   | CLKOUT to $\overline{\text{HRESET}}$ high impedance<br>(MAX = 0.00 × B1 + 20.00)                                                                | —      | 20.00 | —      | 20.00 | —      | 20.00 | —      | 20.00 | ns   |
| R70   | CLKOUT to $\overline{\text{SRESET}}$ high impedance<br>(MAX = 0.00 × B1 + 20.00)                                                                | —      | 20.00 | —      | 20.00 | —      | 20.00 | —      | 20.00 | ns   |
| R71   | RSTCONF pulse width<br>(MIN = 17.00 × B1)                                                                                                       | 515.20 | —     | 425.00 | —     | 257.60 |       | 212.50 | _     | ns   |
| R72   | —                                                                                                                                               | —      |       | —      |       | —      |       | —      |       |      |
| R73   | Configuration data to HRESET rising<br>edge setup time<br>(MIN = $15.00 \times B1 + 50.00$ )                                                    | 504.50 | —     | 425.00 | —     | 277.30 | _     | 237.50 | _     | ns   |
| R74   | Configuration data to $\overrightarrow{\text{RSTCONF}}$ rising edge setup time (MIN = 0.00 × B1 + 350.00)                                       | 350.00 | —     | 350.00 | —     | 350.00 | _     | 350.00 | _     | ns   |
| R75   | $\frac{\text{Configuration data hold time after}}{\text{RSTCONF}}$ negation<br>(MIN = 0.00 × B1 + 0.00)                                         | 0.00   |       | 0.00   |       | 0.00   | _     | 0.00   | _     | ns   |
| R76   | $\frac{\text{Configuration data hold time after}}{\text{HRESET}}$ $(\text{MIN} = 0.00 \times \text{B1} + 0.00)$                                 | 0.00   |       | 0.00   |       | 0.00   | _     | 0.00   | _     | ns   |
| R77   | HRESET and RSTCONF asserted todata out drive(MAX = $0.00 \times B1 + 25.00$ )                                                                   | —      | 25.00 | —      | 25.00 | —      | 25.00 | —      | 25.00 | ns   |
| R78   | $\begin{tabular}{l} \hline \hline RSTCONF \ negated to data out high \\ impedance \ (MAX = 0.00 \times B1 + 25.00) \end{tabular}$               | —      | 25.00 | —      | 25.00 | —      | 25.00 | —      | 25.00 | ns   |
| R79   | CLKOUT of last rising edge before chip<br>three-states $\overrightarrow{\text{HRESET}}$ to data out high<br>impedance (MAX = 0.00 × B1 + 25.00) | —      | 25.00 | —      | 25.00 | —      | 25.00 | —      | 25.00 | ns   |
| R80   | DSDI, DSCK setup (MIN = $3.00 \times B1$ )                                                                                                      | 90.90  | —     | 75.00  | —     | 45.50  |       | 37.50  |       | ns   |
| R81   | DSDI, DSCK hold time<br>(MIN = $0.00 \times B1 + 0.00$ )                                                                                        | 0.00   | _     | 0.00   | _     | 0.00   | _     | 0.00   | _     | ns   |
| R82   | $\begin{tabular}{l} \hline $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$                                                                                | 242.40 | _     | 200.00 |       | 121.20 |       | 100.00 | —     | ns   |



IEEE 1149.1 Electrical Specifications

# 11 IEEE 1149.1 Electrical Specifications

Table 15 provides the JTAG timings for the MPC885/MPC880 shown in Figure 38 through Figure 41.

### Table 15. JTAG Timing

| Num | Characteristic                                         | All Freq | uencies | Unit |
|-----|--------------------------------------------------------|----------|---------|------|
| Num | Characteristic                                         | Min      | Max     | Unit |
| J82 | TCK cycle time                                         | 100.00   |         | ns   |
| J83 | TCK clock pulse width measured at 1.5 V                | 40.00    |         | ns   |
| J84 | TCK rise and fall times                                | 0.00     | 10.00   | ns   |
| J85 | TMS, TDI data setup time                               | 5.00     | _       | ns   |
| J86 | TMS, TDI data hold time                                | 25.00    | _       | ns   |
| J87 | TCK low to TDO data valid                              | —        | 27.00   | ns   |
| J88 | TCK low to TDO data invalid                            | 0.00     | _       | ns   |
| J89 | TCK low to TDO high impedance                          | _        | 20.00   | ns   |
| J90 | TRST assert time                                       | 100.00   | _       | ns   |
| J91 | TRST setup time to TCK low                             | 40.00    | _       | ns   |
| J92 | TCK falling edge to output valid                       | _        | 50.00   | ns   |
| J93 | TCK falling edge to output valid out of high impedance | _        | 50.00   | ns   |
| J94 | TCK falling edge to output high impedance              | _        | 50.00   | ns   |
| J95 | Boundary scan input valid to TCK rising edge           | 50.00    | _       | ns   |
| J96 | TCK rising edge to boundary scan input invalid         | 50.00    |         | ns   |

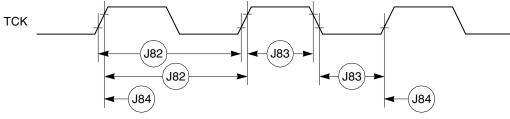
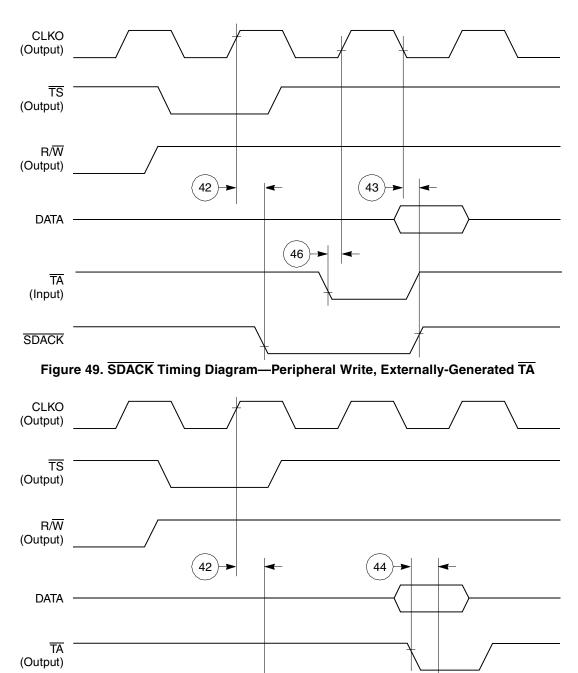




Figure 38. JTAG Test Clock Input Timing



**CPM Electrical Characteristics** 









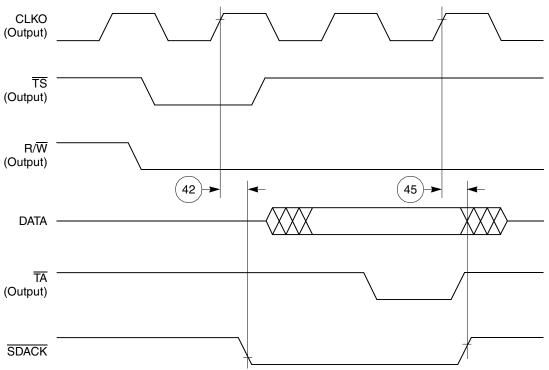



Figure 51. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

# 12.4 Baud Rate Generator AC Electrical Specifications

Table 19 provides the baud rate generator timings as shown in Figure 52.

| Num | Characteristic          | All Freq | All Frequencies |      |
|-----|-------------------------|----------|-----------------|------|
| Num | Unaracteristic          | Min      | Мах             | Unit |
| 50  | BRGO rise and fall time |          | 10              | ns   |
| 51  | BRGO duty cycle         | 40       | 60              | %    |
| 52  | BRGO cycle              | 40       | —               | ns   |

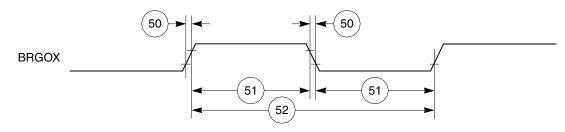
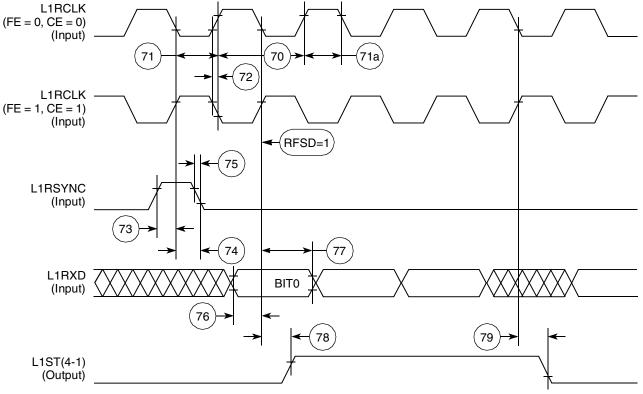
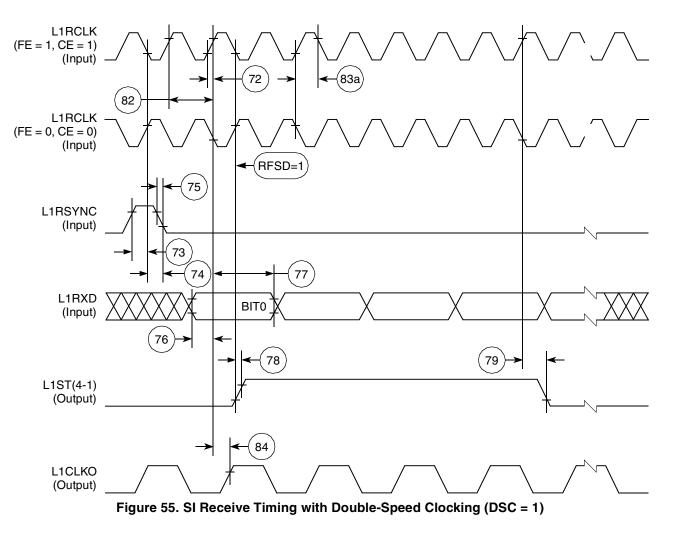



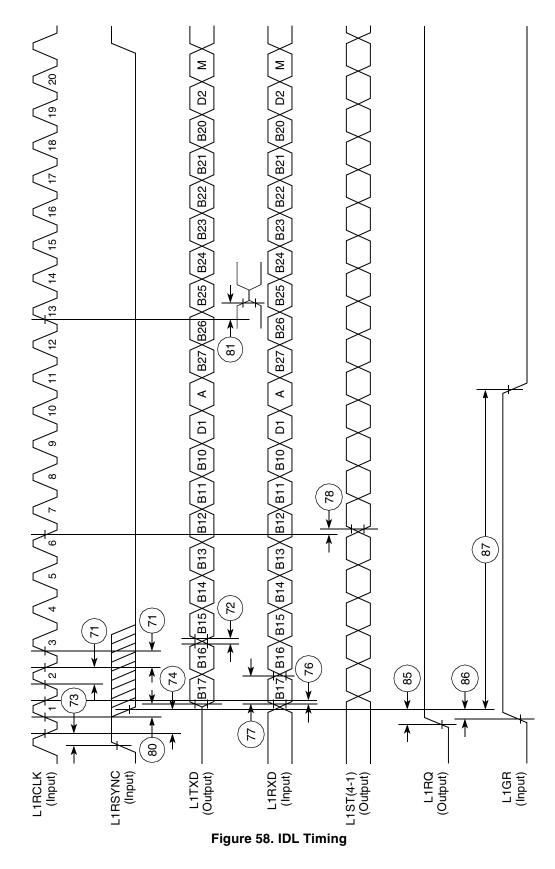

Figure 52. Baud Rate Generator Timing Diagram

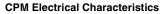



**CPM Electrical Characteristics** 









**CPM Electrical Characteristics** 





**CPM Electrical Characteristics** 







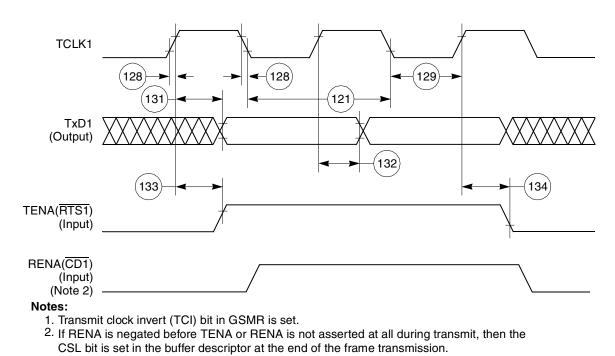



Figure 64. Ethernet Transmit Timing Diagram

# **12.9 SMC Transparent AC Electrical Specifications**

Table 25 provides the SMC transparent timings as shown in Figure 65.

| Table 25 | . SMC | Transparent | Timing |
|----------|-------|-------------|--------|
|----------|-------|-------------|--------|

| Num   | Characteristic                               | All Freq | Unit |      |
|-------|----------------------------------------------|----------|------|------|
| Nulli | Characteristic                               | Min      | Мах  | Unit |
| 150   | SMCLK clock period <sup>1</sup>              | 100      | —    | ns   |
| 151   | SMCLK width low                              | 50       | —    | ns   |
| 151A  | SMCLK width high                             | 50       | —    | ns   |
| 152   | SMCLK rise/fall time                         | —        | 15   | ns   |
| 153   | SMTXD active delay (from SMCLK falling edge) | 10       | 50   | ns   |
| 154   | SMRXD/SMSYNC setup time                      | 20       | —    | ns   |
| 155   | RXD1/SMSYNC hold time                        | 5        | —    | ns   |

<sup>1</sup> SyncCLK must be at least twice as fast as SMCLK.



# 14 USB Electrical Characteristics

This section provides the AC timings for the USB interface.

## 14.1 USB Interface AC Timing Specifications

The USB Port uses the transmit clock on SCC1. Table 33 lists the USB interface timings.

### Table 33. USB Interface AC Timing Specifications

| Name | Characteristic                                                        | All Freq | Unit |            |
|------|-----------------------------------------------------------------------|----------|------|------------|
| Name |                                                                       | Min      | Max  | onic       |
| US1  | USBCLK frequency of operation <sup>1</sup><br>Low speed<br>Full speed | 6<br>48  |      | MHz<br>MHz |
| US4  | USBCLK duty cycle (measured at 1.5 V)                                 | 45       | 55   | %          |

<sup>1</sup> USBCLK accuracy should be ±500 ppm or better. USBCLK may be stopped to conserve power.

# **15 FEC Electrical Characteristics**

This section provides the AC electrical specifications for the fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.

# 15.1 MII and Reduced MII Receive Signal Timing

The receiver functions correctly up to a MII\_RX\_CLK maximum frequency of 25 MHz + 1%. The reduced MII (RMII) receiver functions correctly up to a RMII\_REFCLK maximum frequency of 50 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII\_RX\_CLK frequency – 1%.

Table 34 provides information on the MII and RMII receive signal timing.

| Num     | Characteristic                                               | Min | Max | Unit              |
|---------|--------------------------------------------------------------|-----|-----|-------------------|
| M1      | MII_RXD[3:0], MII_RX_DV, MII_RX_ERR to MII_RX_CLK setup      | 5   | _   | ns                |
| M2      | MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold        | 5   | _   | ns                |
| М3      | MII_RX_CLK pulse width high                                  | 35% | 65% | MII_RX_CLK period |
| M4      | MII_RX_CLK pulse width low                                   | 35% | 65% | MII_RX_CLK period |
| M1_RMII | RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR to RMII_REFCLK setup | 4   | _   | ns                |
| M2_RMII | RMII_REFCLK to RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR hold  | 2   | _   | ns                |

### Table 34. MII Receive Signal Timing



Figure 74 shows the MII transmit signal timing diagram.

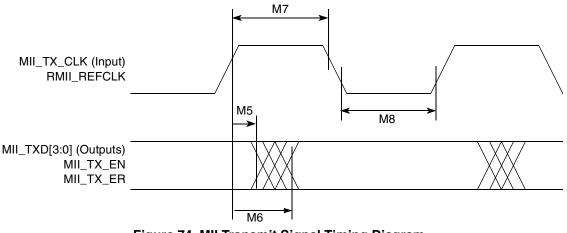



Figure 74. MII Transmit Signal Timing Diagram

# 15.3 MII Async Inputs Signal Timing (MII\_CRS, MII\_COL)

Table 36 provides information on the MII async inputs signal timing.

### Table 36. MII Async Inputs Signal Timing

| Ĩ | Num | Characteristic                       | Min | Мах | Unit              |
|---|-----|--------------------------------------|-----|-----|-------------------|
|   | M9  | MII_CRS, MII_COL minimum pulse width | 1.5 | —   | MII_TX_CLK period |

Figure 75 shows the MII asynchronous inputs signal timing diagram.



# 15.4 MII Serial Management Channel Timing (MII\_MDIO, MII\_MDC)

Table 37 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz.

| Num | Characteristic                                                              | Min | Мах | Unit |
|-----|-----------------------------------------------------------------------------|-----|-----|------|
| M10 | MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay) | 0   | —   | ns   |
| M11 | MII_MDC falling edge to MII_MDIO output valid (max prop delay)              | _   | 25  | ns   |
| M12 | MII_MDIO (input) to MII_MDC rising edge setup                               | 10  |     | ns   |
| M13 | MII_MDIO (input) to MII_MDC rising edge hold                                | 0   | _   | ns   |



### Table 39. Pin Assignments (continued)

| Name                                                                  | Pin Number | Туре                                    |
|-----------------------------------------------------------------------|------------|-----------------------------------------|
| PA4, CTS4, MII1-TXD1,<br>RMII1-TXD1                                   | U4         | Bidirectional                           |
| PA3, MII1-RXER,<br>RMII1-RXER, BRGO3                                  | W2         | Bidirectional                           |
| PA2, MII1-RXDV,<br>RMII1-CRS_DV, TXD4                                 | T4         | Bidirectional                           |
| PA1, MII1-RXD0,<br>RMII1-RXD0, BRGO4                                  | U1         | Bidirectional                           |
| PA0, MII1-RXD1,<br>RMII1-RXD1, TOUT4                                  | U3         | Bidirectional                           |
| PB31, <del>SPISEL</del> ,<br>MII1-TXCLK,<br>RMII1-REFCLK              | V3         | Bidirectional<br>(Optional: open-drain) |
| PB30, SPICLK                                                          | P18        | Bidirectional<br>(Optional: open-drain) |
| PB29, SPIMOSI                                                         | T19        | Bidirectional<br>(Optional: open-drain) |
| PB28, SPIMISO, BRGO4                                                  | V19        | Bidirectional<br>(Optional: open-drain) |
| PB27, I2CSDA, BRGO1                                                   | U19        | Bidirectional<br>(Optional: open-drain) |
| PB26, I2CSCL, BRGO2                                                   | R17        | Bidirectional<br>(Optional: open-drain) |
| PB25, RXADDR3 <sup>1</sup> ,<br>TXADDR3, SMTXD1                       | V17        | Bidirectional<br>(Optional: open-drain) |
| PB24, TXADDR3 <sup>1</sup> ,<br>RXADDR3, SMRXD1                       | U16        | Bidirectional<br>(Optional: open-drain) |
| PB23, TXADDR2 <sup>1</sup> ,<br>RXADDR2, SDACK1,<br>SMSYN1            | W16        | Bidirectional<br>(Optional: open-drain) |
| PB22, TXADDR4 <sup>1</sup> ,<br>RXADDR4, SDACK2,<br>SMSYN2            | V15        | Bidirectional<br>(Optional: open-drain) |
| PB21, SMTXD2,<br>TXADDR1 <sup>1</sup> , BRG01,<br>RXADDR1, PHSEL[1]   | U14        | Bidirectional<br>(Optional: open-drain) |
| PB20, SMRXD2,<br>L1CLKOA, TXADDR0 <sup>1</sup> ,<br>RXADDR0, PHSEL[0] | T13        | Bidirectional<br>(Optional: open-drain) |
| PB19, MII1-RXD3, RTS4                                                 | V13        | Bidirectional<br>(Optional: open-drain) |
| PB18, RXADDR4 <sup>1</sup> ,<br>TXADDR4, RTS2, L1ST2                  | T12        | Bidirectional<br>(Optional: open-drain) |