

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k40-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 4	-4. 000	STAT: USCILL	AIUN SIA	I US REGIST			
R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	U-0	R-q/q
EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR
bit 7							bit
Louand							
Legend: R = Readable	hit	W = Writable	h it		mantad hit raad	aa 'O'	
					mented bit, read		ath an Daaata
u = Bit is unch	angeo	x = Bit is unki			at POR and BOI		
'1' = Bit is set		'0' = Bit is cle	ared	q = Reset va	lue is determine	d by hardware	9
bit 7	1 = The o	TOSC (external scillator is ready scillator is not en	to be used		be used		
bit 6	1 = The o	NTOSC Oscillato scillator is ready scillator is not en	to be used	ot yet ready to b	be used		
bit 5	1 = The os	INTOSC Oscillat scillator is ready scillator is not en	to be used	ot yet ready to b	be used		
bit 4	1 = The o	NTOSC Oscillato scillator is ready scillator is not en	to be used	it yet ready to b	be used		
bit 3	1 = The o	ndary (Timer1) C scillator is ready scillator is not er	to be used	-	be used		
bit 2	1 = The o	C Oscillator Rea scillator is ready scillator is not er	to be used	ot yet ready to	be used		
bit 1	Unimpleme	ented: Read as '	0'	· -			
bit 0	1 = The F	is Ready bit PLL is ready to be LL is not enabled		l input source is	s not ready, or th	e PLL is not lo	ocked.

REGISTER 4-4: OSCSTAT: OSCILLATOR STATUS REGISTER 1

U-0 I	R/W ⁽³⁾ -q/q ⁽¹⁾	R/W ⁽³⁾ -q/q ⁽¹⁾	R/W ⁽³⁾ -q/q ⁽¹⁾	U-0	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾	R/W ⁽⁴⁾ -q/q ⁽²⁾	
—		WDTCS<2:0>		-		WINDOW<2:0>		
bit 7							bit 0	
Legend:								
R = Readable	able bit W = Writable bit U = Unimplemented bit, read as '0'		U = Unimplemented bit, read as '0'					
u = Bit is unch	nanged	x = Bit is unk	nown	-n/n = Value at POR and BOR/Value at all other Resets				

q = Value depends on condition

REGISTER 9-2: WDTCON1: WATCHDOG TIMER CONTROL REGISTER 1

bit 7	Unimplemented: Read as '0'
	Unimplemented. Read as 0

'1' = Bit is set

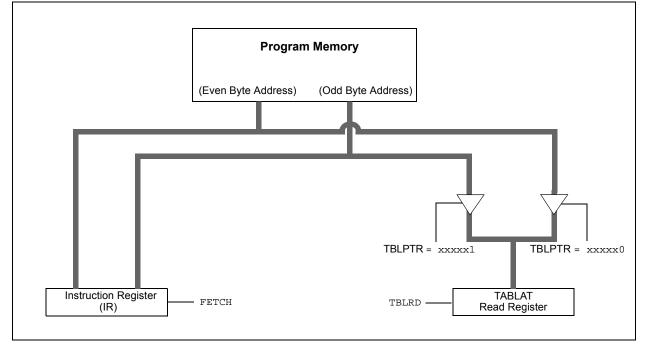
bit 6-4 WDTCS<2:0>: Watchdog Timer Clock Select bits

'0' = Bit is cleared

- 111 = Reserved
 - •
 - •
 - 010 = Reserved
 - 001 = MFINTOSC 31.25 kHz
 - 000 = LFINTOSC 31 kHz
- bit 3 Unimplemented: Read as '0'
- bit 2-0 WINDOW<2:0>: Watchdog Timer Window Select bits

WINDOW<2:0>	Window delay Percent of time	Window opening Percent of time
111	N/A	100
110	12.5	87.5
101	25	75
100	37.5	62.5
011	50	50
010	62.5	37.5
001	75	25
000	87.5	12.5

- Note 1: If WDTCCS <2:0> in CONFIG3H = 111, the Reset value of WDTCS<2:0> is 000.
 - 2: The Reset value of WINDOW<2:0> is determined by the value of WDTCWS<2:0> in the CONFIG3H register.
 - **3:** If WDTCCS<2:0> in CONFIG3H \neq 111, these bits are read-only.
 - 4: If WDTCWS<2:0> in CONFIG3H \neq 111, these bits are read-only.


11.1.3 READING THE PROGRAM FLASH MEMORY

The TBLRD instruction retrieves data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The CPU operation is suspended during the read, and it resumes immediately after. From the user point of view, TABLAT is valid in the next instruction cycle.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 11-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 11-4: READS FROM PROGRAM FLASH MEMORY

EXAMPLE 11-1: READING A PROGRAM FLASH MEMORY WORD

MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
MOVWF	TBLPTRU	;	address of the word
MOVLW	CODE_ADDR_HIGH		
MOVWF	TBLPTRH		
MOVLW	CODE_ADDR_LOW		
MOVWF	TBLPTRL		
TBLRD*+		;	read into TABLAT and increment
MOVF	TABLAT, W	;	get data
MOVWF	WORD_EVEN		
TBLRD*+		;	read into TABLAT and increment
MOVFW	TABLAT, W	;	get data
MOVF	WORD ODD		
	MOVWF MOVLW MOVWF MOVLW MOVWF TBLRD*+ MOVF TBLRD*+ MOVFW	MOVWF TBLPTRU MOVLW CODE_ADDR_HIGH MOVWF TBLPTRH MOVLW CODE_ADDR_LOW MOVWF TBLPTRL TBLRD*+ MOVF TABLAT, W MOVWF WORD_EVEN TBLRD*+ MOVFW TABLAT, W	MOVWF TBLPTRU ; MOVLW CODE_ADDR_HIGH MOVWF TBLPTRH MOVLW CODE_ADDR_LOW MOVWF TBLPTRL TBLRD*+ ; MOVF TABLAT, W ; MOVWF WORD_EVEN TBLRD*+ ; MOVFW TABLAT, W ;

11.3 Data EEPROM Memory

The data EEPROM is a nonvolatile memory array, separate from the data RAM and program memory, which is used for long-term storage of program data. It is not directly mapped in either the register file or program memory space but is indirectly addressed through the Special Function Registers (SFRs). The EEPROM is readable and writable during normal operation over the entire VDD range.

Four SFRs are used to read and write to the data EEPROM as well as the program memory. They are:

- NVMCON1
- NVMCON2
- NVMDAT
- NVMADRL
- NVMADRH(1)

Note 1: NVMADRH register is not implemented on PIC18(L)F45K40.

The data EEPROM allows byte read and write. When interfacing to the data memory block, NVMDAT holds the 8-bit data for read/write and the NVMADRH:NVMADRL register pair hold the address of the EEPROM location being accessed.

The EEPROM data memory is rated for high erase/write cycle endurance. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an internal programming timer; it will vary with voltage and temperature as well as from chip-to-chip. Please refer to the Data EEPROM Memory parameters in **Section 37.0 "Electrical Specifications"** for limits.

11.3.1 NVMADRL AND NVMADRH REGISTERS

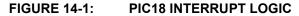
The NVMADRH:NVMADRL registers are used to address the data EEPROM for read and write operations.

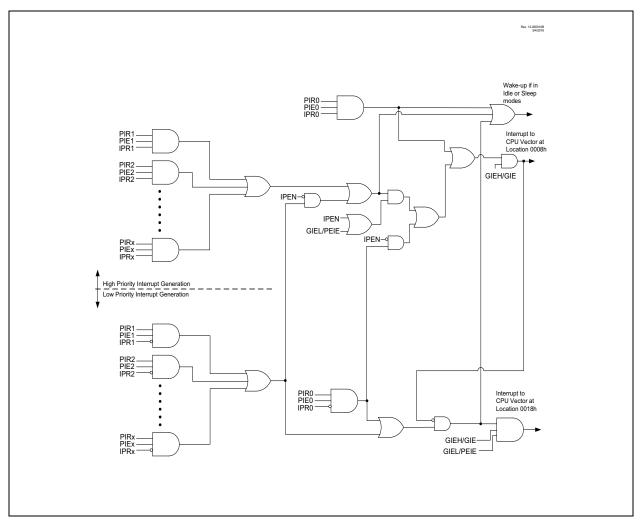
11.3.2 NVMCON1 AND NVMCON2 REGISTERS

Access to the data EEPROM is controlled by two registers: NVMCON1 and NVMCON2. These are the same registers which control access to the program memory and are used in a similar manner for the data EEPROM.

The NVMCON1 register (Register 11-1) is the control register for data and program memory access. Control bits NVMREG<1:0> determine if the access will be to program, Data EEPROM Memory or the User IDs, Configuration bits, Revision ID and Device ID.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear.


The WRERR bit is set by hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.


The WR control bit initiates write operations. The bit can be set but not cleared by software. It is cleared only by hardware at the completion of the write operation.

The NVMIF interrupt flag bit of the PIR7 register is set when the write is complete. It must be cleared by software.

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.

The RD bit cannot be set when accessing program memory (NVMREG<1:0> = 0x10). Program memory is read using table read instructions. See **Section 11.1.1 "Table Reads and Table Writes"** regarding table reads.

16.6 Register Definitions: Interrupt-on-Change Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0
bit 7			•				bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clear	ed				

REGISTER 16-1: IOCxP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER EXAMPLE

bit 7-0

IOCxP<7:0>: Interrupt-on-Change Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the IOCx pin for a positive-going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 16-2: IOCxN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER EXAMPLE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCxN7 | IOCxN6 | IOCxN5 | IOCxN4 | IOCxN3 | IOCxN2 | IOCxN1 | IOCxN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCxN<7:0>: Interrupt-on-Change Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the IOCx pin for a negative-going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

REGISTER 16-3: IOCxF: INTERRUPT-ON-CHANGE FLAG REGISTER EXAMPLE

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCxF7 | IOCxF6 | IOCxF5 | IOCxF4 | IOCxF3 | IOCxF2 | IOCxF1 | IOCxF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCxF<7:0>: Interrupt-on-Change Flag bits

1 = A enabled change was detected on the associated pin. Set when IOCP[n] = 1 and a positive edge was detected on the IOCn pin, or when IOCN[n] = 1 and a negative edge was detected on the IOCn pin

0 = No change was detected, or the user cleared the detected change

REGISTER 18-3: TMR0L: TIMER0 COUNT REGISTER

	•••••••						
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMR	0<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	inged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other F			other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 TMR0<7:0>:TMR0 Counter bits <7:0>

REGISTER 18-4: TMR0H: TIMER0 PERIOD REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
	TMR0<15:8>							
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 When T016BIT = 0 PR0<7:0>:TMR0 Period Register Bits <7:0> When T016BIT = 1 TMR0<15:8>: TMR0 Counter bits <15:8>

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

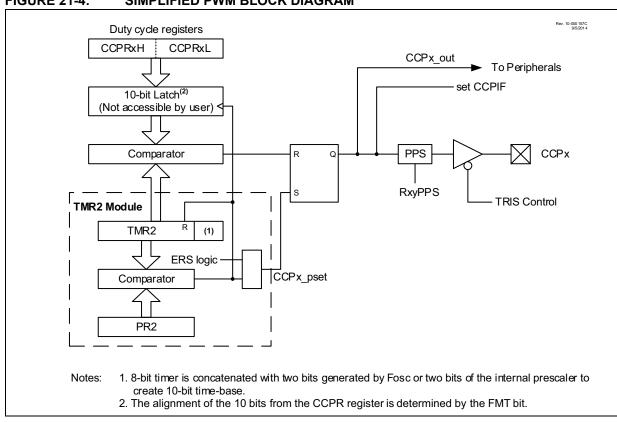
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TMR0L	TMR0<7:0>								226
TMR0H	TMR0<15:8>						226		
T0CON0	T0EN	—	TOOUT	T016BIT	T016BIT T0OUTPS<3:0>				
T0CON1		T0CS<2:0>		T0ASYNC T0CKPS<3:0>					225
T0CKIPPS	—	—	—	T0CKIPPS<4:0>					216
TMR0PPS	_	—	_		TMRC)PPS<4:0>			216
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	170
PIR0	—	—	TMR0IF	IOCIF	—	INT2IF	INT1IF	INT0IF	171
PIE0	—	—	TMR0IE	IOCIE	_	INT2IE	INT1IE	INT0IE	179
IPR0	—	—	TMR0IP	IOCIP	—	INT2IP	INT1IP	INT0IP	187
PMD1	_	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	69

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

© 2015-2017 Microchip Technology Inc.

REGISTER 19-5: TMRxL: TIMERx LOW BYTE REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			TMR	«L<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				


bit 7-0 TMRxL<7:0>:Timerx Low Byte bits

REGISTER 19-6: TMRxH: TIMERx HIGH BYTE REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	
	TMRxH<7:0>							
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TMRxH<7:0>:Timerx High Byte bits

FIGURE 21-4: SIMPLIFIED PWM BLOCK DIAGRAM

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz	
Timer Prescale	16	4	1	1	1	1	
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17	
Maximum Resolution (bits)	10	10	10	8	7	6.6	

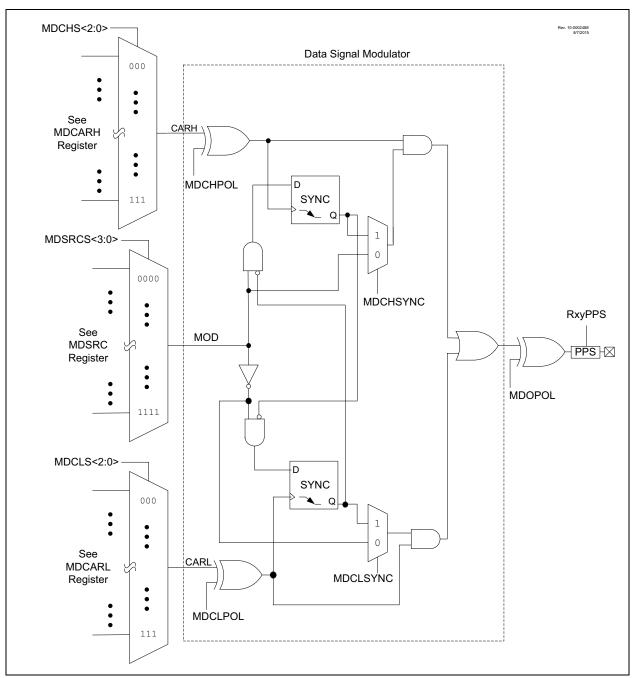
TABLE 21-3:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

TABLE 21-4:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

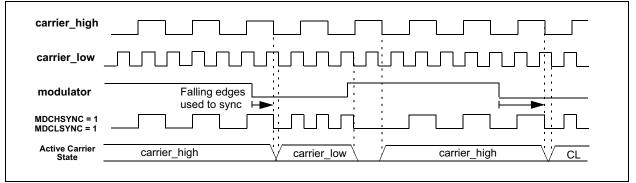
21.5.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.


21.5.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

21.5.9 EFFECTS OF RESET


Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

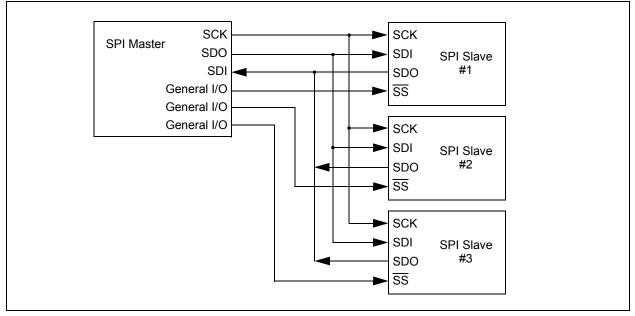


FIGURE 25-5:	Carrier Low Synchronization (MDSHSYNC = 0, MDCLSYNC = 1)
carrier_high	
carrier_low	
modulator	
MDCHSYNC = 0 MDCLSYNC = 1	
Active Carrier State	carrier_high

26.3 SPI Mode Registers

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPxSTAT)
- MSSP Control register 1 (SSPxCON1)
- MSSP Control register 3 (SSPxCON3)
- MSSP Data Buffer register (SSPxBUF)
- MSSP Address register (SSPxADD)
- MSSP Shift register (SSPSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and STATUS registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In one SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 26.11 "Baud Rate Generator"**.

SSPSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPSR and SSPxBUF together create a buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPSR.

© 2015-2017 Microchip Technology Inc.

27.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXxSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

27.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 27.5.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode.

If two words are written to the TXxREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TXxREG register.
- 3. The TXxIF bit will not be set.
- After the first character has been shifted out of TSR, the TXxREG register will transfer the second character to the TSR and the TXxIF bit will now be set.
- 5. If the PEIE and TXxIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.

- 27.5.2.2 Synchronous Slave Transmission Setup
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CKx pin (if applicable).
- 3. Clear the CREN and SREN bits.
- 4. If interrupts are desired, set the TXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXxREG register.

31.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting
- Conversion Trigger Selection
- ADC Acquisition Time
- ADC Precharge Time
- Additional Sample and Hold Capacitor
- Single/Double Sample Conversion
- Guard Ring Outputs

31.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 15.0 "I/O Ports"** for more information.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

31.1.2 CHANNEL SELECTION

There are several channel selections available:

- Eight PORTA pins (RA<7:0>)
- Eight PORTB pins (RB<7:0>)
- Eight PORTC pins (RC<7:0>)
- Eight PORTD pins (RD<7:0>), PIC18(L)F45/46K40 only)
- Three PORTE pins (RE<2:0>), PIC18(L)F45/46K40 only)
- Temperature Indicator
- DAC output
- Fixed Voltage Reference (FVR)
- AVss (ground)

The ADPCH register determines which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. 0

Refer to **Section 31.2 "ADC Operation**" for more information.

Note: It is recommended that when switching from an ADC channel of a higher voltage to a channel of a lower voltage, the software selects the Vss channel before switching. If the ADC does not have a dedicated Vss input channel, the Vss selection (DAC1R<4:0> = b'00000') through the DAC output channel can be used. If the DAC is in use, a free input channel can be connected to Vss, and can be used in place of the DAC.

REGISTER 31-2: ADCON1: ADC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0
ADPPOL	ADIPEN	ADGPOL	-	—	-	_	ADDSEN
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 ADDPOL: Precharge Polarity bit If ADPRE>0x00:

ADPPOL	Action During 1st Precharge Stage					
ADFFOL	External (selected analog I/O pin)	Internal (AD sampling capacitor)				
1	Shorted to AVDD	C _{HOLD} shorted to Vss				
0	Shorted to Vss	C _{HOLD} shorted to AVDD				

- Otherwise:
- The bit is ignored

bit 6 ADIPEN: A/D Inverted Precharge Enable bit

- If ADDSEN = 1
 - 1 = The precharge and guard signals in the second conversion cycle are the opposite polarity of the first cycle
 - 0 = Both Conversion cycles use the precharge and guards specified by ADPPOL and ADGPOL

Otherwise:

The bit is ignored

bit 5 ADGPOL: Guard Ring Polarity Selection bit

- 1 = ADC guard Ring outputs start as digital high during Precharge stage
- 0 = ADC guard Ring outputs start as digital low during Precharge stage

bit 4-1 Unimplemented: Read as '0'

bit 0 ADDSEN: Double-sample enable bit

- 1 = Two conversions are performed on each trigger. Data from the first conversion appears in ADPREV
- 0 = One conversion is performed for each trigger

REGISTER 31-19: ADRESL: ADC RESULT REGISTER LOW, ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **ADRES<7:0>**: ADC Result Register bits. Lower eight bits of 10-bit conversion result.

REGISTER 31-20: ADPREVH: ADC PREVIOUS RESULT REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			ADPRE	/<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADPREV<15:8>: Previous ADC Results bits If ADPSIS = 1: Upper byte of ADFLTR at the start of current ADC conversion If ADPSIS = 0: Upper bits of ADRES at the start of current ADC conversion⁽¹⁾

Note 1: If ADPSIS = 0, ADPREVH and ADPREVL are formatted the same way as ADRES is, depending on the ADFM bit.

ANDWF	AND W w	ith f		BC	Branch i	f Carry	
Syntax:	ANDWF	f {,d {,a}}		Syntax:	BC n		
Operands:	$0 \le f \le 255$			Operands:	-128 ≤ n ≤	127	
	d ∈ [0,1] a ∈ [0,1]			Operation:	if CARRY (PC) + 2 +		
Operation:	(W) .AND.	(f) \rightarrow dest		Status Affected	l: None		
Status Affected:	N, Z			Encoding:	1110	0010 nn:	nn nnnn
Encoding: Description:	register 'f'. in W. If 'd' is in register ' If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl in Indexed mode wher tion 35.2.3	s '1', the result f' (default). he Access Ba he BSR is use nd the extend led, this instru Literal Offset / never $f \le 95$ (5 "Byte-Orient	ND'ed with result is stored is stored back nk is selected. ed to select the ed instruction ction operates Addressing Fh). See Sec- red and Bit-	Words: Cycles: Q Cycle Activi If Jump:	If the CAR will branch The 2's co added to the incrementer instruction PC + 2 + 2 2-cycle inst 1 1(2)	RY bit is '1', the mplement num he PC. Since the ed to fetch the the new addre n. This instruct	en the program ber '2n' is le PC will have next ess will be
		Mode" for de	Indexed Lit-	Q1	Q2	Q3	Q4
Words:	1			Decod	e Read literal 'n'	Process Data	Write to PC
Cycles:	1			No	No	No	No
Q Cycle Activity:	·			operatio		operation	operation
Q1	Q2	Q3	Q4	If No Jump:			
Decode	Read	Process	Write to	Q1	Q2	Q3	Q4
	register 'f'	Data	destination	Decod	e Read literal 'n'	Process Data	No operation
Example: Before Instru W REG After Instructi	= 17h = C2h	REG, 0, 0		<u>Example</u> : Before Ins PC After Instr If CA	= ac uction \RRY = 1	BC 5	

GOTO	Uncondit	ional Branc	h	INCF	Incremen	tf			
Syntax:	GOTO k			Syntax:	INCF f{,c	1 {,a}}			
Operands:	$0 \le k \le 104$	8575		Operands:	$0 \leq f \leq 255$				
Operation:	$k \rightarrow PC<20$):1>			d ∈ [0,1]				
Status Affected:	None			Operation:	a ∈ [0,1] (f) + 1 → d	oot		result is result is efault). is selected o select the instruction in operate: lressing b. See Sec and Bit-	
Encoding:				Status Affected:	(f) + 1 \rightarrow dest C, DC, N, OV, Z				
1st word (k<7:0>)		1111 k ₇ k	0						
2nd word(k<19:8> Description:	,	17	.9kkk kkkk kkkk kkkk an unconditional branch Description: 10da ffff ffff hin entire Incoding: Description: The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).						
	anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction.			placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th					
Words:	2				GPR bank. If 'a' is '0' a		ended ir	o select the	
Cycles:	2				set is enab	led, this ins	struction	operates	
Q Cycle Activity:					in Indexed			•	
Q1	Q2	Q3	Q4				• •		
Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC		Oriented In eral Offset	nstruction	s in Ind	lexed Lit-	
No	No	No	No	Words:	1				
operation	operation	operation	operation	Cycles:	1				
				Q Cycle Activity:					
Example:	GOTO THE	RE		Q1	Q2	Q3		Q4	
After Instruct PC =	ion Address (TI	HERE)		Decode	Read register 'f'	Proces Data	-	Write to estination	
				Example:	INCF	CNT, 1	, 0		
				Before Instruc	tion				

CNT Z DC

After Instruction

CNT Z C DC FFh 0 ? ?

= = =

= = =

RET	FIE	Return fr	Return from Interrupt					
Synta	ax:	RETFIE {	RETFIE {s}					
Operands:		$s \in [0,1]$						
Operation:		$1 \rightarrow GIE/G$ if s = 1 (WS) \rightarrow W (STATUSS (BSRS) \rightarrow	$(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL},$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged.					
Statu	s Affected:	GIE/GIEH,	PEIE/GI	EL.				
Enco	ding:	0000	0000	0001	l 000s			
Description:		and Top-of the PC. Int setting eith global inte contents o STATUSS their corres Status and	Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If 's' = 0, no update of these registers occurs (default).					
Word	s:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	No operation	Nc opera	tion	POP PC from stack Set GIEH or GIEL			
	No	No	No		No			
	operation	operation	opera	tion	operation			
Example:		RETFIE	RETFIE 1					
	After Interrupt PC W BSR Status GIE/GIEH	1, PEIE/GIEL	= V = E = S	TOS VS BSRS STATUS	SS			

RETLW	Return I	iteral to V	v				
Syntax:	RETLW	RETLW k					
Operands:	$0 \le k \le 25$	5					
Operation:		$k \rightarrow W$, (TOS) → PC, PCLATU, PCLATH are unchanged					
Status Affected:	None						
Encoding:	0000	1100	kkkk	kkk			
Description:	program of the stat	ed with the counter is lo ck (the retu ess latch (F	baded fro	m the f ss). Th			
Words:	1						
Cycles:	2						
Q Cycle Activity	y:						
Q1	Q2	Q3		Q4			
Decode	e Read literal 'k'	Proce Data	a fro	POP Po m stac rite to			
No	No	No		No			
operatio	n operation	operat	ion o	peratic			
Example:							
CALL TAB	LE ; W conta ; offset ; W now 1 ; table y	value has	le				
TABLE							
ADDWF PC							
RETLW k0 RETLW k1	- 5	cable					
RETLW KI : :	;						
RETLW kn	; End of	table					

After Instruction W = value of kn