

Welcome to E-XFL.COM

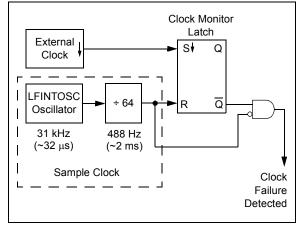
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k40-e-ss


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL/M/H and Secondary Oscillator).

FIGURE 4-9: FSCM BLOCK DIAGRAM

4.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 4-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

4.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM overwrites the COSC bits to select HFINTOSC (3'b110). The frequency of HFINTOSC would be determined by the previous state of the HFFRQ bits and the NDIV/CDIV bits. The bit flag OSCFIF of the PIR1 register is set. Setting this flag will generate an interrupt if the OSCFIE bit of the PIE1 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC and NDIV bits of the OSCCON1 register.

4.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC and NDIV bits of the OSCCON1 register. When switching to the external oscillator or PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSCFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSCFIF flag will again become set by hardware.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD		
bit 7							bit		
Legend:									
R = Reada	hla hit	W = Writable	bit		optod bit road				
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other							thar Dagata		
и – ысты и '1' = Bit is s	•						iner Reseis		
	Sel	'0' = Bit is clea	areu	q = value dep	ends on condit	1011			
bit 7	Unimplemer	ted: Read as ')'						
bit 6	TMR6MD: Di	sable Timer TM	IR6 bit						
	1 = TMR6 m	nodule disabled							
	0 = TMR6 m	nodule enabled							
bit 5	TMR5MD: Di	sable Timer TM	IR5 bit						
	1 = TMR5 m	TMR5 module disabled							
(0 = TMR5 m	= TMR5 module enabled							
bit 4	TMR4MD: Di	sable Timer TM	IR4 bit						
	1 = TMR4 m	nodule disabled							
	0 = TMR4 m	nodule enabled							
bit 3	TMR3MD: Di	sable Timer TM	IR3 bit						
	-	nodule disabled							
	0 = TMR3 n	nodule enabled							
bit 2	TMR2MD: Di	sable Timer TM	IR2 bit						
		1 = TMR2 module disabled							
L:1. A		odule enabled							
bit 1		sable Timer TM	IR'I DIT						
		odule disabled							
bit 0		isable Timer TM	IR0 bit						
		odule disabled							
		odule enabled							

REGISTER 7-2: PMD1: PMD CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
UART2MD	UART1MD	MSSP2MD	MSSP1MD	—	—	—	CWG1MD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unkn	iown	-n/n = Value a	t POR and BOR	R/Value at all	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared	q = Value dep	ends on condition	on	
bit 7	UART2MD: Di	isable EUSART2	2 bit				
		2 module disable					
	0 = EUSART2	2 module enable	ed				
bit 6	-	isable EUSART					
		1 module disable 1 module enable					
bit 5		isable MSSP2 b	-				
bit 5		nodule disabled	it.				
	0 = MSSP2 m	nodule enabled					
bit 4	MSSP1MD: D	isable MSSP1 b	it				
		nodule disabled					
		nodule enabled					
bit 3-1	Unimplement	ed: Read as '0'					
bit 0		sable CWG1 Mo	dule bit				
		odule disabled					
	0 = CWG1 m	odule enabled					

REGISTER 7-5: PMD4: PMD CONTROL REGISTER 4

10.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate buses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Program Flash Memory and Data EEPROM Memory is provided in **Section 11.0 "Nonvolatile Memory (NVM) Control**".

10.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2 Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2 Mbyte address will return all '0's (a NOP instruction).

These devices contains the following:

- PIC18(L)F45K40: 32 K bytes of Flash memory, up to 16,384 single-word instructions
- PIC18(L)F26K40, PIC18(L)F46K40: 64 Kbytes of Flash memory, up to 32,768 single-word instructions

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

Note: For memory information on this family of devices, see Table 10-1 and Table 10-2.

11.1.5 ERASING PROGRAM FLASH MEMORY

The minimum erase block is 32 or 64 words (refer to Table 11-3). Only through the use of an external programmer, or through ICSP™ control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

For example, when initiating an erase sequence from a microcontroller with erase row size of 32 words, a block of 32 words (64 bytes) of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. The TBLPTR<5:0> bits are ignored.

The NVMCON1 register commands the erase operation. The NVMREG<1:0> bits must be set to point to the Program Flash Memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

The NVM unlock sequence described in **Section 11.1.4 "NVM Unlock Sequence"** should be used to guard against accidental writes. This is sometimes referred to as a long write.

A long write is necessary for erasing the internal Flash. Instruction execution is halted during the long write cycle. The long write is terminated by the internal programming timer.

11.1.5.1 Program Flash Memory Erase Sequence

The sequence of events for erasing a block of internal program memory is:

- 1. NVMREG bits of the NVMCON1 register point to PFM
- 2. Set the FREE and WREN bits of the NVMCON1 register
- 3. Perform the unlock sequence as described in Section 11.1.4 "NVM Unlock Sequence"

If the PFM address is write-protected, the WR bit will be cleared and the erase operation will not take place, WRERR is signaled in this scenario.

The operation erases the memory row indicated by masking the LSBs of the current TBLPTR.

While erasing PFM, CPU operation is suspended and it resumes when the operation is complete. Upon completion the WR bit is cleared in hardware, the NVMIF is set and an interrupt will occur if the NVMIE bit is also set.

Write latch data is not affected by erase operations and WREN will remain unchanged.

Note 1: If a write or erase operation is terminated by an unexpected event, WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed.

- 2: WRERR is set if WR is written to '1' while TBLPTR points to a write-protected address.
- **3:** WRERR is set if WR is written to '1' while TBLPTR points to an invalid address location (Table 10-2 and Table 11-1).

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	
		—		_	—	CCP2IE	CCP1IE	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7-2	Unimplemen	ted: Read as 'd)'					
bit 1	t 1 CCP2IE: ECCP2 Interrupt Enable bit 1 = Enabled 0 = Disabled							
bit 0 CCP1IE: ECCP1 Interrupt Enable bit 1 = Enabled 0 = Disabled								

REGISTER 14-16: PIE6: PERIPHERAL INTERRUPT ENABLE REGISTER 6

R/W-0/0 R/W-0/0 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>											
bit 7 bit Legend: W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	WPUx7	WPUx6	WPUx5	WPUx4	WPUx3	WPUx2	WPUx1	WPUx0			
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0''1' = Bit is set'0' = Bit is clearedx = Bit is unknown	bit 7						•	bit 0			
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0''1' = Bit is set'0' = Bit is clearedx = Bit is unknown											
'1' = Bit is set '0' = Bit is cleared x = Bit is unknown	Legend:										
	R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n/n = Value at POR and BOR/Value at all other Resets	'1' = Bit is set '0' = Bit is cleared			x = Bit is unknown							
	-n/n = Value at POR and BOR/Value at all other Resets										

REGISTER 15-5: WPUx: WEAK PULL-UP REGISTER

bit 7-0

WPUx<7:0>: Weak Pull-up PORTx Control bits

1 = Weak Pull-up enabled

0 = Weak Pull-up disabled

	Dev	/ice								
Name	28 Pins	40/44 Pins	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WPUA	Х	Х	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
WPUB	Х	Х	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
WPUC	Х	Х	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
WPUD	Х		_	_	_	_	—	_	_	_
		Х	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0
WPUE	Х		_	_	_	_	WPUE3 ⁽¹⁾	_	_	_
		Х	—	—	—	—	WPUE3 ⁽¹⁾	WPUE2	WPUE1	WPUE0

TABLE 15-6: WEAK PULL-UP PORT REGISTERS

Note 1: If MCLRE = 1, the weak pull-up in RE3 is always enabled; bit WPUE3 is not affected.

Mada	MODE	<4:0>	Output	On creation		Timer Control	
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop
		000		Software gate (Figure 20-4)	ON = 1	_	ON = 0
		001	Period Pulse	Hardware gate, active-high (Figure 20-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0
		010	Fuise	Hardware gate, active-low	ON = 1 and TMRx_ers = 0	_	ON = 0 or TMRx_ers = 1
Free	0.0	011		Rising or falling edge Reset		TMRx_ers	
Running Period	00	100	Period	Rising edge Reset (Figure 20-6)		TMRx_ers ↑	ON = 0
		101	Pulse	Falling edge Reset		TMRx_ers ↓	
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0
		111	Reset	High level Reset (Figure 20-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1
		000	One-shot	Software start (Figure 20-8)	ON = 1	_	
		001	Edge	Rising edge start (Figure 20-9)	ON = 1 and TMRx_ers ↑	_	
		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or
One-shot	01	100	Edge	Rising edge start and Rising edge Reset (Figure 20-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	Next clock after TMRx = PRx
		101	triggered start	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓	(Note 2)
		110	and hardware Reset	Rising edge start and Low level Reset (Figure 20-11)	ON = 1 and TMRx_ers ↑ TMRx_ers = 0		
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1	
		000		Rese	rved		
		001	Edge	Rising edge start (Figure 20-12)	ON = 1 and TMRx_ers ↑	—	ON = 0 or
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	Next clock after
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)
Reserved	10	100		Rese	rved		•
Reserved		101		Rese	rved		
		110	Level triggered	High level start and Low level Reset (Figure 20-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)
Reserved	11	xxx		Rese	rved		

TABLE 20-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

20.5 Operation Examples

Unless otherwise specified, the following notes apply to the following timing diagrams:

- Both the prescaler and postscaler are set to 1:1 (both the CKPS and OUTPS bits in the TxCON register are cleared).
- The diagrams illustrate any clock except Fosc/4 and show clock-sync delays of at least two full cycles for both ON and Timer2_ers. When using Fosc/4, the clock-sync delay is at least one instruction period for Timer2_ers; ON applies in the next instruction period.
- The PWM Duty Cycle and PWM output are illustrated assuming that the timer is used for the PWM function of the CCP module as described in Section
 21.0 "Capture/Compare/PWM Module".

The signals are not a part of the Timer2 module.

20.5.1 SOFTWARE GATE MODE

This mode corresponds to legacy Timer2 operation. The timer increments with each clock input when ON = 1 and does not increment when ON = 0. When the TMRx count equals the PRx period count the timer resets on the next clock and continues counting from 0. Operation with the ON bit software controlled is illustrated in Figure 20-4. With PRx = 5, the counter advances until TMRx = 5, and goes to zero with the next clock.

MODE	0b00000
TMRx_clk	
Instruction ⁽¹⁾ ——	BSF BSF BSF
ON	
PRx	5
TMRx 0	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
TMRx_postscaled	
PWM Duty	3
PWM Output	

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	
		CCPR	x<15:8>				
						bit 0	
it	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'		
-n = Value at POR '1		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
	it	it W = Writable	CCPR it W = Writable bit	CCPRx<15:8> it W = Writable bit U = Unimplem	CCPRx<15:8>	it W = Writable bit U = Unimplemented bit, read as '0'	


REGISTER 21-5: CCPRxH: CCPx REGISTER HIGH BYTE

bit 7-0
MODE = Capture Mode:
CCPRxH<7:0>: MSB of captured TMR1 value
MODE = Compare Mode:
CCPRxH<7:0>: MSB compared to TMR1 value
MODE = PWM Mode && FMT = 0:
CCPRxH<7:2>: Not used
CCPRxH<7:2>: Not used
CCPRxH<1:0>: CCPW<9:8> – Pulse-Width MS 2 bits
MODE = PWM Mode && FMT = 1:
CCPRxH<7:0>: CCPW<9:2> – Pulse-Width MS 8 bits

24.2.4.2 Asynchronous Steering Mode

In Asynchronous mode (MODE<2:0> bits = 000, Register 24-1), steering takes effect at the end of the instruction cycle that writes to STR. In Asynchronous Steering mode, the output signal may be an incomplete waveform (Figure 24-10). This operation may be useful when the user firmware needs to immediately remove a signal from the output pin.

FIGURE 24-10: EXAMPLE OF ASYNCHRONOUS STEERING (MODE<2:0>= 000)

24.2.4.3 Start-up Considerations

The application hardware must use the proper external pull-up and/or pull-down resistors on the CWG output pins. This is required because all I/O pins are forced to high-impedance at Reset.

The POLy bits (Register 24-2) allow the user to choose whether the output signals are active-high or active-low.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0					
_	_	CHPOL	CHSYNC	—	—	CLPOL	CLSYNC					
bit 7				·			bit (
Legend:												
R = Reada	Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
u = Bit is u	nchanged	x = Bit is unkr	iown	-n/n = Value	at POR and BC	R/Value at all	other Resets					
'1' = Bit is s	set	'0' = Bit is clea	ared									
bit 7-6	Unimplem	Unimplemented: Read as '0'										
bit 5	CHPOL: M	CHPOL: Modulator High Carrier Polarity Select bit										
	1 = Select	1 = Selected high carrier signal is inverted										
	0 = Select	0 = Selected high carrier signal is not inverted										
bit 4	CHSYNC:	CHSYNC: Modulator High Carrier Synchronization Enable bit										
		1 = Modulator waits for a falling edge on the high time carrier signal before allowing a switch to the low time carrier										
	0 = Modula	0 = Modulator output is not synchronized to the high time carrier signal ⁽¹⁾										
bit 3-2	Unimplem	ented: Read as '	0'									
bit 1	CLPOL: M	odulator Low Ca	rier Polarity Se	elect bit								
	1 = Select	ed low carrier sig	nal is inverted									
	0 = Select	0 = Selected low carrier signal is not inverted										
bit 0	1 = Modula	 CLSYNC: Modulator Low Carrier Synchronization Enable bit 1 = Modulator waits for a falling edge on the low time carrier signal before allowing a switch to the hig time carrier 										
	0 = Modula	 0 = Modulator output is not synchronized to the low time carrier signal⁽¹⁾ 										
Noto 1.No.	rowed carrier p	ulee widthe or en		in the signal s	troom if the cor	rior is not sync	bronizod					

REGISTER 25-2: MDCON1: MODULATION CONTROL REGISTER 1

Note 1:Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

Register Definitions: MSSP Control 26.4

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF				
bit 7		1		1		1	bit C				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
		1. 1.9									
bit 7	SMP: Samp										
	<u>SPI Master mode:</u> 1 = Input data is sampled at the end of data output time										
	0 = Input data is sampled at the middle of data output time										
	<u>SPI Slave m</u>	-		·							
	SMP must b	be cleared when	SPI is used in	n Slave mode.							
bit 6	CKE: SPI C	lock Select bit ⁽¹⁾									
	1 = Transmi	it occurs on the t	ransition from	n active to Idle cl	ock state						
	0 = Transmit occurs on the transition from Idle to active clock state										
bit 5	D/A: Data/Address bit										
	Used in I ² C mode only.										
bit 4	P: Stop bit										
	Used in I ² C mode only. This bit is cleared when the MSSPx module is disabled; SSPEN is cleared.										
bit 3	S: Start bit										
	Used in I ² C	-									
bit 2		Write Information	n bit								
	Used in I ² C	mode only.									
bit 1		Address bit									
	Used in I ² C	mode only.									
bit 0	BF: Buffer F	Full Status bit (Re	eceive mode	only)							
		e is complete, SS									
	0 = Receive	e is not complete	, SSPxBUF is	sempty							
Note 1: F	Polarity of clock	state is set by th	ne CKP bit (S	SPxCON1<4>).							

REGISTER 26-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

REGISTE R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	, R/W-0	R/W-0				
WCOL	(4)	SSPEN ⁽²⁾	СКР	SSPM3 ⁽⁴⁾	SSPM2 ⁽⁴⁾	SSPM1 ⁽⁴⁾	SSPM0 ⁽⁴⁾				
bit 7							bit				
Legend:											
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'					
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7		Collision Dete				·	4 h a al a ana d :				
	⊥ = The SSP software) 0 = No collisi)	IS WRITTEN WHILE	e it is still transm	ntting the prev	ious wora (mus	t de cleared l				
bit 6		SSPOV: Receive Overflow Indicator bit ⁽¹⁾									
	SPI Slave mo										
	overflow, the SSP software)	the data in SS xBUF, even if).	PxSR is lost.	PxBUF register Overflow can on tting data, to a	ly occur in Sla	ve mode. The u	user must rea				
hit E	0 = No overfl	ow ter Synchronou	a Carial Dart I	Enchla hit(2)							
bit 5	1 = Enables s	serial port and o	configures SC	Kx, SDOx, SDIx ese pins as I/O p		erial port pins					
bit 4		olarity Select b	-								
	1 = Idle state	for the clock is for the clock is	a high level								
bit 3-0	1010 = SPI M 0101 = SPI S 0100 = SPI S 0011 = SPI M 0010 = SPI M 0001 = SPI M	laster mode: C lave mode: Clo	lock = FOSC/ ock = SCKx pi lock = SCKx pi lock = TMR2 lock = FOSC/6 lock = FOSC/1	6	+ 1)) ⁽³⁾ ol is disabled;	SSx can be use	ed as I/O pin				
Note 1:	In Master mode, t writing to the SSF			ce each new rec	eption (and tra	ansmission) is i	nitiated by				
2: 3:	When enabled, th $SSPxADD = 0$ is	ese pins must		onfigured as inp	uts or outputs.						
		-				2					

REGISTER 26-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

4: Bit combinations not specifically listed here are either reserved or implemented in I²C mode only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page		
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	170		
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	182		
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	174		
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	190		
RxyPPS	_	_	_		RxyPPS<4:0>						
SSPxADD				ADD<7:0>							
SSPxBUF				BUF<	BUF<7:0>						
SSPxCLKPPS	_	_	_		S	SPCLKPPS<4	:0>		216		
SSPxCON1	WCOL	SSPOV	SSPEN	CKP	CKP SSPM<3:0>						
SSPxCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	355		
SSPxCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	339		
SSPxDATPPS	_	—		SSPDATPPS<4:0>							
SSPxMSK				MSK	<7:0>				357		
SSPxSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	337		

TABLE 26-4: SUMMARY OF REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the MSSP module in I²C mode. * Page provides register information.

PIC18(L)F26/45/46K40

BNZ n $\textbf{-128} \leq n \leq 127$ if ZERO bit is '0' $(PC) + 2 + 2n \rightarrow PC$

None

Branch if Not Zero

Operands:-128 \leq n \leq 127Operation:Operation:if OVERFLOW bit is '0' (PC) + 2 + 2n \rightarrow PCOperation:Status Affected:NoneStatusEncoding:11100101nnnnnnnnDescription:If the OVERFLOW bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.WordWords:1VordQ1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4If No Jump:If No DataIf No operationIf No Jump:HERE No OperationIf No DataBefore Instruction PC=address (HERE) After Instruction If OVERFLOW = O;	BNOV	Branch if	Not Over	flow			BNZ	
Operation:if OVERFLOW bit is '0' (PC) + 2 + 2n \rightarrow PCOperation:Status Affected:NoneStatusEncoding:11100101nmmDescription:If the OVERFLOW bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.WordWords:1WordQuescienceValueQuescienceQ Cycles:1(2)CycleQ Cycle Activity:If Jump:If Jump:If Jump:Q1Q2Q3Q4DecodeRead literal 'n'PoccessNo operationIf No operationIf No Jump:If No 'n'If No DataIf No Jump:HERE 'n'BNOV DataExample:HERE address (HERE) After Instruction If OVERFLOW = 0;	Syntax:	BNOV n				-	Syntax:	
$(PC) + 2 + 2n \rightarrow PC$ Status Affected: None Status Encoding: <u>1110 0101 nnnn nnnn</u> Description: If the OVERFLOW bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. Words: 1 Words: 1 Words: 1 Words: 1 Q2 Q3 Q4 Q2 Q3 Q4 Q1 Q	Operands:	-128 ≤ n ≤ ′	127				Operands:	
Encoding: 1110 0101 $nnnn$ $nnnn$ Description:If the OVERFLOW bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.Description:Words:1WordCycles:1(2)CycleQ Cycle Activity:If Junp:If Junp:Q1Q2Q3Q4DecodeRead literal Inter ProcessProcessNoNoNoNoOperationoperationIf No Jump:If NoQ1Q2Q3Q4DecodeRead literal Inter ProcessPCaddressNoNoNoNoNoNoNoIf No Jump:If NoQ1Q2Q3Q2Q3Q4DecodeRead literal Inter ProcessPCaddress (HERE) After Instruction If OVERFLOW = 0;	Operation:						Operation:	
Description:If the OVERFLOW bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.Description:Words:1Word Cycles:1/2Cycle CycleQ Cycle Activity:1/2Q Cycle Q Cycle Activity:If Jump:If Jump:Q1Q2Q3Q4If Jump:If No No No NoNo No NoNo NoIf No Jump:If NoNoNo NoNo DerationIf No DataIf No DataIf No Jump:If No Y''DataIf No DataIf No DerationIf No Jump:If No Y''If No DataIf No DerationIf No DerationIf No Jump:If No Y''If No DataIf No OperationIf No DerationIf No Jump:If No Y''If No DataIf No OperationIf No DerationIf No Jump:If No Y''If No DataIf No OperationIf No No If No DataIf No DerationIf No PC Y''= address (HERE) After Instruction If OVERFLOW = 0;If No Y''If No Y''	Status Affected:	None					Status Affected:	
program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.WordWords:1WordWords:1WordCycles:1(2)CycleQ Cycle Activity:Q CyIf Jump:If Jump:Q1Q2Q3Q4DecodeRead literalNoNoNoNoNoNoIf No Jump:If NoIf No Jump:If NoQ1Q2Q3Q4DecodeRead literalProcessNoNoNoNoNoNoQ1Q2Q3Q4DecodeRead literalPC=address (HERE)After Instruction If OVERFLOW =0;	Encoding:	1110	0101	nnnn	nnnn]	Encoding:	
Cycles: 1(2) Cycle Q Cycle Activity: Q Cycle If Jump: Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 If Jump: No No No No No No No No No No If No Jump: If No If No If No Q1 Q2 Q3 Q4 If No Q1 Q2 Q3 Q4 If No If No Jump: If No If No If No Q1 Q2 Q3 Q4 If No Decode Read literal Process No If No Q1 Decode Read literal Process No If No Example: HERE BNOV Jump Example Before Instruction If No If If If OVERFLOW = 0; If If If	Description:	program wi The 2's con added to the incremente instruction, PC + 2 + 2r	ll branch. nplement ni e PC. Since d to fetch th the new ad n. This instr	umber the PC e next dress v	2n' is Cwill have vill be		Description:	
Q Cycle Activity: Q Cycle Activity: Q Cycle Activity: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to PC No No No No operation operation operation If No Jump: If No Q1 Q2 Q3 Q4 Decode Read literal Process No If No Jump: If No If No If No Q1 Q2 Q3 Q4 [Decode Read literal Process No [Before Instruction Decode If No [[PC = address (HERE) [[After Instruction If OVERFLOW = 0; [[Words:	1					Words:	
If Jump: If Jump: If Jump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to PC No No No No operation operation operation If No Jump: If No Q1 Q2 Q3 Q4 Decode Read literal Process No Q1 Q2 Q3 Q4 Decode Read literal Process No Q1 Decode Read literal Process No Data operation If No Example: HERE BNOV Jump Example: HERE BNOV Jump PC = address (HERE) After Instruction If OVERFLOW = 0; After Instruction After Instruction	Cycles:	1(2)					Cycles:	
Decode Read literal (n') Process Data Write to PC No No No No operation operation operation operation If No Jump: If No Q1 Q2 Q3 Q4 Decode Read literal Process No No Q1 Q2 Q3 Q4 If No Decode Read literal Process No No Detode Read literal Process No It Example: HERE BNOV Jump Example Before Instruction It After It If OVERFLOW = 0; It After It							Q Cycle Activ If Jump:	/ity
Image: Second structure Image: Second structure </td <td>Q1</td> <td>Q2</td> <td>Q3</td> <td></td> <td>Q4</td> <td>_</td> <td>Q1</td> <td></td>	Q1	Q2	Q3		Q4	_	Q1	
operation operation operation operation If No Jump: If No If No Q1 Q2 Q3 Q4 Decode Read literal Process No Operation If No Data Operation Example: HERE BNOV Jump Example Before Instruction If Operation If PC = address (HERE) After Instruction If If OVERFLOW = 0; If If If	Decode			Wi	rite to PC		Deco	de
If No Jump: If No Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No in'' Data operation [Example: HERE BNOV Jump Example Before Instruction PC = address (HERE) After Instruction Jump If OVERFLOW = 0; 0; If No If No							No	
Q1 Q2 Q3 Q4 Decode Read literal Process No 'n' Data operation Example: HERE BNOV Jump Before Instruction PC = After Instruction If OVERFLOW = 0;		operation	operation	1 0	peration]	operat If No Jump:	ion
Decode Read literal 'n' Process Data No operation Example: HERE BNOV Jump Example Before Instruction PC = address (HERE) After Instruction If OVERFLOW = 0;	•	02	03		04		n No Jump. Q1	
Example: HERE BNOV Jump Exam Before Instruction I PC = address (HERE) After Instruction I If OVERFLOW = 0;]	Deco	de
Before Instruction I PC = address (HERE) After Instruction I If OVERFLOW = 0;		'n'	Data	0	peration			
If OVERFLOW = 0;	Before Instructi PC	ion = ad		-			<u>Example</u> : Before In PC	
If OVERFLOW = 1; PC = address (HERE + 2)	If OVERFI PC If OVERFI	LOW = 0; = ad LOW = 1;		-	2.		After Inst If ZI If ZI	ER P

oding:	1110	0001	nnnr	n nnnn				
cription:	If the ZERO	D bit is '0	', then t	he program				
	will branch							
	The 2's cor	•						
	incremente			PC will have				
	instruction,							
	PC + 2 + 2							
	2-cycle inst	truction.						
ds:	1							
es:	1(2)							
Cycle Activity:								
ump:								
Q1	Q2	Q3		Q4				
Decode	Read literal	Proce		Write to PC				
	'n'	Dat	-					
No	No	No		No				
operation	operation	opera	tion	operation				
o Jump:	<u></u>			<u>.</u>				
Q1	Q2	Q3 Process		Q4				
Decode	Read literal 'n'	Proce		No				
	11	Dat	d	operation				
mala		DNG	-					
<u>mple</u> :	HERE	BNZ	Jump					
Before Instruction								
PC = address (HERE) After Instruction								
If ZERO	= 0:							
PC	= ac	ldress (J	ump)					
If ZERO PC	= 1; = ad	Idress (H	ERE +	2)				
		(· ·				

PIC18(L)F26/45/46K40

BRA	۱.	Unconditional Branch							
Synta	ax:	BRA n							
Oper	ands:	$-1024 \le n \le 10$)23						
Oper	ation:	(PC) + 2 + 2n	\rightarrow PC						
Statu	s Affected:	None							
Enco	ding:	1101 ()nnn nnni	n nnnn					
Desc	ription:	Add the 2's complement number '2n' to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.							
Word	ls:	1							
Cycle	es:	2							
Q Cycle Activity:									
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'n'	Process Data	Write to PC					
	No	No	No	No					
	operation	operation	operation	operation					
	nple: Before Instruc PC After Instructi PC	= ad	BRA Jump dress (HERE dress (Jump						

BSF		Bit Set f	Bit Set f							
Syntax	C:	BSF f, b	BSF f, b {,a}							
Opera	nds:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$	$0 \le b \le 7$							
Opera	tion:	$1 \rightarrow f \le b >$	$1 \rightarrow f \le b >$							
Status	Affected:	None								
Encod	ling:	1000	bbba	ffff	ffff					
Descri	ption:	Bit 'b' in reg If 'a' is '0', 1 If 'a' is '1', 1 GPR bank. If 'a' is '0' a set is enab in Indexed mode when tion 35.2.3 Oriented li eral Offset	the Acces the BSR i and the ex- led, this i Literal Of never $f \le$ " Byte-O nstruction	ss Bank is s used to ktended in nstruction ffset Addre 95 (5Fh). priented a ons in Inde	select the struction operates essing See Sec- nd Bit- exed Lit-					
Words	:	1								
Cycles	3:	1	1							
Q Cy	cle Activity:									
	Q1	Q2	Q3	1	Q4					
	Decode	Read register 'f'	Proce Dat		Write gister 'f'					
Exam	<u>ole</u> :	BSF 1	FLAG_RE	G, 7, 1						
Before Instruction FLAG_REG = 0Ah After Instruction										

fter Instruction FLAG_REG = 8Ah

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					•
		I/O PORT:					
D300		with TTL buffer	_		0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D301			—	_	0.15 VDD	V	$1.8V \le V\text{DD} \le 4.5V$
D302		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$2.0V \le V\text{DD} \le 5.5V$
D303		with I ² C levels		_	0.3 VDD	V	
D304		with SMBus levels	—	_	0.8	V	$2.7V \le V\text{DD} \le 5.5V$
D305		MCLR	—	_	0.2 VDD	V	
	VIH	Input High Voltage			•		
		I/O PORT:					
D320		with TTL buffer	2.0			V	$4.5V \leq V\text{DD} \leq 5.5V$
D321			0.25 VDD + 0.8	_	—	V	$1.8V \le V\text{DD} \le 4.5V$
D322		with Schmitt Trigger buffer	0.8 Vdd	_	_	V	$2.0V \le VDD \le 5.5V$
D323		with I ² C levels	0.7 Vdd	_	_	V	
D324		with SMBus levels	2.1	_	_	V	$2.7V \le VDD \le 5.5V$
D325		MCLR	0.7 Vdd	_	_	V	
	lı∟	Input Leakage Current ⁽¹⁾					•
D340		I/O Ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C
D341			—	± 5	± 1000	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 125°C
D342		MCLR ⁽²⁾	—	± 50	± 200	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C
	IPUR	Weak Pull-up Current					
D350			25	120	200	μA	VDD = 3.0V, VPIN = VSS
	Vol	Output Low Voltage					
D360		I/O ports	_	_	0.6	V	IOL = 10.0mA, VDD = 3.0V
	Voн	Output High Voltage	I		•	•	1
D370		I/O ports	Vdd - 0.7	_	_	V	ЮН = 6.0 mA, VDD = 3.0V
D380	Сю	All I/O pins	_	5	50	pF	

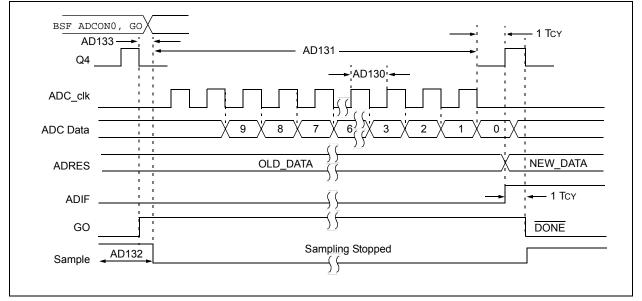
TABLE 37-4: I/O PORTS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined <u>as current</u> sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

TABLE 37-14: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS


Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD20	Tad	ADC Clock Period	1	_	9	μS	Using Fosc as the ADC clock source ADOCS = 0	
AD21			—	2	_	μS	Using FRC as the ADC clock source ADOCS = 1	
AD22	TCNV	Conversion Time ⁽¹⁾	—	11 + Зтсү	—	Tad	Set of GO/DONE bit to Clear of GO/ DONE bit	
AD23	TACQ	Acquisition Time		2	_	μS		
AD24	Тнср	Sample and Hold Capacitor Disconnect Time	—	—	—	μS	Fosc-based clock source Frc-based clock source	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Does not apply for the ADCRC oscillator.

FIGURE 37-10: ADC CONVERSION TIMING (ADC CLOCK Fosc-BASED)

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820