

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k40-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1: 28-PIN ALLOCATION TABLE (PIC18(L)F26K40) (CONTINUED)

IADLE	1. 20		LOOAI		1010(L)	1 201140)	(00111	NOLD,							
I/O ⁽²⁾	28-Pin SPDIP, SOIC, SSOP	28-Pin (U)QFN	A/D	Reference	Comparator	Timers	CCP	CWG	ZCD	Interrupt	EUSART	MSQ	MSSP	Pull-up	Basic
RC0	11	8	ANC0	Ι	—	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾	_		-	IOCC0		_	_	Y	SOSCO
RC1	12	9	ANC1	_	—	—	CCP2 ⁽¹⁾	—	_	IOCC1	—	_	—	Y	SOSCIN SOSCI
RC2	13	10	ANC2	_	_	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	_	_	IOCC2	_	_	_	Y	_
RC3	14	11	ANC3	_	—	T2AIN ⁽¹⁾	—	—	_	IOCC3	—	_	SCK1 ⁽¹⁾ SCL1 ^(3,4)	Y	_
RC4	15	12	ANC4	_	_	—	—	—	—	IOCC4	—	_	SDI1 ⁽¹⁾ SDA1 ^(3,4)	Y	—
RC5	16	13	ANC5	_	_	T4AIN ⁽¹⁾	_	_	—	IOCC5	—	_	—	Y	_
RC6	17	14	ANC6	_	_	_	_	_	_	IOCC6	CK1 ⁽¹⁾	_	—	Y	_
RC7	18	15	ANC7		_	_	—	_	—	IOCC7	RX1/DT1 ⁽¹⁾	—	—	Y	_
RE3	1	26	—	—	_	_	_	_	—	IOCE3	_	_	—	Y	VPP/MCLR
Vss	19	16	—	—	_	—	—	—	—	—	—	_	—	_	Vss
VDD	20	17	_	_	—	—	—	_	—	—	—	—	—	_	Vdd
Vss	8	5	—	—	_	—	—	—	—	—	—	_	—	_	Vss
OUT ⁽²⁾	_	—	ADGRDA ADGRDB	Ι	C1OUT C2OUT	TMR0	CCP1 CCP2 PWM3 PWM4	CWG1A CWG1B CWG1C CWG1D	_	_	TX1/CK1 ⁽³⁾ DT1 ⁽³⁾ TX2/CK2 ⁽³⁾ DT2 ⁽³⁾	DSM	SDO1 SCK1 SDO2 SCK2	_	_

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers (Register 17-1).

2: All pin outputs default to PORT latch data. Any pin can be selected as a peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for I²C logic levels; The SCL/SDAx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18(L)F26/45/46K40 MICROCONTROLLERS

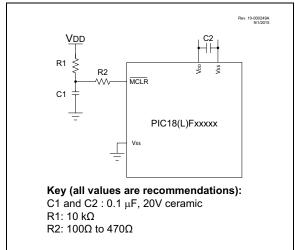
2.1 Basic Connection Requirements

Getting started with the PIC18(L)F26/45/46K40 family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:


- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP[™] Pins"**)
- OSCI and OSCO pins when an external oscillator source is used (see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins (VDD and VSS) is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

7.5 Register Definitions: Peripheral Module Disable

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD
7	•	•	•	•		•	
Legend: R = Readable	, hit	W = Writable	hit	II – Unimplor	nented bit, read		
u = Bit is uncl		x = Bit is unkn		•		R/Value at all o	thar Pasata
'1' = Bit is set	•	0' = Bit is clear					
			areu	q – value dep	ends on condi		
bit 7	See descript 1 = System	isable Periphera ion in Section 7 clock network di clock network e	.4 "System Cl sabled (Fosc)	k Network bit ⁽¹⁾ ock Disable".			
bit 6	1 = FVR mo	able Fixed Volta dule disabled dule enabled	ge Reference	bit			
bit 5	1 = HLVD m	isable Low-Volta nodule disabled nodule enabled	ige Detect bit				
bit 4	1 = CRC mc	able CRC Engir odule disabled odule enabled	ne bit				
bit 3	1 = NVM M	isable NVM Me emory Scan mo emory Scan mo	dule disabled	bit ⁽²⁾			
bit 2	1 = All Mem	M Module Disal ory reading and odule enabled		bled; NVMCON	registers canr	not be written	
bit 1	1 = CLKR m	isable Clock Re odule disabled odule enabled	ference bit				
bit 0	1 = IOC mod	able Interrupt-on dule(s) disabled dule(s) enabled	-Change bit, A	ll Ports			
	earing the SYS Fosc/4 are no	SCMD bit disable of affected.	es the system	clock (Fosc) to	peripherals, h	owever periphe	rals clocked

REGISTER 7-1: PMD0: PMD CONTROL REGISTER 0

- 2: Subject to SCANE bit in CONFIG4H.
- **3:** When enabling NVM, a delay of up to 1 µs may be required before accessing data.

REGISTER 9-3: WDTPSL: WWDT PRESCALE SELECT LOW BYTE REGISTER (READ-ONLY)

						•	,	
R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	
			PSC	NT<7:0>				
bit 7							bit 0	
Legend:								
R = Readable b	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unknow	n	-n/n = Value at POR and BOR/Value at all c				
'1' = Bit is set		'0' = Bit is cleared	ł					

bit 7-0 **PSCNT<7:0>:** Prescale Select Low Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 9-4: WDTPSH: WWDT PRESCALE SELECT HIGH BYTE REGISTER (READ-ONLY)

						· ·	
R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
			PSCNT	<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSCNT<15:8>:** Prescale Select High Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F74h	CRCDATL		•	•	DATA	A<7:0>		•		xxxxxxxx
F73h	ADFLTRH				ADFLTF	RH<15:8>				xxxxxxxx
F72h	ADFLTRL				ADFLT	RL<7:0>				xxxxxxxx
F71h	ADACCH				ADACC	H<15:8>				xxxxxxxx
F70h	ADACCL				ADAC	CL<7:0>				xxxxxxxx
F6Fh	ADERRH				ADERF	RH<15:8>				00000000
F6Eh	ADERRL				ADER	RL<7:0>				00000000
F6Dh	ADUTHH				ADUTH	IH<15:8>				00000000
F6Ch	ADUTHL				ADUT	HL<7:0>				00000000
F6Bh	ADLTHH				ADLTH	H<15:8>				00000000
F6Ah	ADLTHL				ADLTH	HL<7:0>				00000000
F69h	ADSTPTH				ADSTP	TH<15:8>				00000000
F68h	ADSTPTL				ADSTF	PTL<7:0>				00000000
F67h	ADCNT				ADCN	IT<7:0>				00000000
F66h	ADRPT				ADRF	PT<7:0>				00000000
F65h	ADSTAT	ADAOV	ADAOV ADUTHR ADLTHR ADMATH - ADSTAT<2:0>						>	0000-000
F64h	ADRESH				ADRE	SH<7:0>				00000000
F63h	ADRESL				ADRE	SL<7:0>				00000000
F62h	ADPREVH				ADPRE	VH<15:8>				00000000
F61h	ADPREVL				ADPRE	VL<7:0>				00000000
F60h	ADCON0	ADON	ADCONT	—	ADSC	—	ADFM	—	ADGO	00-000-0
F5Fh	ADPCH	—	_			ADPO	CH<5:0>			000000
F5Eh	ADPRE		•		ADPR	E<7:0>				00000000
F5Dh	ADCAP	—	_	_			ADCAP<4:0>			00000
F5Ch	ADACQ		•		ADAC	Q<7:0>				00000000
F5Bh	ADCON3	—		ADCALC<2:0	>	ADSOI		ADTMD<2:0>	>	-0000000
F5Ah	ADCON2	ADPSIS		ADCRS<2:0>	>	ADACLR		ADMD<2:0>		00000000
F59h	ADCON1	ADPPOL	ADIPEN	ADGPOL	—	—	—	—	ADDSEN	0000
F58h	ADREF	—	_	_	ADNREF	—	—	ADPF	REF<1:0>	0-00
F57h	ADCLK	—	_			ADC	S<5:0>			000000
F56h	ADACT	—	_	_			ADACT<4:0>			00000
F55h	MDCARH	—	-	—	—	—		CHS<2:0>		000
F54h	MDCARL	—	-	-	—	—		CLS<2:0>		000
F53h	MDSRC	—	—	SRCS<3:0>						0000
F52h	MDCON1	—	—	CHPOL	CHSYNC	—	—	CLPOL	CLSYNC	0000
F51h	MDCON0	EN	—	Ουτ	OPOL	—	—	—	MDBIT	0-000
F50h	SCANTRIG	—	-	-	—		TSEL	<3:0>		0000
F4Fh	SCANCON0	SCANEN	SCANGO	BUSY	INVALID	INTM	—	MOD	E<1:0>	00000-00
F4Eh	SCANHADRU	_	_			HADR	<21:16>			111111

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F26/45/46K40 DEVICES (CONTINUED)

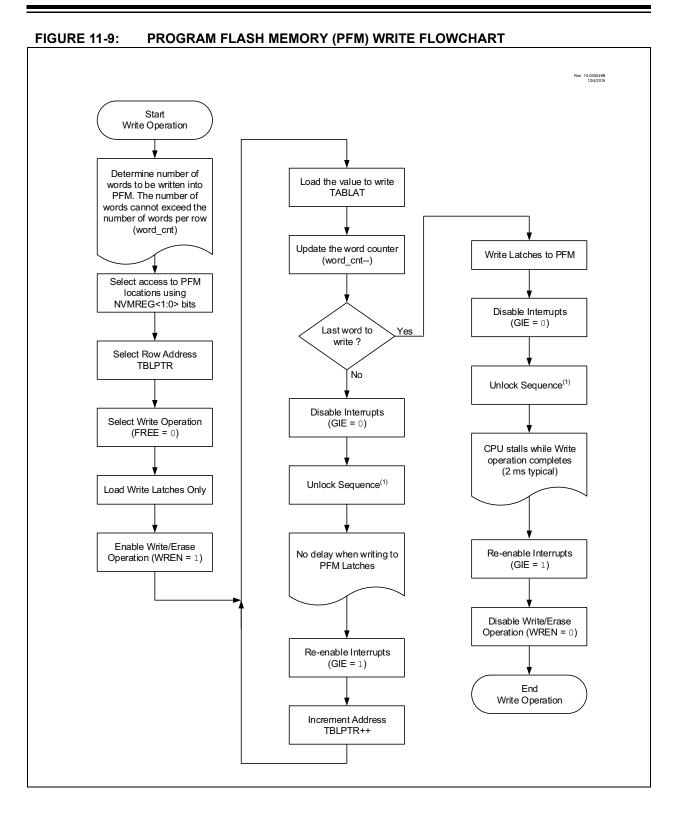
Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F26K40 (28-pin variants).

3: Not available on PIC18(L)F45K40 devices.

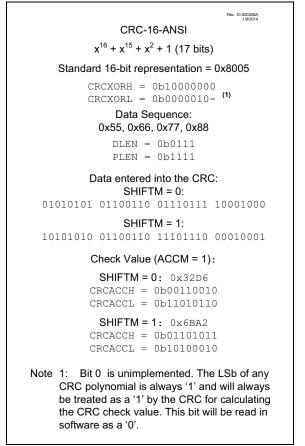
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
EFFh	RD0PPS ⁽²⁾	_	—	—			RD0PPS<4:0>			00000
EFEh	RC7PPS	_	_	_		RC7PPS<4:0>				
EFDh	RC6PPS	_	_	_			RC6PPS<4:0>			00000
EFCh	RC5PPS	_	_	_			RC5PPS<4:0>			00000
EFBh	RC4PPS	_	_	_			RC4PPS<4:0>			00000
EFAh	RC3PPS	_	_	_			RC3PPS<4:0>			00000
EF9h	RC2PPS	_	_	_			RC2PPS<4:0>			00000
EF8h	RC1PPS	_	—	—			RC1PPS<4:0>			00000
EF7h	RC0PPS	_	—	_			RC0PPS<4:0>	•		00000
EF6h	RB7PPS	_	—	—			RB7PPS<4:0>			00000
EF5h	RB6PPS	_	—	_			RB6PPS<4:0>			00000
EF4h	RB5PPS	_	—	_			RB5PPS<4:0>			00000
EF3h	RB4PPS	_	—	_			RB4PPS<4:0>			00000
EF2h	RB3PPS	_	—	_			RB3PPS<4:0>			00000
EF1h	RB2PPS	_	—	_			RB2PPS<4:0>			00000
EF0h	RB1PPS	_	—	—			RB1PPS<4:0>			00000
EEFh	RB0PPS	_	—	_			RB0PPS<4:0>			00000
EEEh	RA7PPS	_	—	_			RA7PPS<4:0>			00000
EEDh	RA6PPS	_	—	_			RA6PPS<4:0>			00000
EECh	RA5PPS	_	—	—			RA5PPS<4:0>			00000
EEBh	RA4PPS	_	—	_			RA4PPS<4:0>			00000
EEAh	RA3PPS	_	—	—			RA3PPS<4:0>			00000
EE9h	RA2PPS	_	—	—			RA2PPS<4:0>			00000
EE8h	RA1PPS	_	—	—			RA1PPS<4:0>			00000
EE7h	RA0PPS	_	—	_			RA0PPS<4:0>			00000
EE6h	PMD5	_	—	—	—	—	—	—	DSMMD	0
EE5h	PMD4	UART2MD	UART1MD	MSSP2MD	MSSP1MD	—	—	—	CWG1MD	00000
EE4h	PMD3	_	—	—	—	PWM4MD	PWM3MD	CCP2MD	CCP1MD	0000
EE3h	PMD2	_	DACMD	ADCMD	_	—	CMP2MD	CMP1MD	ZCDMD	-00000
EE2h	PMD1	_	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	-0000000
EE1h	PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	00x00000
EE0h	BORCON	SBOREN	—	—	—	—	—	—	BORRDY	1q
EDFh	VREGCON ⁽¹⁾	-	—	—	_	—	—	VREGPM	Reserved	01
EDEh	OSCFRQ	_	—	—	—		HFFR	Q<3:0>		1111
EDDh	OSCTUNE	_	—			HFTU	JN<5:0>			100000
EDCh	OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN		—	000000
EDBh	OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR		PLLR	dddddd-d
EDAh	OSCCON3	CSWHOLD	SOSCPWR	—	ORDY	NOSCR	_	—	_	00-00
ED9h	OSCCON2	_		COSC<2:0>	1		CDIV	/<3:0>		-ddddddd

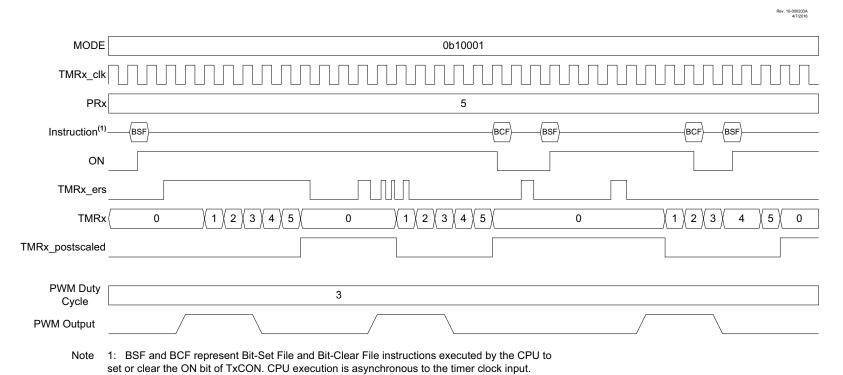

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F26/45/46K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F26K40 (28-pin variants).


3: Not available on PIC18(L)F45K40 devices.



13.3 CRC Functional Overview

The CRC module can be used to detect bit errors in the Flash memory using the built-in memory scanner or through user input RAM memory. The CRC module can accept up to a 16-bit polynomial with up to a 16-bit seed value. A CRC calculated check value (or checksum) will then be generated into the CRCACC<15:0> registers for user storage. The CRC module uses an XOR shift register implementation to perform the polynomial division required for the CRC calculation.

EXAMPLE 13-1: CRC EXAMPLE

FIGURE 20-12: RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

24.14 Register Definitions: CWG Control

Long bit name prefixes for the CWG peripheral is shown in Table 24-2. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 24-2:

Peripheral	Bit Name Prefix
CWG	CWG

I

REGISTER 24-1: CWG1CON0: CWG CONTROL REGISTER 0

R/W-0/0	R/W/HC-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
EN	LD ⁽¹⁾	_	—			MODE<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7	EN: CWG1 Enable bit 1 = Module is enabled 0 = Module is disabled
bit 6	 LD: CWG1 Load Buffers bit⁽¹⁾ 1 = Dead-band count buffers to be loaded on CWG data rising edge, following first falling edge after this bit is set 0 = Buffers remain unchanged
bit 5-3	Unimplemented: Read as '0'
bit 2-0	MODE<2:0>: CWG1 Mode bits 111 = Reserved 100 = Reserved 101 = CWG outputs operate in Push-Pull mode 100 = CWG outputs operate in Half-Bridge mode 011 = CWG outputs operate in Reverse Full-Bridge mode 010 = CWG outputs operate in Forward Full-Bridge mode 001 = CWG outputs operate in Synchronous Steering mode 000 = CWG outputs operate in Asynchronous Steering mode
Note 1:	This bit can only be set after EN = 1; it cannot be set in the same cycle when EN is set.

26.5.5 SPI OPERATION IN SLEEP MODE

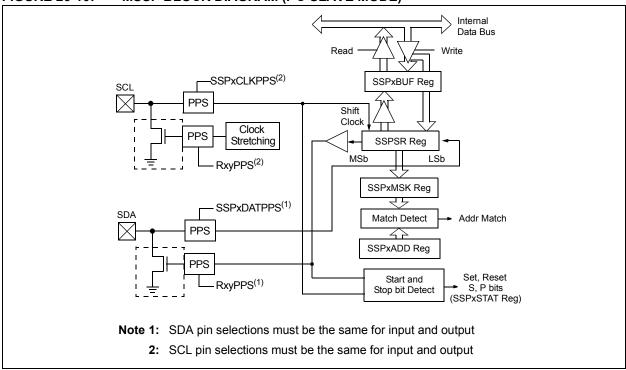
In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.


In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	—	INT2EDG	INT1EDG	INT0EDG	170
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	182
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	174
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	190
RxyPPS	—	_	_			RxyPPS<4:0	>		218
SSPxBUF				BUF	<7:0>				336*
SSPxCLKPPS	—	_	_		SS	SPxCLKPPS<	4:0>		216
SSPxCON1	WCOL	SSPOV	SSPEN	CKP		SSPN	/<3:0>		338
SSPxCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	339
SSPxDATPPS	—	_	_		216				
SSPxSSPPS	—	_	—	SSPSSPPS<4:0>					216
SSPxSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	353

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP in SPI mode. * Page provides register information.

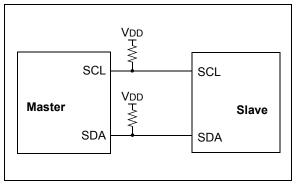
The I²C bus specifies two signal connections:

- · Serial Clock (SCL)
- Serial Data (SDA)

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 26-11 shows a typical connection between two processors configured as master and slave devices.

The I^2C bus can operate with one or more master devices and one or more slave devices.


There are four potential modes of operation for a given device:

- Master Transmit mode
 (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode
 - (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device. If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDA line while the SCL line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 26-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

© 2015-2017 Microchip Technology Inc.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
_	—		ADCS<5:0>					
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplen	nented bit, read	d as '0'		
u = Bit is unc	u = Bit is unchanged x = Bit is unknown			-n/n = Value a	at POR and BC	R/Value at all	other Resets	
'1' = Bit is se	t	'0' = Bit is clea	ared					
bit 7-6	Unimplemen	ited: Read as '	0'					
bit 5-0	ADCS<5:0>:	ADC Conversi	on Clock Sele	ect bits				
	111111 = F o	sc/128						
	111110 = F O	sc/126						
	111101 = F O	sc/124						
	•							
	•							
	•							
	000000 = F C	osc/2						

REGISTER 31-6: ADCLK: ADC CLOCK SELECTION REGISTER

REGISTER 31-7: ADREF: ADC REFERENCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	ADNREF	—	—	ADPRE	F<1:0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 bit 4	Unimplemented: Read as '0' ADNREF: ADC Negative Voltage Reference Selection bit 1 = VREF- is connected to external VREF- 0 = VREF- is connected to AVss
bit 3-2	Unimplemented: Read as '0'
bit 1-0	ADPREF: ADC Positive Voltage Reference Selection bits 11 = VREF+ is connected to internal Fixed Voltage Reference (FVR) module 10 = VREF+ is connected to external VREF+ 01 = Reserved 00 = VREF+ is connected to VDD

Byte-oriented file register operations	Example Instruction
15 10 9 8 7 0	
OPCODE d a f (FILE #)	ADDWF MYREG, W, B
 d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Byte to Byte move operations (2-word)	
15 12 11 0	
OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
<u>15 12 11 0</u>	
1111 f (Destination FILE #)	
f = 12-bit file register address	
Bit-oriented file register operations	
15 1211 987 0	
OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Literal operations	
15 8 7 0	
OPCODE k (literal)	MOVLW 7Fh
k = 8-bit immediate value	
Control operations	
CALL, GOTO and Branch operations	
15 8 7 0	
OPCODE n<7:0> (literal)	GOTO Label
15 12 11 0	
1111 n<19:8> (literal)	
n = 20-bit immediate value	
15 8 7 0	
OPCODE S n<7:0> (literal)	CALL MYFUNC
15 12 11 0	
1111 n<19:8> (literal)	
S = Fast bit	
15 11 10 0	
OPCODE n<10:0> (literal)	BRA MYFUNC
15 8 7 0	
OPCODE n<7:0> (literal)	BC MYFUNC

TABLE 35-2: INSTRUCTION SET (CONTINUED)

Mnemonic, Operands		Description	Quality	16-Bit Instruction Word				Status	Neter
		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL (OPERAT	IONS							_
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	/IORY ↔	PROGRAM MEMORY OPERATION	IS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with post-increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with post-decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with post-increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	

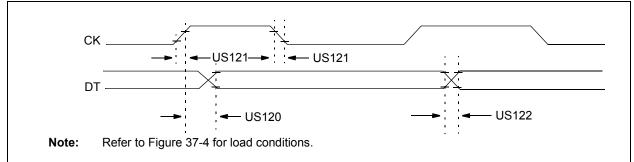
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

PIC18(L)F26/45/46K40


DECFSZ	Decremer	nt f, skip if C)	DCFSNZ	Decreme	nt f, skip if n	ot 0
Syntax:	DECFSZ f	f {,d {,a}}		Syntax:	DCFSNZ	f {,d {,a}}	
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$			Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]		
Operation:	(f) – 1 \rightarrow de skip if resul			Operation:	(f) – 1 \rightarrow de skip if resul	-	
Status Affected:	None			Status Affected:	None		
Encoding:	0010	11da ffi	ff ffff	Encoding:	0100	11da fff	f ffff
Description:	decremente placed in W placed back If the result which is alro and a NOP i it a 2-cycle If 'a' is '0', tl GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when tion 35.2.3 Oriented Ir eral Offset	instruction. the Access Bain the BSR is use and the extend ed, this instruct Literal Offset 7 never $f \le 95$ (5 "Byte-Orient	the result is ne result is (default). t instruction, is discarded stead, making nk is selected. d to select the ed instruction ction operates Addressing Fh). See Sec- red and Bit- n Indexed Lit-	Description:	decremente placed in W placed back lf the result instruction, discarded a instead, ma instruction. If 'a' is '0', tt If 'a' is '0', tt If 'a' is '0', tt GPR bank. If 'a' is '0' a set is enabl in Indexed mode wher tion 35.2.3 Oriented Ir	ts of register 'f ed. If 'd' is '0', ' /. If 'd' is '1', th < in register 'f' is not '0', the which is alrea and a NOP is ex- aking it a 2-cyc he Access Bar he BSR is user not the extend- ed, this instruc- Literal Offset A rever $f \le 95$ (5) "Byte-Orient nstructions in Mode" for de	the result is ine result is (default). next dy fetched, is executed the is selected. d to select the ed instruction ction operates Addressing Fh). See Sec- ed and Bit- Indexed Lit-
Words:	1			Words:	1	NOUE IOI UE	tans.
Cycles:	1(2)						
		/cles if skip ar a 2-word instru		Cycles:	1(2) Note: 3 (cycles if skip a	nd followed
Q Cycle Activity:	,					a 2-word instr	
Q1	Q2	Q3	Q4	Q Cycle Activity:			
Decode	Read	Process	Write to	Q1	Q2	Q3	Q4
	register 'f'	Data	destination	Decode	Read	Process	Write to
lf skip:				16 - 1-1	register 'f'	Data	destination
Q1	Q2	Q3	Q4	If skip:	00	02	04
No operation	No operation	No	No operation	Q1 No	Q2 No	Q3 No	Q4 No
If skip and followe			operation	operation	operation	operation	operation
Q1	Q2	Q3	Q4	If skip and followe	d by 2-word in	struction:	
No	No	No	No	Q1	Q2	Q3	Q4
operation	operation	operation	operation	No	No	No	No
No	No	No	No	operation	operation	operation	operation
operation	operation	operation	operation	No operation	No operation	No operation	No operation
Example:	HERE	DECFSZ	CNT, 1, 1	operation	operation	operation	operation
<u>Lxampic</u> .	CONTINUE	GOTO	LOOP	Example:	ZERO	:	1P, 1, 0
Before Instru	ction					:	
PC		G (HERE)		Before Instruc TEMP		?	
After Instruct	ion = CNT - 1			After Instructio	= on	ŗ	
If CNT	= 0;			TEMP	=	TEMP – 1,	
PC If CNT	; = Address ≠ 0;	G (CONTINUE])	If TEMP PC	=	0; Address (2	ZERO)
		3 (HERE + 2	2)	If TEMP	≠	0;	
				PC	=	Address (1	

PIC18(L)F26/45/46K40

SLEEP	Enter Sle	ep mode							
Syntax:	SLEEP								
Operands:	rands: None								
Operation:									
Status Affected:	TO, PD								
Encoding:	0000	0000 000	0 0011						
Description:	The Power-down Status bit (PD) is cleared. The Time-out Status bit (TO) is set. Watchdog Timer and its posts- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.								
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	No operation	Process Data	Go to Sleep						
$\begin{array}{rcl} \underline{Example}: \\ & & \\ & & \\ & & \\ \hline TO & = \\ & & \\ \hline PD & = \\ & \\ & \\ & \\ \hline TO & = \\ & \\ \hline PD & = \\ \end{array}$? ?								
† If WDT causes v	wake-up, this t	bit is cleared.							

SUBFWB	Subtract	f from W wi	th borrow
Syntax:	SUBFWB	f {,d {,a}}	
Operands:	$0 \le f \le 255$	5	
	d ∈ [0,1] a ∈ [0,1]		
Operation:		$(\overline{C}) \rightarrow dest$	
Status Affected:	(VV) = (I) = N, OV, C,		
Encoding:	0101	01da fff	f ffff
Description:		egister 'f' and (
	(borrow) fr method). I in W. If 'd' register 'f' If 'a' is '0', selected. I to select th If 'a' is '0' a set is enat operates in Addressin $f \le 95$ (5Fh 35.2.3 "By ented Inst	om W (2's con f 'd' is '0', the resu (default). the Access Ba f 'a' is '1', the I ne GPR bank. and the extend oled, this instru n Indexed Liter g mode where h). See Section rte-Oriented an ructions in Indexed Inter	nplement esult is stored It is stored in ank is BSR is used ed instruction action ral Offset ever n n Bit-Ori-
Words:	Offset Mo	de" for details.	
Cycles:	1		
Q Cycle Activity:	I		
Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	register 'f'	Data	destination
Example 1:	SUBFWB	REG, 1, 0	
Before Instruct REG	tion = 3		
W	= 2		
C After Instructio	= 1		
REG	= FF		
W C	= 2 = 0		
Z	= 0 = 1 ; re	sult is negative	
Example 2:	SUBFWB		5
Before Instruct		100, 0, 0	
REG W	= 2 = 5		
Č	= 1		
After Instructio REG	n = 2		
W	= 3		
C Z	= 1 = 0		
N	= 0 ; re	sult is positive	
Example 3:	SUBFWB	REG, 1, 0	
Before Instruct REG	tion = 1		
W	= 2		
C After Instructio	= 0 n		
REG	= 0		
W			
С	= 2 = 1		
C Z N	= 1	sult is zero	

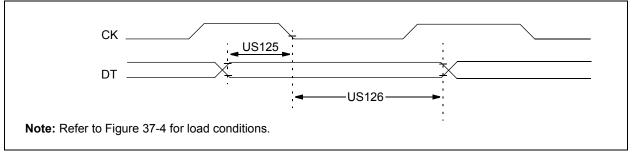

FIGURE 37-14: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 37-21: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard	Operating Co					
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120 TCKH2DTV SYNC XMIT (Master		SYNC XMIT (Master and Slave)	—	80	ns	$3.0V \leq V\text{DD} \leq 5.5V$
		Clock high to data-out valid	_	100	ns	$1.8V \le V\text{DD} \le 5.5V$
US121	TCKRF	Clock out rise time and fall time	_	45	ns	$3.0V \le V\text{DD} \le 5.5V$
		(Master mode)	_	50	ns	$1.8V \le V \text{DD} \le 5.5V$
US122	TDTRF	Data-out rise time and fall time	_	45	ns	$3.0V \le V\text{DD} \le 5.5V$
			_	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$

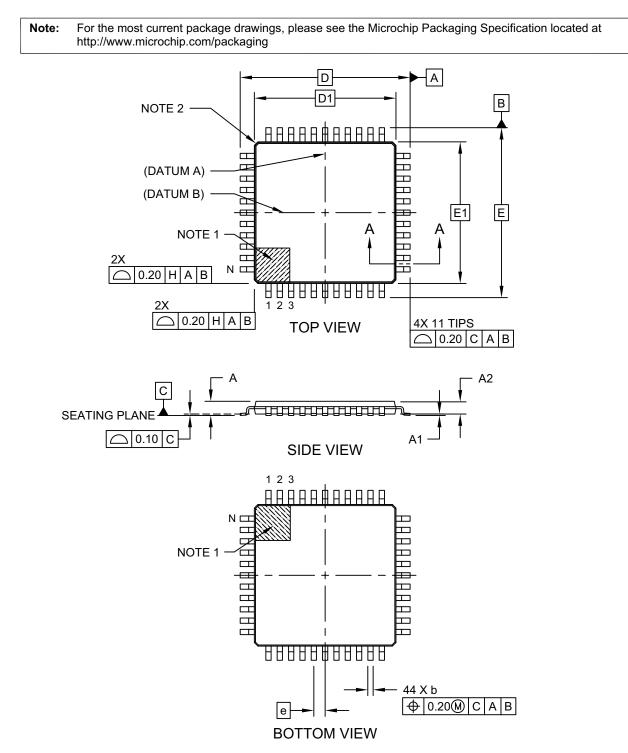
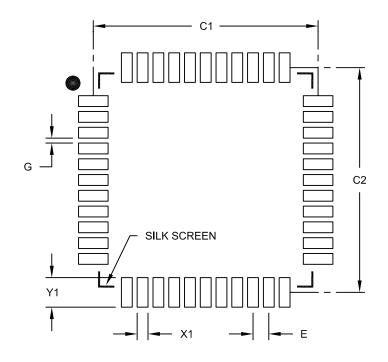

FIGURE 37-15: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 37-22: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard	Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	ymbol Characteristic Min. Max. Units Conditions								
US125	TDTV2CKL	<u>SYNC RCV (Master and Slave)</u> Data-setup before CK \downarrow (DT hold time)	10		ns					
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns					


44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Microchip Technology Drawing C04-076C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC		
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B