


#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

### Details

E·XFI

| Product Status                  | Active                                                  |
|---------------------------------|---------------------------------------------------------|
| Core Processor                  | MPC8xx                                                  |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                          |
| Speed                           | 80MHz                                                   |
| Co-Processors/DSP               | Communications; CPM, Security; SEC                      |
| RAM Controllers                 | DRAM                                                    |
| Graphics Acceleration           | No                                                      |
| Display & Interface Controllers | -                                                       |
| Ethernet                        | 10Mbps (3), 10/100Mbps (2)                              |
| SATA                            | -                                                       |
| USB                             | USB 2.0 (1)                                             |
| Voltage - I/O                   | 3.3V                                                    |
| Operating Temperature           | 0°C ~ 95°C (TA)                                         |
| Security Features               | Cryptography                                            |
| Package / Case                  | 357-BBGA                                                |
| Supplier Device Package         | 357-PBGA (25x25)                                        |
| Purchase URL                    | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc885vr80 |
|                                 |                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# 1 Overview

The MPC885/MPC880 is a versatile single-chip integrated microprocessor and peripheral combination that can be used in a variety of controller applications and communications and networking systems. The MPC885/MPC880 provides enhanced ATM functionality, an additional fast Ethernet controller, a USB, and an encryption block.

Table 1 shows the functionality supported by MPC885/MPC880.

| Part   | Cache ( | Cache (Kbytes) |         | ernet  | scc | SMC | USB | ATM Support                     | Security |
|--------|---------|----------------|---------|--------|-----|-----|-----|---------------------------------|----------|
| Fait   | I Cache | D Cache        | 10BaseT | 10/100 | 300 | omo | 036 |                                 | Engine   |
| MPC885 | 8       | 8              | Up to 3 | 2      | 3   | 2   | 1   | Serial ATM and UTOPIA interface | Yes      |
| MPC880 | 8       | 8              | Up to 2 | 2      | 2   | 2   | 1   | Serial ATM and UTOPIA interface | No       |

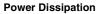
Table 1. MPC885 Family

# 2 Features

The MPC885/MPC880 is comprised of three modules that each use the 32-bit internal bus: a MPC8xx core, a system integration unit (SIU), and a communications processor module (CPM).

The following list summarizes the key MPC885/MPC880 features:

- Embedded MPC8xx core up to 133 MHz
- Maximum frequency operation of the external bus is 80 MHz (in 1:1 mode)
  - The 133-MHz core frequency supports 2:1 mode only.
  - The 66-/80-MHz core frequencies support both the 1:1 and 2:1 modes.
- Single-issue, 32-bit core (compatible with the Power Architecture definition) with thirty-two 32-bit general-purpose registers (GPRs)
  - The core performs branch prediction with conditional prefetch and without conditional execution.
  - 8-Kbyte data cache and 8-Kbyte instruction cache (see Table 1)
    - Instruction cache is two-way, set-associative with 256 sets in 2 blocks
    - Data cache is two-way, set-associative with 256 sets
    - Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks.
    - Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and are lockable on a cache block basis.
  - MMUs with 32-entry TLB, fully associative instruction and data TLBs
  - MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and 16 protection groups
  - Advanced on-chip emulation debug mode






- Provides enhanced ATM functionality found on the MPC862 and MPC866 families and includes the following:
  - Improved operation, administration and maintenance (OAM) support
  - OAM performance monitoring (PM) support
  - Multiple APC priority levels available to support a range of traffic pace requirements
  - Port-to-port switching capability without the need for RAM-based microcode
  - Simultaneous MII (100BaseT) and UTOPIA (half- or full -duplex) capability
  - Optional statistical cell counters per PHY
  - UTOPIA L2-compliant interface with added FIFO buffering to reduce the total cell transmission time and multi-PHY support. (The earlier UTOPIA L1 specification is also supported.)
  - Parameter RAM for both SPI and I<sup>2</sup>C can be relocated without RAM-based microcode
  - Supports full-duplex UTOPIA master (ATM side) and slave (PHY side) operations using a split bus
  - AAL2/VBR functionality is ROM-resident
  - Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
  - Thirty-two address lines
  - Memory controller (eight banks)
    - Contains complete dynamic RAM (DRAM) controller
    - Each bank can be a chip select or  $\overline{RAS}$  to support a DRAM bank
    - Up to 30 wait states programmable per memory bank
    - Glueless interface to DRAM, SIMMS, SRAM, EPROMs, Flash EPROMs, and other memory devices
    - DRAM controller programmable to support most size and speed memory interfaces
    - Four  $\overline{CAS}$  lines, four  $\overline{WE}$  lines, and one  $\overline{OE}$  line
    - Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
    - Variable block sizes (32 Kbytes–256 Mbytes)
    - Selectable write protection
    - On-chip bus arbitration logic
  - General-purpose timers
    - Four 16-bit timers or two 32-bit timers
    - Gate mode can enable/disable counting.
    - Interrupt can be masked on reference match and event capture
  - Two fast Ethernet controllers (FEC)—Two 10/100 Mbps Ethernet/IEEE Std. 802.3<sup>™</sup> CDMA/CS that interface through MII and/or RMII interfaces
  - System integration unit (SIU)
    - Bus monitor
    - Software watchdog



- On-chip  $16 \times 16$  multiply accumulate controller (MAC)
  - One operation per clock (two-clock latency, one-clock blockage)
  - MAC operates concurrently with other instructions
  - FIR loop—Four clocks per four multiplies
- Four baud rate generators
  - Independent (can be connected to any SCC or SMC)
  - Allow changes during operation
  - Autobaud support option
- Up to three serial communication controllers (SCCs) supporting the following protocols:
  - Serial ATM capability on SCCs
  - Optional UTOPIA port on SCC4
  - Ethernet/IEEE Std 802.3<sup>™</sup> optional on the SCC(s) supporting full 10-Mbps operation
  - HDLC/SDLC
  - HDLC bus (implements an HDLC-based local area network (LAN))
  - Asynchronous HDLC to support point-to-point protocol (PPP)
  - AppleTalk
  - Universal asynchronous receiver transmitter (UART)
  - Synchronous UART
  - Serial infrared (IrDA)
  - Binary synchronous communication (BISYNC)
  - Totally transparent (bit streams)
  - Totally transparent (frame based with optional cyclic redundancy check (CRC))
- Up to two serial management channels (SMCs) supporting the following protocols:
  - UART (low-speed operation)
  - Transparent
  - General circuit interface (GCI) controller
  - Provide management for BRI devices as GCI controller in time-division multiplexed (TDM) channels
- Universal serial bus (USB)—Supports operation as a USB function endpoint, a USB host controller, or both for testing purposes (loop-back diagnostics)
  - USB 2.0 full-/low-speed compatible
  - The USB function mode has the following features:
    - Four independent endpoints support control, bulk, interrupt, and isochronous data transfers.
    - CRC16 generation and checking
    - CRC5 checking
    - NRZI encoding/decoding with bit stuffing
    - 12- or 1.5-Mbps data rate





## 5 **Power Dissipation**

Table 5 provides information on power dissipation. The modes are 1:1, where CPU and bus speeds are equal, and 2:1, where CPU frequency is twice bus speed.

| Die Revision | Bus Mode | CPU<br>Frequency | Typical <sup>1</sup> | Maximum <sup>2</sup> | Unit |
|--------------|----------|------------------|----------------------|----------------------|------|
| 0            | 1:1      | 66 MHz           | 310                  | 390                  | mW   |
|              |          | 80 MHz           | 350                  | 430                  | mW   |
|              | 2:1      | 133 MHz          | 430                  | 495                  | mW   |

### Table 5. Power Dissipation (PD)

<sup>1</sup> Typical power dissipation at  $V_{DDL} = V_{DDSYN} = 1.8$  V, and  $V_{DDH}$  is at 3.3 V.

 $^2$  Maximum power dissipation at V\_DDL = V\_DDSYN = 1.9 V, and V\_DDH is at 3.5 V.

### NOTE

The values in Table 5 represent  $V_{DDL}$ -based power dissipation and do not include I/O power dissipation over  $V_{DDH}$ . I/O power dissipation varies widely by application due to buffer current, depending on external circuitry.

The V<sub>DDSYN</sub> power dissipation is negligible.

## 6 DC Characteristics

Table 6 provides the DC electrical characteristics for the MPC885/MPC880.

**Table 6. DC Electrical Specifications** 

| Characteristic                                                                                                                    | Symbol                                                           | Min                     | Max              | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------|------------------|------|
| Operating voltage                                                                                                                 | V <sub>DDL</sub> (core)                                          | 1.7                     | 1.9              | V    |
|                                                                                                                                   | V <sub>DDH</sub> (I/O)                                           | 3.135                   | 3.465            | V    |
|                                                                                                                                   | V <sub>DDSYN</sub> <sup>1</sup>                                  | 1.7                     | 1.9              | V    |
|                                                                                                                                   | Difference<br>between V <sub>DDL</sub><br>and V <sub>DDSYN</sub> |                         | 100              | mV   |
| Input high voltage (all inputs except EXTAL and EXTCLK) <sup>2</sup>                                                              | V <sub>IH</sub>                                                  | 2.0                     | 3.465            | V    |
| Input low voltage <sup>3</sup>                                                                                                    | V <sub>IL</sub>                                                  | GND                     | 0.8              | V    |
| EXTAL, EXTCLK input high voltage                                                                                                  | V <sub>IHC</sub>                                                 | 0.7*(V <sub>DDH</sub> ) | V <sub>DDH</sub> | V    |
| Input leakage current, Vin = 5.5 V (except TMS, $\overline{\text{TRST}}$ , DSCK and DSDI pins) for 5-V tolerant pins <sup>2</sup> | l <sub>in</sub>                                                  | _                       | 100              | μA   |
| Input leakage current, $V_{in} = V_{DDH}$ (except TMS, TRST, DSCK, and DSDI)                                                      | l <sub>ln</sub>                                                  | _                       | 10               | μA   |
| Input leakage current, $V_{in} = 0 V$ (except TMS, TRST, DSCK and DSDI pins)                                                      | l <sub>in</sub>                                                  | _                       | 10               | μA   |
| Input capacitance <sup>4</sup>                                                                                                    | C <sub>in</sub>                                                  | —                       | 20               | pF   |



### 7.6 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

# 8 Power Supply and Power Sequencing

This section provides design considerations for the MPC885/MPC880 power supply. The MPC885/MPC880 has a core voltage ( $V_{DDL}$ ) and PLL voltage ( $V_{DDSYN}$ ), which both operate at a lower voltage than the I/O voltage  $V_{DDH}$ . The I/O section of the MPC885/MPC880 is supplied with 3.3 V across  $V_{DDH}$  and  $V_{SS}$  (GND).

The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST\_B, TMS, MII\_TXEN, and MII\_MDIO are 5 V tolerant. All inputs cannot be more than 2.5 V greater than V<sub>DDH</sub>. In addition, 5-V tolerant pins cannot exceed 5.5 V and remaining input pins cannot exceed 3.465 V. This restriction applies to power up/down and normal operation.

One consequence of multiple power supplies is that when power is initially applied the voltage rails ramp up at different rates. The rates depend on the nature of the power supply, the type of load on each power supply, and the manner in which different voltages are derived. The following restrictions apply:

- $V_{DDL}$  must not exceed  $V_{DDH}$  during power up and power down.
- V<sub>DDL</sub> must not exceed 1.9 V, and V<sub>DDH</sub> must not exceed 3.465 V.

These cautions are necessary for the long-term reliability of the part. If they are violated, the electrostatic discharge (ESD) protection diodes are forward-biased, and excessive current can flow through these diodes. If the system power supply design does not control the voltage sequencing, the circuit shown Figure 5 can be added to meet these requirements. The MUR420 Schottky diodes control the maximum potential difference between the external bus and core power supplies on power up, and the 1N5820 diodes regulate the maximum potential difference on power down.



V<sub>DDH</sub> V<sub>DDL</sub> MUR420 1N5820

Figure 5. Example Voltage Sequencing Circuit

## 9 Layout Practices

Each  $V_{DD}$  pin on the MPC885/MPC880 should be provided with a low-impedance path to the board's supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The  $V_{DD}$  power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. Each board designed should be characterized and additional appropriate decoupling capacitors should be used if required. The capacitor leads and associated printed-circuit traces connecting to chip  $V_{DD}$  and GND should be kept to less than half an inch per capacitor lead. At a minimum, a four-layer board employing two inner layers as  $V_{DD}$  and GND planes should be used.

All output pins on the MPC885/MPC880 have fast rise and fall times. Printed-circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the  $V_{DD}$  and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For more information, please refer to the *MPC885 PowerQUICC<sup>TM</sup> Family Reference Manual*, Section 14.4.3, "Clock Synthesizer Power ( $V_{DDSYN}$ ,  $V_{SSSYN}$ ,  $V_{SSSYN1}$ )."

# 10 Bus Signal Timing

The maximum bus speed supported by the MPC885/MPC880 is 80 MHz. Higher-speed parts must be operated in half-speed bus mode (for example, an MPC885/MPC880 used at 133 MHz must be configured for a 66 MHz bus). Table 7 shows the frequency ranges for standard part frequencies in 1:1 bus mode, and Table 8 shows the frequency ranges for standard part frequencies in 2:1 bus mode.



| Part Frequency |     | MHz   | 80 MHz |     |  |
|----------------|-----|-------|--------|-----|--|
| r art requency | Min | Мах   | Min    | Max |  |
| Core frequency | 40  | 66.67 | 40     | 80  |  |
| Bus frequency  | 40  | 66.67 | 40     | 80  |  |

### Table 7. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)

### Table 8. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)

| Part Frequency | 66 I | MHz   | 80  | MHz | 133 MHz       |     |  |
|----------------|------|-------|-----|-----|---------------|-----|--|
| Fait inequency | Min  | Мах   | Min | Мах | <b>Min</b> 40 | Max |  |
| Core frequency | 40   | 66.67 | 40  | 80  | 40            | 133 |  |
| Bus frequency  | 20   | 33.33 | 20  | 40  | 20            | 66  |  |

Table 9 provides the timings for the MPC885/MPC880 at 33-, 40-, 66-, and 80-MHz bus operation.

The timing for the MPC885/MPC880 bus shown assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load for maximum delays and a 50-pF load for minimum delays.

| Num | Characteristic                                                                                                                                                                                                                                                                                                              | 33   | MHz  | 40 MHz |      | 66 I | MHz  | 80 MHz |      | Unit |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------|------|------|------|--------|------|------|
| Num | Characteristic                                                                                                                                                                                                                                                                                                              | Min  | Max  | Min    | Max  | Min  | Max  | Min    | Max  | Unit |
| B1  | Bus period (CLKOUT), see Table 7                                                                                                                                                                                                                                                                                            | _    | —    | —      | —    |      | _    | _      | —    | ns   |
| B1a | EXTCLK to CLKOUT phase skew - If CLKOUT is<br>an integer multiple of EXTCLK, then the rising<br>edge of EXTCLK is aligned with the rising edge of<br>CLKOUT. For a non-integer multiple of EXTCLK,<br>this synchronization is lost, and the rising edges of<br>EXTCLK and CLKOUT have a continuously<br>varying phase skew. | -2   | +2   | -2     | +2   | -2   | +2   | -2     | +2   | ns   |
| B1b | CLKOUT frequency jitter peak-to-peak                                                                                                                                                                                                                                                                                        | _    | 1    | _      | 1    | _    | 1    | _      | 1    | ns   |
| B1c | Frequency jitter on EXTCLK                                                                                                                                                                                                                                                                                                  | _    | 0.50 | _      | 0.50 | _    | 0.50 | _      | 0.50 | %    |
| B1d | CLKOUT phase jitter peak-to-peak for<br>OSCLK $\geq$ 15 MHz                                                                                                                                                                                                                                                                 | —    | 4    | —      | 4    | _    | 4    | _      | 4    | ns   |
|     | CLKOUT phase jitter peak-to-peak for<br>OSCLK < 15 MHz                                                                                                                                                                                                                                                                      | —    | 5    | —      | 5    | _    | 5    | _      | 5    | ns   |
| B2  | CLKOUT pulse width low (MIN = $0.4 \times B1$ ,<br>MAX = $0.6 \times B1$ )                                                                                                                                                                                                                                                  | 12.1 | 18.2 | 10.0   | 15.0 | 6.1  | 9.1  | 5.0    | 7.5  | ns   |
| B3  | CLKOUT pulse width high (MIN = $0.4 \times B1$ ,<br>MAX = $0.6 \times B1$ )                                                                                                                                                                                                                                                 | 12.1 | 18.2 | 10.0   | 15.0 | 6.1  | 9.1  | 5.0    | 7.5  | ns   |
| B4  | CLKOUT rise time                                                                                                                                                                                                                                                                                                            | —    | 4.00 | —      | 4.00 |      | 4.00 |        | 4.00 | ns   |

### **Table 9. Bus Operation Timings**



| Num  | Characteristic                                                                                                                         | 33    | MHz   | 40 I  | MHz   | 66 I  | MHz   | 80 MHz |       | Unit |
|------|----------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--------|-------|------|
| Num  | Characteristic                                                                                                                         | Min   | Мах   | Min   | Мах   | Min   | Max   | Min    | Мах   | Unit |
| B16b | $\overline{BB}$ , $\overline{BG}$ , $\overline{BR}$ , valid to CLKOUT (setup time) <sup>2</sup><br>(4MIN = 0.00 × B1 + 0.00)           | 4.00  | —     | 4.00  | _     | 4.00  | —     | 4.00   | _     | ns   |
| B17  | CLKOUT to TA, TEA, BI, BB, BG, BR valid (hold time) (MIN = $0.00 \times B1 + 1.00^3$ )                                                 | 1.00  |       | 1.00  |       | 2.00  | _     | 2.00   |       | ns   |
| B17a | CLKOUT to $\overline{\text{KR}}$ , $\overline{\text{RETRY}}$ , $\overline{\text{CR}}$ valid (hold time)<br>(MIN = 0.00 × B1 + 2.00)    | 2.00  | —     | 2.00  | -     | 2.00  | _     | 2.00   |       | ns   |
| B18  | D(0:31) valid to CLKOUT rising edge (setup time) <sup>4</sup> (MIN = $0.00 \times B1 + 6.00$ )                                         | 6.00  | —     | 6.00  | _     | 6.00  | —     | 6.00   | _     | ns   |
| B19  | CLKOUT rising edge to D(0:31) valid (hold time) <sup>4</sup> (MIN = $0.00 \times B1 + 1.00^5$ )                                        | 1.00  | —     | 1.00  |       | 2.00  | —     | 2.00   |       | ns   |
| B20  | D(0:31) valid to CLKOUT falling edge (setup time) <sup>6</sup> (MIN = $0.00 \times B1 + 4.00$ )                                        | 4.00  | —     | 4.00  |       | 4.00  | _     | 4.00   |       | ns   |
| B21  | CLKOUT falling edge to D(0:31) valid (hold time) <sup>6</sup> (MIN = $0.00 \times B1 + 2.00$ )                                         | 2.00  | —     | 2.00  |       | 2.00  | —     | 2.00   |       | ns   |
| B22  | CLKOUT rising edge to $\overline{CS}$ asserted GPCM<br>ACS = 00 (MAX = 0.25 × B1 + 6.3)                                                | 7.60  | 13.80 | 6.30  | 12.50 | 3.80  | 10.00 | 3.13   | 9.43  | ns   |
| B22a | CLKOUT falling edge to $\overline{CS}$ asserted GPCM<br>ACS = 10, TRLX = [0 or 1]<br>(MAX = 0.00 × B1 + 8.00)                          |       | 8.00  |       | 8.00  | _     | 8.00  | _      | 8.00  | ns   |
| B22b | CLKOUT falling edge to $\overline{CS}$ asserted GPCM<br>ACS = 11, TRLX = [0 or 1], EBDF = 0<br>(MAX = 0.25 × B1 + 6.3)                 | 7.60  | 13.80 | 6.30  | 12.50 | 3.80  | 10.00 | 3.13   | 9.43  | ns   |
| B22c | CLKOUT falling edge to $\overline{CS}$ asserted GPCM<br>ACS = 11, TRLX = [0 or 1], EBDF = 1<br>(MAX = 0.375 × B1 + 6.6)                | 10.90 | 18.00 | 10.90 | 16.00 | 5.20  | 12.30 | 4.69   | 10.93 | ns   |
| B23  | CLKOUT rising edge to $\overline{CS}$ negated GPCM read<br>access, GPCM write access ACS = 00 and CSNT<br>= 0 (MAX = 0.00 × B1 + 8.00) | 2.00  | 8.00  | 2.00  | 8.00  | 2.00  | 8.00  | 2.00   | 8.00  | ns   |
| B24  | A(0:31) and BADDR(28:30) to $\overline{CS}$ asserted<br>GPCM ACS = 10, TRLX = 0<br>(MIN = $0.25 \times B1 - 2.00$ )                    | 5.60  |       | 4.30  |       | 1.80  |       | 1.13   |       | ns   |
| B24a | A(0:31) and BADDR(28:30) to $\overline{CS}$ asserted<br>GPCM ACS = 11 TRLX = 0<br>(MIN = 0.50 × B1 - 2.00)                             | 13.20 |       | 10.50 |       | 5.60  | _     | 4.25   |       | ns   |
| B25  | CLKOUT rising edge to $\overline{OE}$ , $\overline{WE}$ (0:3) asserted<br>(MAX = 0.00 × B1 + 9.00)                                     | _     | 9.00  | —     | 9.00  | —     | 9.00  | —      | 9.00  | ns   |
| B26  | CLKOUT rising edge to $\overline{OE}$ negated<br>(MAX = 0.00 × B1 + 9.00)                                                              | 2.00  | 9.00  | 2.00  | 9.00  | 2.00  | 9.00  | 2.00   | 9.00  | ns   |
| B27  | A(0:31) and BADDR(28:30) to $\overline{CS}$ asserted<br>GPCM ACS = 10, TRLX = 1<br>(MIN = $1.25 \times B1 - 2.00$ )                    | 35.90 |       | 29.30 |       | 16.90 |       | 13.60  |       | ns   |

### Table 9. Bus Operation Timings (continued)



| Num  | Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33 I  | MHz   | 40 I  | MHz   | 66 I  | MHz   | 80 I  | MHz   | Unit |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Num  | Characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min   | Мах   | Min   | Мах   | Min   | Max   | Min   | Мах   | Unit |
| B29h | $\overline{\text{WE}}(0:3)$ negated to D(0:31) High-Z GPCM write<br>access, TRLX = 1, CSNT = 1, EBDF = 1<br>(MIN = 0.375 × B1 - 3.30)                                                                                                                                                                                                                                                                                                                                       | 38.40 |       | 31.10 |       | 17.50 | _     | 13.85 |       | ns   |
| B29i | $\overline{\text{CS}}$ negated to D(0:31) High-Z GPCM write<br>access, TRLX = 1, CSNT = 1, ACS = 10 or<br>ACS = 11, EBDF = 1 (MIN = 0.375 × B1 – 3.30)                                                                                                                                                                                                                                                                                                                      | 38.40 | _     | 31.10 |       | 17.50 | _     | 13.85 |       | ns   |
| B30  | $\label{eq:cs} \hline{\text{CS}}, \overline{\text{WE}}(0:3) \text{ negated to A}(0:31), \text{BADDR}(28:30) \\ \\ \text{Invalid GPCM read/write access}^8 \\ (\text{MIN} = 0.25 \times \text{B1} - 2.00) \\ \hline$                                                                                                                                                                                                                                                         | 5.60  |       | 4.30  |       | 1.80  | _     | 1.13  |       | ns   |
| B30a | $\label{eq:weighted_states} \hline \hline WE(0:3) \ \text{negated to } A(0:31), \ BADDR(28:30) \\ \hline \text{Invalid GPCM, write access, } TRLX = 0, \ CSNT = 1, \\ \hline CS \ \text{negated to } A(0:31) \ \text{invalid GPCM write access} \\ TRLX = 0, \ CSNT = 1 \ ACS = 10, \ \text{or } ACS = = 11, \\ \hline EBDF = 0 \ (MIN = 0.50 \times B1 - 2.00) \\ \hline \hline \end{array}$                                                                               | 13.20 |       | 10.50 | _     | 5.60  | _     | 4.25  | _     | ns   |
| B30b | $\label{eq:weighted_states} \hline \hline WE(0:3) \ \text{negated to } A(0:31) \ \text{invalid GPCM} \\ \hline BADDR(28:30) \ \text{invalid GPCM} \ \text{write access}, \\ \hline TRLX = 1, \ CSNT = 1. \ \overline{CS} \ \text{negated to } A(0:31) \\ \hline \text{invalid GPCM} \ \text{write access} \ TRLX = 1, \ CSNT = 1, \\ \hline ACS = 10, \ \text{or } ACS == 11 \ \text{EBDF} = 0 \\ \hline (MIN = 1.50 \times \text{B1} - 2.00) \\ \hline \hline \end{array}$ | 43.50 | _     | 35.50 | _     | 20.70 |       | 16.75 |       | ns   |
| B30c | $\label{eq:weighted_states} \begin{array}{ c c c c c } \hline \hline WE(0:3) \mbox{ negated to } A(0:31), \mbox{ BADDR}(28:30) \\ \hline \mbox{ invalid GPCM write access, TRLX = 0, CSNT = 1.} \\ \hline \hline CS \mbox{ negated to } A(0:31) \mbox{ invalid GPCM write access, TRLX = 0, CSNT = 1 ACS = 10,} \\ \hline ACS == 11, \mbox{ EBDF = 1 (MIN = 0.375 \times B1 - 3.00)} \end{array}$                                                                           | 8.40  | _     | 6.40  |       | 2.70  | _     | 1.70  |       | ns   |
| B30d | $\overline{\text{WE}}(0:3)$ negated to A(0:31), BADDR(28:30)<br>invalid GPCM write access TRLX = 1, CSNT =1,<br>$\overline{\text{CS}}$ negated to A(0:31) invalid GPCM write access<br>TRLX = 1, CSNT = 1, ACS = 10 or 11, EBDF = 1                                                                                                                                                                                                                                         | 38.67 |       | 31.38 |       | 17.83 | _     | 14.19 |       | ns   |
| B31  | CLKOUT falling edge to $\overline{\text{CS}}$ valid, as requested by control bit CST4 in the corresponding word in the UPM (MAX = $0.00 \times \text{B1} + 6.00$ )                                                                                                                                                                                                                                                                                                          | 1.50  | 6.00  | 1.50  | 6.00  | 1.50  | 6.00  | 1.50  | 6.00  | ns   |
| B31a | CLKOUT falling edge to $\overline{\text{CS}}$ valid, as requested by control bit CST1 in the corresponding word in the UPM (MAX = $0.25 \times \text{B1} + 6.80$ )                                                                                                                                                                                                                                                                                                          | 7.60  | 14.30 | 6.30  | 13.00 | 3.80  | 10.50 | 3.13  | 10.00 | ns   |
| B31b | CLKOUT rising edge to $\overline{CS}$ valid, as requested by control bit CST2 in the corresponding word in the UPM (MAX = $0.00 \times B1 + 8.00$ )                                                                                                                                                                                                                                                                                                                         | 1.50  | 8.00  | 1.50  | 8.00  | 1.50  | 8.00  | 1.50  | 8.00  | ns   |
| B31c | CLKOUT rising edge to $\overline{CS}$ valid, as requested by control bit CST3 in the corresponding word in the UPM (MAX = $0.25 \times B1 + 6.30$ )                                                                                                                                                                                                                                                                                                                         | 7.60  | 13.80 | 6.30  | 12.50 | 3.80  | 10.00 | 3.13  | 9.40  | ns   |
| B31d | CLKOUT falling edge to $\overline{CS}$ valid, as requested by<br>control bit CST1 in the corresponding word in the<br>UPM EBDF = 1 (MAX = $0.375 \times B1 + 6.6$ )                                                                                                                                                                                                                                                                                                         | 13.30 | 18.00 | 11.30 | 16.00 | 7.60  | 12.30 | 4.69  | 11.30 | ns   |

### Table 9. Bus Operation Timings (continued)



**Bus Signal Timing** 

Figure 6 provides the control timing diagram.

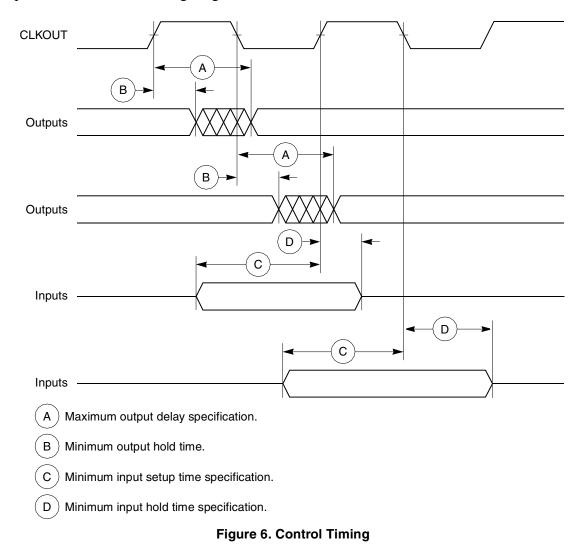
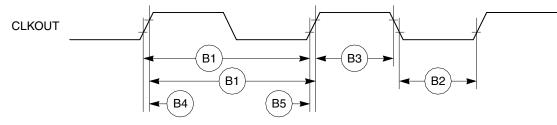
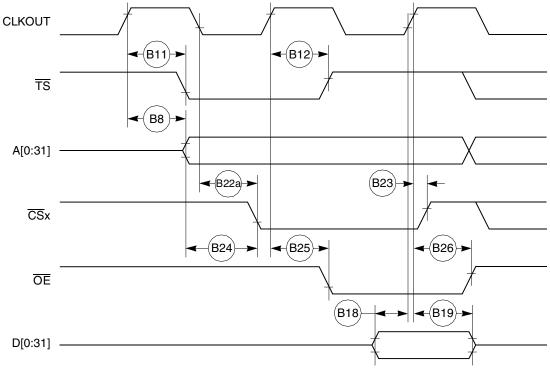
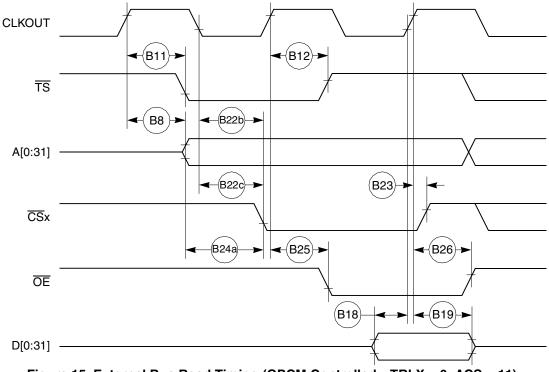



Figure 7 provides the timing for the external clock.



Figure 7. External Clock Timing



**Bus Signal Timing** 











**CPM Electrical Characteristics** 

## 12.5 Timer AC Electrical Specifications

Table 20 provides the general-purpose timer timings as shown in Figure 53.

### Table 20. Timer Timing

| Num   | Characteristic               | All Freq | Unit |      |
|-------|------------------------------|----------|------|------|
| Nulli | Characteristic               | Min      | Max  | eint |
| 61    | TIN/TGATE rise and fall time | 10       |      | ns   |
| 62    | TIN/TGATE low time           | 1        | _    | clk  |
| 63    | TIN/TGATE high time          | 2        | _    | clk  |
| 64    | TIN/TGATE cycle time         | 3        | —    | clk  |
| 65    | CLKO low to TOUT valid       | 3        | 25   | ns   |

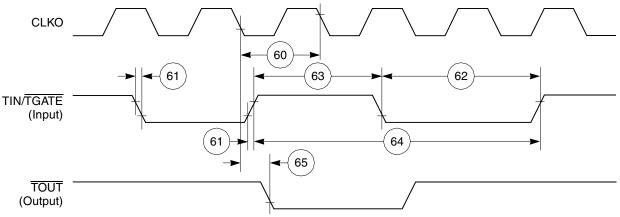



Figure 53. CPM General-Purpose Timers Timing Diagram

## 12.6 Serial Interface AC Electrical Specifications

Table 21 provides the serial interface timings as shown in Figure 54 through Figure 58.

### Table 21. SI Timing

| Num | Characteristic                                           | All Fre | Unit        |      |
|-----|----------------------------------------------------------|---------|-------------|------|
| num | Characteristic                                           | Min     | Мах         | Unit |
| 70  | L1RCLK, L1TCLK frequency (DSC = 0) <sup>1, 2</sup>       | —       | SYNCCLK/2.5 | MHz  |
| 71  | L1RCLK, L1TCLK width low (DSC = $0$ ) <sup>2</sup>       | P + 10  | —           | ns   |
| 71a | L1RCLK, L1TCLK width high $(DSC = 0)^3$                  | P + 10  | —           | ns   |
| 72  | L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time            | —       | 15.00       | ns   |
| 73  | L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)   | 20.00   | —           | ns   |
| 74  | L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time) | 35.00   | —           | ns   |
| 75  | L1RSYNC, L1TSYNC rise/fall time                          | —       | 15.00       | ns   |



**CPM Electrical Characteristics** 

| Num | Characteristic                                                         | All Fre | equencies             | Unit   |
|-----|------------------------------------------------------------------------|---------|-----------------------|--------|
| Num | Characteristic                                                         | Min     | Max                   | Unit   |
| 76  | L1RXD valid to L1CLK edge (L1RXD setup time)                           | 17.00   | _                     | ns     |
| 77  | L1CLK edge to L1RXD invalid (L1RXD hold time)                          | 13.00   | _                     | ns     |
| 78  | L1CLK edge to L1ST(1-4) valid <sup>4</sup>                             | 10.00   | 45.00                 | ns     |
| 78A | L1SYNC valid to L1ST(1-4) valid                                        | 10.00   | 45.00                 | ns     |
| 79  | L1CLK edge to L1ST(1-4) invalid                                        | 10.00   | 45.00                 | ns     |
| 80  | L1CLK edge to L1TXD valid                                              | 10.00   | 55.00                 | ns     |
| 80A | L1TSYNC valid to L1TXD valid <sup>4</sup>                              | 10.00   | 55.00                 | ns     |
| 81  | L1CLK edge to L1TXD high impedance                                     | 0.00    | 42.00                 | ns     |
| 82  | L1RCLK, L1TCLK frequency (DSC =1)                                      | _       | 16.00 or<br>SYNCCLK/2 | MHz    |
| 83  | L1RCLK, L1TCLK width low (DSC =1)                                      | P + 10  | —                     | ns     |
| 83a | L1RCLK, L1TCLK width high $(DSC = 1)^3$                                | P + 10  | —                     | ns     |
| 84  | L1CLK edge to L1CLKO valid (DSC = 1)                                   | —       | 30.00                 | ns     |
| 85  | L1RQ valid before falling edge of L1TSYNC <sup>4</sup>                 | 1.00    | —                     | L1TCLK |
| 86  | L1GR setup time <sup>2</sup>                                           | 42.00   | —                     | ns     |
| 87  | L1GR hold time                                                         | 42.00   | —                     | ns     |
| 88  | L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0,<br>DSC = 0) | -       | 0.00                  | ns     |

### Table 21. SI Timing (continued)

The ratio SyncCLK/L1RCLK must be greater than 2.5/1.
 These specs are valid for IDL mode only.

<sup>3</sup> Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.

<sup>4</sup> These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever comes later.



#### SCC in NMSI Mode Electrical Specifications 12.7

Table 22 provides the NMSI external clock timing.

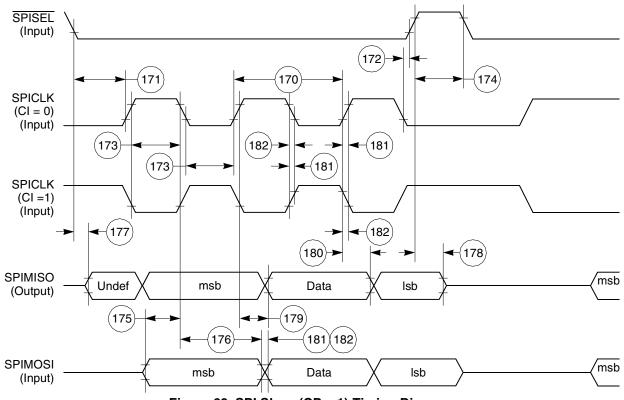
| Num   | Characteristic                                       | All Frequencies |       | Unit |  |
|-------|------------------------------------------------------|-----------------|-------|------|--|
| Nulli | Characteristic                                       | Min             | Мах   |      |  |
| 100   | RCLK1 and TCLK1 width high <sup>1</sup>              | 1/SYNCCLK       | _     | ns   |  |
| 101   | RCLK1 and TCLK1 width low                            | 1/SYNCCLK + 5   | _     | ns   |  |
| 102   | RCLK1 and TCLK1 rise/fall time                       | —               | 15.00 | ns   |  |
| 103   | TXD1 active delay (from TCLK1 falling edge)          | 0.00            | 50.00 | ns   |  |
| 104   | RTS1 active/inactive delay (from TCLK1 falling edge) | 0.00            | 50.00 | ns   |  |
| 105   | CTS1 setup time to TCLK1 rising edge                 | 5.00            | _     | ns   |  |
| 106   | RXD1 setup time to RCLK1 rising edge                 | 5.00            | _     | ns   |  |
| 107   | RXD1 hold time from RCLK1 rising edge <sup>2</sup>   | 5.00            | —     | ns   |  |
| 108   | CD1 setup time to RCLK1 rising edge                  | 5.00            | —     | ns   |  |

### Table 22. NMSI External Clock Timing

The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.
 Also applies to CD and CTS hold time when they are used as external sync signals.

### Table 23 provides the NMSI internal clock timing.

### Table 23. NMSI Internal Clock Timing


| Num   | Characteristic                                       | All Frequencies |           | Unit |
|-------|------------------------------------------------------|-----------------|-----------|------|
| Nulli |                                                      | Min Max         |           |      |
| 100   | RCLK1 and TCLK1 frequency <sup>1</sup>               | 0.00            | SYNCCLK/3 | MHz  |
| 102   | RCLK1 and TCLK1 rise/fall time                       | —               | —         | ns   |
| 103   | TXD1 active delay (from TCLK1 falling edge)          | 0.00            | 30.00     | ns   |
| 104   | RTS1 active/inactive delay (from TCLK1 falling edge) | 0.00            | 30.00     | ns   |
| 105   | CTS1 setup time to TCLK1 rising edge                 | 40.00           | —         | ns   |
| 106   | RXD1 setup time to RCLK1 rising edge                 | 40.00           | —         | ns   |
| 107   | RXD1 hold time from RCLK1 rising edge <sup>2</sup>   | 0.00            | —         | ns   |
| 108   | CD1 setup time to RCLK1 rising edge                  | 40.00           | —         | ns   |

<sup>1</sup> The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 3/1.

<sup>2</sup> Also applies to  $\overline{CD}$  and  $\overline{CTS}$  hold time when they are used as external sync signals



#### **CPM Electrical Characteristics**



### Figure 69. SPI Slave (CP = 1) Timing Diagram

## 12.12 I<sup>2</sup>C AC Electrical Specifications

Table 28 provides the  $I^2C$  (SCL < 100 kHz) timings.

Table 28.  $I^2C$  Timing (SCL < 100 kHz)

| Num | Characteristic                            | All Frequencies |     | Unit |
|-----|-------------------------------------------|-----------------|-----|------|
| Num | Cildiacteristic                           | Min             | Мах | Unit |
| 200 | SCL clock frequency (slave)               | 0               | 100 | kHz  |
| 200 | SCL clock frequency (master) <sup>1</sup> | 1.5             | 100 | kHz  |
| 202 | Bus free time between transmissions       | 4.7             | _   | μs   |
| 203 | Low period of SCL                         | 4.7             | _   | μs   |
| 204 | High period of SCL                        | 4.0             | _   | μs   |
| 205 | Start condition setup time                | 4.7             | _   | μs   |
| 206 | Start condition hold time                 | 4.0             | _   | μs   |
| 207 | Data hold time                            | 0               | _   | μs   |
| 208 | Data setup time                           | 250             | _   | ns   |
| 209 | SDL/SCL rise time                         | —               | 1   | μs   |

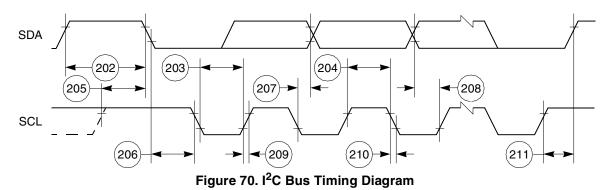


**CPM Electrical Characteristics** 

| Num   | Num         Characteristic         All Frequencies           Min         Max | uencies | Unit |    |
|-------|------------------------------------------------------------------------------|---------|------|----|
| Nulli |                                                                              | Min     | Мах  |    |
| 210   | SDL/SCL fall time                                                            | _       | 300  | ns |
| 211   | Stop condition setup time                                                    | 4.7     |      | μs |

### Table 28. I<sup>2</sup>C Timing (SCL < 100 kHz) (continued)

SCL frequency is given by SCL = BRGCLK\_frequency/((BRG register + 3) × pre\_scaler × 2). The ratio SyncClk/(BRGCLK/pre\_scaler) must be greater or equal to 4/1.


### Table 29 provides the $I^2C$ (SCL > 100 kHz) timings.

| Table 29. | I <sup>2</sup> C Timing | (SCL > 100 kHz) |
|-----------|-------------------------|-----------------|
|-----------|-------------------------|-----------------|

| Num | Characteristic                            | Expression | All Frequencies               |                             | Unit |  |
|-----|-------------------------------------------|------------|-------------------------------|-----------------------------|------|--|
| Num | Characteristic                            | Expression | Min                           | Мах                         | Unit |  |
| 200 | SCL clock frequency (slave)               | fSCL       | 0                             | BRGCLK/48                   | Hz   |  |
| 200 | SCL clock frequency (master) <sup>1</sup> | fSCL       | BRGCLK/16512                  | BRGCLK/48                   | Hz   |  |
| 202 | Bus free time between transmissions       | —          | 1/(2.2 × fSCL)                | _                           | S    |  |
| 203 | Low period of SCL                         | —          | 1/(2.2 × fSCL)                | _                           | S    |  |
| 204 | High period of SCL                        | —          | 1/(2.2 × fSCL)                | _                           | S    |  |
| 205 | Start condition setup time                | —          | 1/(2.2 × fSCL)                | _                           | S    |  |
| 206 | Start condition hold time                 | —          | 1/(2.2 × fSCL)                | _                           | S    |  |
| 207 | Data hold time                            | —          | 0                             | _                           | S    |  |
| 208 | Data setup time                           | —          | 1/(40 × fSCL)                 | _                           | s    |  |
| 209 | SDL/SCL rise time                         | —          | _                             | 1/(10 × fSCL)               | S    |  |
| 210 | SDL/SCL fall time                         | —          | _                             | $1/(33 \times \text{fSCL})$ | s    |  |
| 211 | Stop condition setup time                 | —          | $1/2(2.2 \times \text{fSCL})$ | _                           | S    |  |

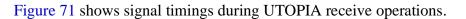

SCL frequency is given by SCL = BrgClk\_frequency/((BRG register + 3) × pre\_scaler × 2). The ratio SyncClk/(Brg\_Clk/pre\_scaler) must be greater or equal to 4/1.

Figure 70 shows the  $I^2C$  bus timing.





### **UTOPIA AC Electrical Specifications**



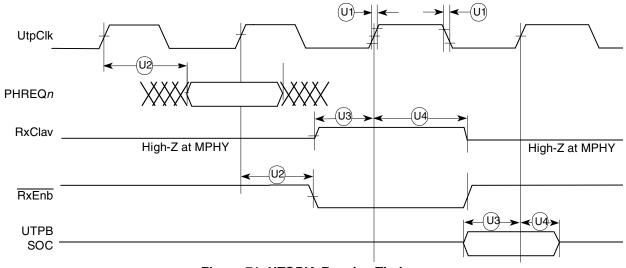



Figure 71. UTOPIA Receive Timing

Figure 72 shows signal timings during UTOPIA transmit operations.

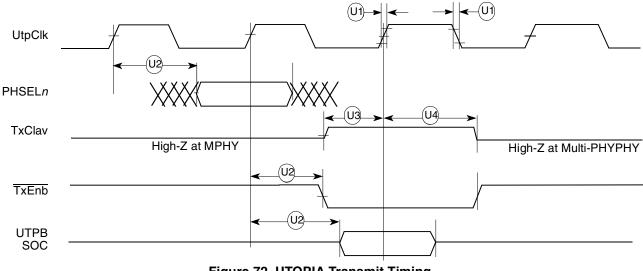



Figure 72. UTOPIA Transmit Timing

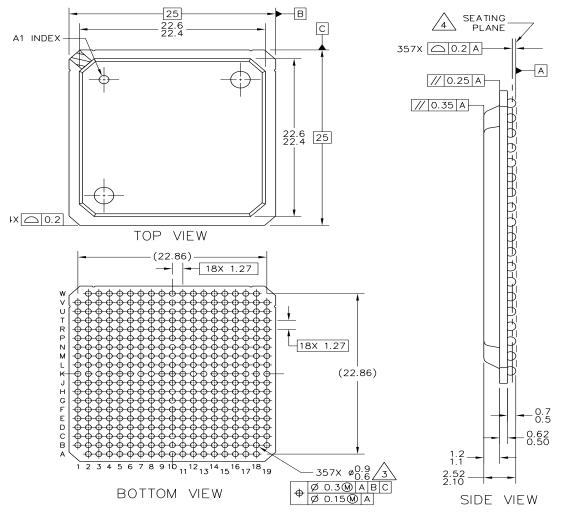


### Table 39. Pin Assignments (continued)

| Name                                 | Pin Number | Туре                                    |
|--------------------------------------|------------|-----------------------------------------|
| ALE_B, DSCK/AT1                      | D8         | Bidirectional<br>Three-state            |
| IP_B[0:1], IWP[0:1],<br>VFLS[0:1]    | A9, D9     | Bidirectional                           |
| IP_B2, IOIS16_B, AT2                 | C8         | Bidirectional<br>Three-state            |
| IP_B3, IWP2, VF2                     | C9         | Bidirectional                           |
| IP_B4, LWP0, VF0                     | В9         | Bidirectional                           |
| IP_B5, LWP1, VF1                     | A10        | Bidirectional                           |
| IP_B6, DSDI, AT0                     | A8         | Bidirectional<br>Three-state            |
| IP_B7, PTR, AT3                      | B8         | Bidirectional<br>Three-state            |
| OP0, UtpClk_Split <sup>1</sup>       | B6         | Bidirectional                           |
| OP1                                  | C6         | Output                                  |
| OP2, MODCK1, STS                     | D6         | Bidirectional                           |
| OP3, MODCK2, DSDO                    | A6         | Bidirectional                           |
| BADDR30, REG                         | A7         | Output                                  |
| BADDR[28:29]                         | C5, B5     | Output                                  |
| ĀS                                   | D7         | Input                                   |
| PA15, USBRXD                         | N16        | Bidirectional                           |
| PA14, USBOE                          | P17        | Bidirectional<br>(Optional: open-drain) |
| PA13, RXD2                           | W11        | Bidirectional                           |
| PA12, TXD2                           | P16        | Bidirectional<br>(Optional: open-drain) |
| PA11, RXD4, MII1-TXD0,<br>RMII1-TXD0 | W9         | Bidirectional<br>(Optional: open-drain) |
| PA10, MII1-TXER, TIN4,<br>CLK7       | W17        | Bidirectional<br>(Optional: open-drain) |
| PA9, L1TXDA, RXD3                    | T15        | Bidirectional<br>(Optional: open-drain) |
| PA8, L1RXDA, TXD3                    | W15        | Bidirectional<br>(Optional: open-drain) |
| PA7, CLK1, L1RCLKA,<br>BRGO1, TIN1   | V14        | Bidirectional                           |
| PA6, CLK2, TOUT1                     | U13        | Bidirectional                           |
| PA5, CLK3, L1TCLKA,<br>BRGO2, TIN2   | W13        | Bidirectional                           |



### Table 39. Pin Assignments (continued)


| Name                                                                  | Pin Number | Туре                                    |
|-----------------------------------------------------------------------|------------|-----------------------------------------|
| PA4, CTS4, MII1-TXD1,<br>RMII1-TXD1                                   | U4         | Bidirectional                           |
| PA3, MII1-RXER,<br>RMII1-RXER, BRGO3                                  | W2         | Bidirectional                           |
| PA2, MII1-RXDV,<br>RMII1-CRS_DV, TXD4                                 | T4         | Bidirectional                           |
| PA1, MII1-RXD0,<br>RMII1-RXD0, BRGO4                                  | U1         | Bidirectional                           |
| PA0, MII1-RXD1,<br>RMII1-RXD1, TOUT4                                  | U3         | Bidirectional                           |
| PB31, <u>SPISEL,</u><br>MII1-TXCLK,<br>RMII1-REFCLK                   | V3         | Bidirectional<br>(Optional: open-drain) |
| PB30, SPICLK                                                          | P18        | Bidirectional<br>(Optional: open-drain) |
| PB29, SPIMOSI                                                         | T19        | Bidirectional<br>(Optional: open-drain) |
| PB28, SPIMISO, BRGO4                                                  | V19        | Bidirectional<br>(Optional: open-drain) |
| PB27, I2CSDA, BRGO1                                                   | U19        | Bidirectional<br>(Optional: open-drain) |
| PB26, I2CSCL, BRGO2                                                   | R17        | Bidirectional<br>(Optional: open-drain) |
| PB25, RXADDR3 <sup>1</sup> ,<br>TXADDR3, SMTXD1                       | V17        | Bidirectional<br>(Optional: open-drain) |
| PB24, TXADDR3 <sup>1</sup> ,<br>RXADDR3, SMRXD1                       | U16        | Bidirectional<br>(Optional: open-drain) |
| PB23, TXADDR2 <sup>1</sup> ,<br>RXADDR2, SDACK1,<br>SMSYN1            | W16        | Bidirectional<br>(Optional: open-drain) |
| PB22, TXADDR4 <sup>1</sup> ,<br>RXADDR4, SDACK2,<br>SMSYN2            | V15        | Bidirectional<br>(Optional: open-drain) |
| PB21, SMTXD2,<br>TXADDR1 <sup>1</sup> , BRG01,<br>RXADDR1, PHSEL[1]   | U14        | Bidirectional<br>(Optional: open-drain) |
| PB20, SMRXD2,<br>L1CLKOA, TXADDR0 <sup>1</sup> ,<br>RXADDR0, PHSEL[0] | T13        | Bidirectional<br>(Optional: open-drain) |
| PB19, MII1-RXD3, RTS4                                                 | V13        | Bidirectional<br>(Optional: open-drain) |
| PB18, RXADDR4 <sup>1</sup> ,<br>TXADDR4, RTS2, L1ST2                  | T12        | Bidirectional<br>(Optional: open-drain) |



Mechanical Data and Ordering Information

### 16.2 Mechanical Dimensions of the PBGA Package

Figure 78 shows the mechanical dimensions of the PBGA package.



### NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.

2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

4. DATUM A, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

### Figure 78. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package