

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k40-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18(L)F26/45/46K40

PIC18(L)F2x/4xK40 Family Types

Device	Data Sheet Index	Program Memory Flash (bytes)	Data SRAM (bytes)	Data EEPROM (bytes)	I/O Pins	16-bit Timers	Comparators	10-bit ADC ² with Computation (ch)	5-bit DAC	Zero-Cross Detect	CCP/10-bit PWM	CWG	8-bit TMR with HLT	Windowed Watchdog Timer	CRC with Memory Scan	EUSART	I ² C/SPI	Sdd	Peripheral Module Disable	Temperature Indicator	Debug ⁽¹⁾
PIC18(L)F24K40	(1)	16k	1024	256	25	4	2	24	1	1	2/2	1	3	Y	Y	1	1	Y	Y	Y	Ι
PIC18(L)F25K40	(1)	32k	2048	256	25	4	2	24	1	1	2/2	1	3	Y	Υ	1	1	Y	Y	Υ	Ι
PIC18(L)F26K40	(2)	64k	3728	1024	25	4	2	24	1	1	2/2	1	3	Y	Υ	2	2	Υ	Y	Y	Ι
PIC18(L)F27K40	(3)	128k	3728	1024	25	4	2	24	1	1	2/2	1	3	Y	Υ	2	2	Υ	Υ	Υ	Ι
PIC18(L)F45K40	(2)	32k	2048	256	36	4	2	35	1	1	2/2	1	3	Y	Υ	2	2	Υ	Υ	Υ	Ι
PIC18(L)F46K40	(2)	64k	3728	1024	36	4	2	35	1	1	2/2	1	3	Y	Υ	2	2	Υ	Υ	Υ	Ι
PIC18(L)F47K40	(3)	128k	3728	1024	36	4	2	35	1	1	2/2	1	3	Y	Υ	2	2	Υ	Υ	Υ	Ι

Note 1: Debugging Methods: (I) – Integrated on Chip.

Data Sheet Index: (Unshaded devices are described in this document.)

1. DS40001843 PIC18(L)F24/25K40 Data Sheet, 28-Pin, 8-bit Flash Microcontrollers

2. DS40001816 PIC18(L)F26/45/46K40 Data Sheet, 28/40/44-Pin, 8-bit Flash Microcontrollers

3. DS40001844 PIC18(L)F27/47K40 Data Sheet, 28/40/44-Pin, 8-bit Flash Microcontrollers

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

Pin Allocation Tables

TABLE 1: 28-PIN ALLOCATION TABLE (PIC18(L)F26K40)

I/O ⁽²⁾	28-Pin SPDIP, SOIC, SSOP	28-Pin (U)QFN	AD	Reference	Comparator	Timers	CCP	CWG	ZCD	Interrupt	EUSART	WSQ	ASSM	Pull-up	Basic
RA0	2	27	ANA0	_	C1IN0- C2IN0-				_	IOCA0	—	—	_	Y	—
RA1	3	28	ANA1	_	C1IN1- C2IN1-	_	_	_	_	IOCA1	—	—	_	Y	_
RA2	4	1	ANA2	DAC1OUT1 Vref- (DAC) Vref- (ADC)	C1IN0+ C2IN0+	-	-	-	Ι	IOCA2	_			Y	_
RA3	5	2	ANA3	Vref+ (DAC) Vref+ (ADC)	C1IN1+	-	-		_	IOCA3	—	MDCIN1 ⁽¹⁾	_	Y	—
RA4	6	3	ANA4	_	_	T0CKI ⁽¹⁾	_	_	-	IOCA4	_	MDCIN2 ⁽¹⁾	_	Y	_
RA5	7	4	ANA5	_	_	_	_	_	_	IOCA5	_	MDMIN ⁽¹⁾	SS1 ⁽¹⁾	Y	_
RA6	10	7	ANA6	_	—	-	—	—	_	IOCA6	—	—	_	Y	CLKOUT OSC2
RA7	9	6	ANA7	_	_	_	_	_	_	IOCA7	—	—	_	Y	OSC1 CLKIN
RB0	21	18	ANB0	_	C2IN1+	_	—	CWG1 ⁽¹⁾	ZCDIN	IOCB0 INT0 ⁽¹⁾	—	—	SS2 ⁽¹⁾	Y	—
RB1	22	19	ANB1	_	C1IN3- C2IN3-	_	_	_	_	IOCB1 INT1 ⁽¹⁾	—	—	SCK2 ⁽¹⁾ SCL2 ^(3,4)	Y	—
RB2	23	20	ANB2	_	_	_	_	_	_	IOCB2 INT2 ⁽¹⁾	—	—	SDI2 ⁽¹⁾ SDA2 ^(3,4)	Y	—
RB3	24	21	ANB3	_	C1IN2- C2IN2-	_	_	_	_	IOCB3	—	—	_	Y	—
RB4	25	22	ANB4	_	_	T5G ⁽¹⁾	_	_	_	IOCB4	_	_	_	Y	—
RB5	26	23	ANB5	_	_	T1G ⁽¹⁾	_	_	_	IOCB5	—	_	_	Y	_
RB6	27	24	ANB6	_	_	_			_	IOCB6	CK2 ⁽¹⁾	_	_	Y	ICSPCLK
RB7	28	25	ANB7	DAC1OUT2		T6AIN ⁽¹⁾	_	_	_	IOCB7	RX2/DT2 ⁽¹⁾	_	_	Y	ICSPDAT

PIC18(L)F26/45/46K40

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers (Register 17-1).

2: All pin outputs default to PORT latch data. Any pin can be selected as a peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for 1²C logic levels; The SCLx/SDAx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the 1²C specific or SMBus input buffer thresholds.

TABLI	E 2:	40/	44-PIN /	ALLO	CATION	N TABLE (PI	C18(L)F	-45/46K4	40)								
I/O ⁽²⁾	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	A/D	Reference	Comparator	Timers	ССР	CWG	ZCD	Interrupt	EUSART	WSQ	ASSM	Pull-up	Basic
RA0	2	17	19	19	ANA0	_	C1INO- C2IN0-	_	—	—	_	IOCA0	_	_	_	Y	—
RA1	3	18	20	20	ANA1	—	C1IN1- C2IN1-	-	—	—	_	IOCA1	-	—	_	Y	—
RA2	4	19	21	21	ANA2	DAC1OUT1 VREF- (DAC5) VREF- (ADC)	C1IN0+ C2IN0+	-	-	_	_	IOCA2	-	—	_	Y	_
RA3	5	20	22	22	ANA3	VREF+ (DAC5) VREF+ (ADC)	C1IN1+	-	_	_		IOCA3	—	MDCIN1 ⁽¹⁾	_	Y	_
RA4	6	21	23	23	ANA4	_	_	T0CKI ⁽¹⁾	_	_	_	IOCA4	_	MDCIN2 ⁽¹⁾	_	Y	_
RA5	7	22	24	24	ANA5	_	_	_	_	_	_	IOCA5	_	MDMIN ⁽¹⁾	SS1 ⁽¹⁾	Y	_
RA6	14	29	33	31	ANA6	—	—	_	_	—	_	IOCA6	_	—	_	Y	CLKOUT OSC2
RA7	13	28	32	30	ANA7	—	_	-	—	_		IOCA7	-	-	_	Y	OSC1 CLKIN
RB0	33	8	9	8	ANB0	_	C2IN1+	-	_	CWG1 ⁽¹⁾	ZCDIN	IOCB0 INT0 ⁽¹⁾	—	_	SS2 ⁽¹⁾	Y	_
RB1	34	9	10	9	ANB1	—	C1IN3- C2IN3-	-	—	—		IOCB1 INT1 ⁽¹⁾	-	-	SCK2 ⁽¹⁾ SCL2 ^(3,4)	Y	-
RB2	35	10	11	10	ANB2	—	-	-	_	_		IOCB2 INT2 ⁽¹⁾	-	-	SDI2 ⁽¹⁾ SDA2 ^(3,4)	Y	_
RB3	36	11	12	11	ANB3	—	C1IN2- C2IN2-	-	—	—	-	IOCB3	-	—	_	Y	_
RB4	37	12	14	14	ANB4	—	_	T5G ⁽¹⁾	_	_	_	IOCB4	_	_	_	Y	_
RB5	38	13	15	15	ANB5	_	_	T1G ⁽¹⁾	—	_	_	IOCB5	_	_	_	Y	—
RB6	39	14	16	16	ANB6	_	_	—	_	_	_	IOCB6	CK2 ⁽¹⁾	_	_	Y	ICSPCLK
RB7	40	15	17	17	ANB7	DAC1OUT2	_	T6AIN ⁽¹⁾	—	_	_	IOCB7	RX2/DT2 ⁽¹⁾	_	_	Y	ICSPDAT
RC0	15	30	34	32	ANC0	_	-	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾	-	-	Ι	IOCC0	-		_	Y	SOSCO
RC1	16	31	35	35	ANC1	—	_	—	CCP2 ⁽¹⁾	—	_	IOCC1	_	_	_	Y	SOSCIN SOSCI

TABLE 2: 40/44-PIN ALLOCATION TABLE (PIC18(L)F45/46K40)

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers (Register 17-1).

2: All pin outputs default to PORT latch data. Any pin can be selected as a peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for I2C logic levels; The SCLx/SDAx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I2C specific or SMBus input buffer thresholds.

4.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

4.1 Overview

The oscillator module has multiple clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 4-1 illustrates a block diagram of the oscillator module.

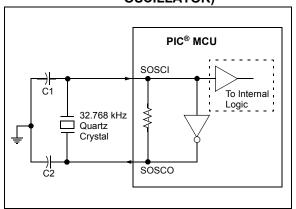
Clock sources can be supplied from external oscillators, quartz-crystal resonators and ceramic resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 (Register 3-1) determine the type of oscillator that will be used when the device runs after Reset, including when it is first powered up.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used in conjunction with the RSTOSC bits to select the External Clock mode.

The external oscillator module can be configured in one of the following clock modes, by setting the FEXTOSC<2:0> bits of Configuration Word 1:


- 1. ECL External Clock Low-Power mode (below 100 kHz)
- 2. ECM External Clock Medium Power mode (100 kHz to 8 MHz)
- 3. ECH External Clock High-Power mode (above 8 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 8 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)

The ECH, ECM, and ECL Clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS Clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 4-1). Multiple device clock frequencies may be derived from these clock sources.

4.3.1.5 Secondary Oscillator

The secondary oscillator is a separate oscillator block that can be used as an alternate system clock source. The secondary oscillator is optimized for 32.768 kHz, and can be used with an external crystal oscillator connected to the SOSCI and SOSCO device pins, or an external clock source connected to the SOSCIN pin. The secondary oscillator can be selected during run-time using clock switching. Refer to **Section 4.4 "Clock Switching"** for more information.

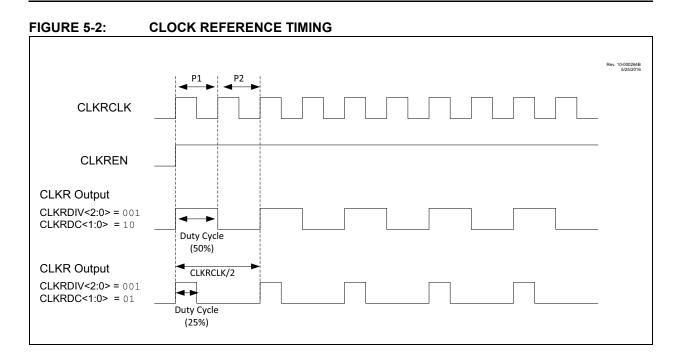
FIGURE 4-5: QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for PIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

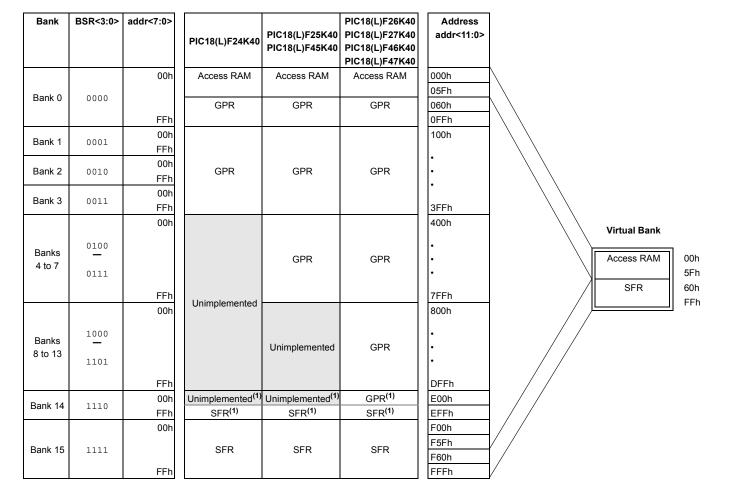
4.3.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the RSTOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> bits in the OSCCON1 register to switch the system clock source to the internal oscillator during run-time. See Section 4.4 "Clock Switching" for more information.


In INTOSC mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.


The internal oscillator block has two independent oscillators that can produce two internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory-calibrated and operates from 1 to 64 MHz. The frequency of HFINTOSC can be selected through the OSCFRQ Frequency Selection register, and fine-tuning can be done via the OSCTUNE register.
- 2. The **LFINTOSC** (Low-Frequency Internal Oscillator) is factory-calibrated and operates at 31 kHz.

PIC18(L)F26/45/46K40

FIGURE 10-4: DATA MEMORY MAP FOR PIC18(L)F2X/4XK40 DEVICES

Note 1: It depends on the number of SFRs. Refer to Table 10-3 and Table 10-4.

10.4.5 STATUS REGISTER

The STATUS register, shown in Register 10-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction.

If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged ('000u u1uu').

It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see the instruction set summaries in **Section 35.0 "Instruction Set Summary"** and Table 35-3.

Note: The C and DC bits operate as the borrow and digit borrow bits, respectively, in subtraction.

R/W-0/0	R/W/HC-0/0	R-0	R-1	R/W-0/0	U-0	R/W-0/0	R/W-0/0
SCANEN	SCANGO	BUSY	INVALID	INTM		MODE	<1:0>
bit 7							bit
Legend: R = Readable	h:t		h it	II – I Inimalan	nantad hit raad	aa 'O'	
u = Bit is unch		W = Writable x = Bit is unkr		•	nented bit, read at POR and BO		thar Pasata
'1' = Bit is set	angeu	0' = Bit is clear			eared by hardw		
			areu		ealed by hardw	ale	
bit 7	SCANEN: Sca	anner Enable k	_{oit} (1)				
	1 = Scanner is						
			rnal states are	reset			
bit 6	SCANGO: Sc						
		peripheral.	ready signal, N	IVM will be acc	essed accordin	g to MDx and c	lata passed
	0 = Scanner o		not occur				
bit 5	BUSY: Scann	er Busy Indica	tor bit ⁽⁴⁾				
	1 = Scanner c			(
			te (or never sta	irted)			
bit 4	INVALID: Sca			n invalid addree	ss ⁽⁶⁾ or the scan	ner was not set	
			to a valid addr				up conectly
bit 3			pt Managemen		oit		
	If MODE = 10:						
	This bit is igno						
			until all data is t		ration; scanner	resumes after	returning fro
	interrupt						returning no
			by interrupts, t	he interrupt res	sponse will be a	ffected	
	$\frac{\text{If MODE} = 00}{1 = SCANGO}$		(to zoro) during	interrunt oper	ation; scan oper	ations resume	aftar raturnir
	from inter		(to zero) during		allon, scan oper	allons resume	
	0 = Interrupts	do not prevent	NVM access				
bit 2	Unimplement						
bit 1-0			ss Mode bits ⁽⁵⁾				
	11 = Triggered 10 = Peek mo						
	01 = Burst mc						
	00 = Concurre	ent mode					
Note 1: Set	ting SCANEN =		I0 register) doe	s not affect any	y other register	content.	
	s bit is cleared v			-			
	NTM = 1, this bit SY = 1 when the		•	,	•		
	e Table 13-2 for				serius a reauy	signai.	
	invalid address			ige of PFM is s	canned and the	value of LADR	rolls over. A
inva	alid address car	also occur if t	he value in the				
	pped in the mer CEN and CRCG			ting SCANGO	nit Refer to Soo	tion 13 9 "Proc	Iram Memor
	an Configuratio		5 301 0010 0010 301				

REGISTER 13-11: SCANCONO: SCANNER ACCESS CONTROL REGISTER 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u				
LATx7	LATx6	LATx5	LATx4	LATx3	LATx2	LATx1	LATx0				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'					
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown						
-n/n = Value at POR and BOR/Value at all other Resets											

REGISTER 15-3: LATx: LATx REGISTER⁽¹⁾

bit 7-0 LATx<7:0>: Rx7:Rx0 Output Latch Value bits

Note 1: Writes to LATx are equivalent with writes to the corresponding PORTx register. Reads from LATx register return register values, not I/O pin values.

	Dev	vice								
Name	28 Pins	40/44 Pins	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LATA	Х	Х	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0
LATB	Х	Х	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
LATC	Х	Х	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
LATD	Х		_	_	_	_	—	_	—	_
		Х	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0
LATE	Х		_	—	—	—	—	_	—	_
		Х	_	_	—	_	—	LATE2	LATE1	LATE0

TABLE 15-4: LAT REGISTERS

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSELx7 | ANSELx6 | ANSELx5 | ANSELx4 | ANSELx3 | ANSELx2 | ANSELx1 | ANSELx0 |
| bit 7 | | | | | • | • | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

REGISTER 15-4: ANSELX: ANALOG SELECT REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0''1' = Bit is set'0' = Bit is clearedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0

- ANSELx<7:0>: Analog Select on Pins Rx<7:0>
- 1 = Digital Input buffers are disabled.
- 0 = ST and TTL input devices are enabled

	Dev	/ice								
Name	28 Pins	40/44 Pins	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ANSELA	Х	Х	ANSELA7	ANSELA6	ANSELA5	ANSELA4	ANSELA3	ANSELA2	ANSELA1	ANSELA0
ANSELB	Х	Х	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0
ANSELC	Х	Х	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0
ANSELD	Х		_	_	_	_	_	_	_	—
		Х	ANSELD7	ANSELD6	ANSELD5	ANSELD4	ANSELD3	ANSELD2	ANSELD1	ANSELD0
ANSELE	Х		_	_	_	_	_	_	_	—
		Х	_	_	_	_	_	ANSELE2	ANSELE1	ANSELE0

TABLE 15-5:ANALOG SELECT PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
IOCEP	—	_	_	_	IOCEP3 ⁽¹⁾	_	—	—
IOCEN					IOCEN3 ⁽¹⁾			
IOCEF					IOCEF3 ⁽¹⁾			_

TABLE 16-1: IOC REGISTERS

Note 1: If MCLRE = 1 or LVP = 1, RE3 port functionality is disabled and IOC on RE3 is not available.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	170
IOCxF	IOCxF7	IOCxF6	IOCxF5	IOCxF4	IOCxF3	IOCxF2	IOCxF1	IOCxF0	211
IOCxN	IOCxN7	IOCxN6	IOCxN5	IOCxN4	IOCxN3	IOCxN2	IOCxN1	IOCxN0	211
IOCxP	IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0	211

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

20.5.9 EDGE-TRIGGERED MONOSTABLE MODES

The Edge-Triggered Monostable modes start the timer on an edge from the external Reset signal input, after the ON bit is set, and stop incrementing the timer when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 10001)
- Falling edge (MODE<4:0> = 10010)
- Rising or Falling edge (MODE<4:0> = 10011)

When an Edge-Triggered Monostable mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external Reset signal edge that starts the timer, but will not go active when the timer matches the PRx value. While the timer is incrementing, additional edges on the external Reset signal will not affect the CCP PWM.

22.0 PULSE-WIDTH MODULATION (PWM)

The PWM module generates a Pulse-Width Modulated signal determined by the duty cycle, period, and resolution that are configured by the following registers:

- PRx
- TxCON
- PWMxDCH
- PWMxDCL
- PWMxCON

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the PWMx pin. Each PWM module can select the timer source that controls the module. Each module has an independent timer selection which can be accessed using the CCPTMRS register (Register 21-2). Please note that the PWM mode operation is described with respect to TMR2 in the following sections.

Figure 22-1 shows a simplified block diagram of PWM operation.

Figure 22-2 shows a typical waveform of the PWM signal.

FIGURE 22-1: SIMPLIFIED PWM BLOCK DIAGRAM

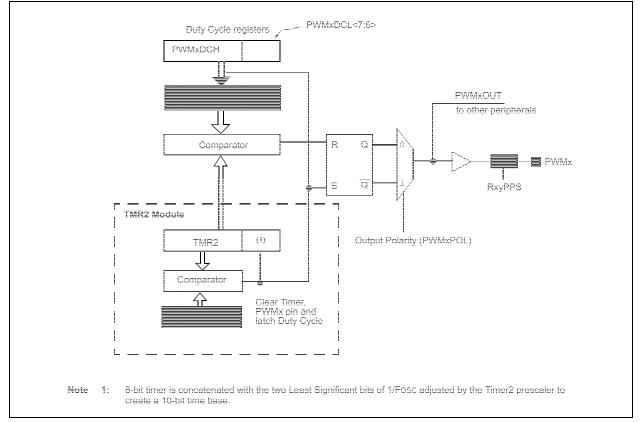
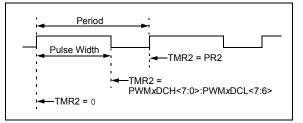
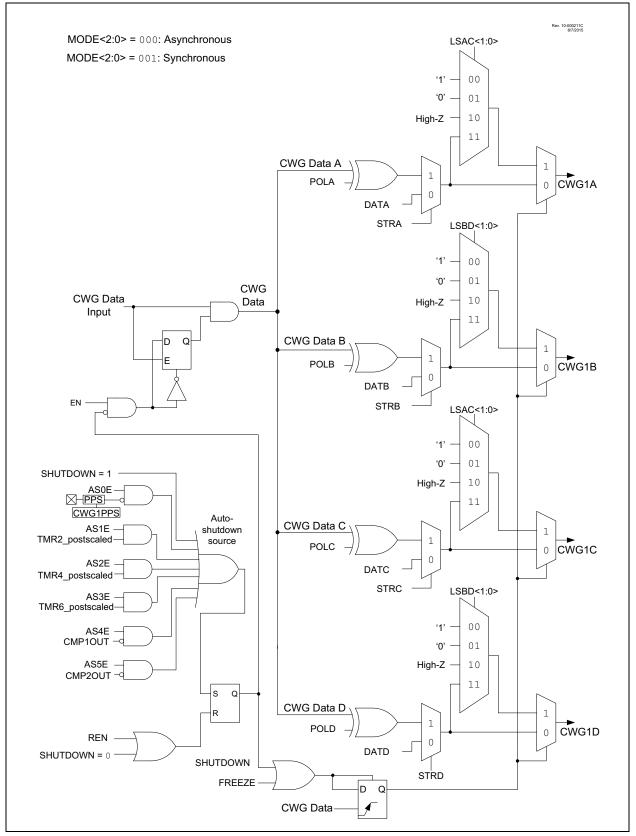



FIGURE 22-2:

PWM OUTPUT



For a step-by-step procedure on how to set up this module for PWM operation, refer to Section 22.1.9 "Setup for PWM Operation using PWMx Pins".

R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1
P4TSEL<1:0>		P3TSEL<1:0>		C2TSEL<1:0>		C1TSEL<1:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 7-6	11 = PWM4 10 = PWM4	>: PWM4 Time based on TMR based on TMR based on TMR ed	6 4	'S			
bit 5-4	P3TSEL<1:0>: PWM3 Timer Selection bits 11 = PWM3 based on TMR6 10 = PWM3 based on TMR4 01 = PWM3 based on TMR2 00 = Reserved						
bit 3-2	C2TSEL<1:0>: CCP2 Timer Selection bits 11 = CCP2 is based off Timer5 in Capture/Compare mode and Timer6 in PWM mode 10 = CCP2 is based off Timer3 in Capture/Compare mode and Timer4 in PWM mode 01 = CCP2 is based off Timer1 in Capture/Compare mode and Timer2 in PWM mode 00 = Reserved						
bit 1-0	t 1-0 C1TSEL<1:0>: CCP1 Timer Selection bit 11 = CCP1 is based off Timer5 in Capture 10 = CCP1 is based off Timer3 in Capture 01 = CCP1 is based off Timer1 in Capture 00 = Reserved				le and Timer4 i	n PWM mode	

REGISTER 22-2: CCPTMRS: CCP TIMERS CONTROL REGISTER

FIGURE 24-11: SIMPLIFIED CWG BLOCK DIAGRAM (OUTPUT STEERING MODES)

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0			
_	_	CHPOL	CHSYNC	—	—	CLPOL	CLSYNC			
bit 7				·			bit (
Legend:										
R = Reada	ble bit	W = Writable bit		U = Unimplemented bit, read as '0'						
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is s	set	'0' = Bit is clea	'0' = Bit is cleared							
bit 7-6	Unimplem	ented: Read as '	0'							
bit 5	CHPOL: M	odulator High Ca	rrier Polarity S	elect bit						
	1 = Select	1 = Selected high carrier signal is inverted								
	0 = Select	0 = Selected high carrier signal is not inverted								
bit 4	CHSYNC:	CHSYNC: Modulator High Carrier Synchronization Enable bit								
		1 = Modulator waits for a falling edge on the high time carrier signal before allowing a switch to the low time carrier								
	0 = Modula	0 = Modulator output is not synchronized to the high time carrier signal ⁽¹⁾								
bit 3-2	Unimplem	Unimplemented: Read as '0'								
bit 1	CLPOL: M	CLPOL: Modulator Low Carrier Polarity Select bit								
	1 = Select	1 = Selected low carrier signal is inverted								
	0 = Select	0 = Selected low carrier signal is not inverted								
bit 0	 CLSYNC: Modulator Low Carrier Synchronization Enable bit 1 = Modulator waits for a falling edge on the low time carrier signal before allowing a switch to the hi time carrier 					itch to the hig				
	0 = Modula	0 = Modulator output is not synchronized to the low time carrier signal ⁽¹⁾								
Noto 1.No.	rrowed carrier p	ulee widthe or en		in the signal s	troom if the cor	rior is not sync	bronizod			

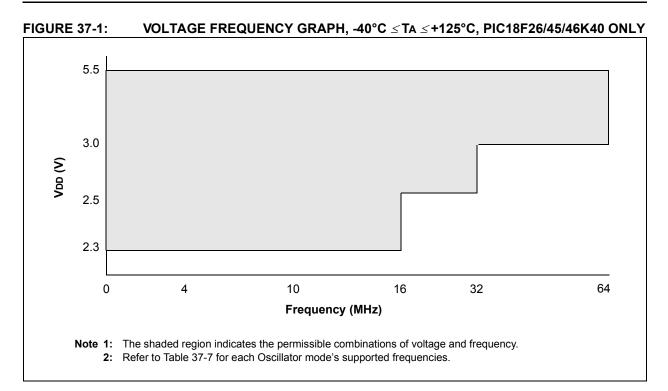
REGISTER 25-2: MDCON1: MODULATION CONTROL REGISTER 1

Note 1:Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

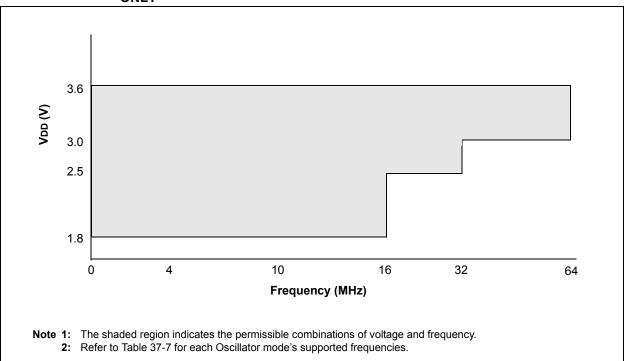
U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
_	_	—			ADACT<4:0>					
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable b	it	U = Unimpleme	ented bit, read as	s 'O'				
u = Bit is une	changed	x = Bit is unkno	x = Bit is unknown		POR and BOR/	/alue at all other	Resets			
'1' = Bit is set		'0' = Bit is clea	'0' = Bit is cleared							
bit 7-5	Unimplom	nented: Read as '0'								
	•		Time Oalest	Dite						
bit 4-0		ADACT<4:0>: Auto-Conversion Trigger Select Bits 11111 = Software write to ADPCH								
		11111 = Software write to ADPCH 11110 = Reserved, do not use								
		1110 = Software read of ADRESH								
	11100 = S	11100 = Software read of ADERRH								
	11011 = F	11011 = Reserved, do not use								
	•									
	•									
	• 10000 = F	• 10000 = Reserved, do not use								
		01111 = Interrupt-on-change Interrupt Flag								
		01110 = C2 out								
	01101 = C	01101 = C1_out								
		01100 = PWM4_out								
		01011 = PWM3_out								
		01010 = CCP2_trigger								
		01001 = CCP1_trigger 01000 = TMR6 postscaled								
		00111 = TMR5_overflow								
		00110 = TMR4_postscaled								
	00101 = T	00101 = TMR3_overflow								
		MR2_postscaled								
		MR1_overflow								
		MR0_overflow								
		Pin selected by ADAC External Trigger Disal								
	00000 = E	-xternar myyer Disar	Jieu							

REGISTER 31-32: ADACT: ADC AUTO CONVERSION TRIGGER CONTROL REGISTER

35.1.1 STANDARD INSTRUCTION SET


ADDLW	ADD liter	ADD literal to W					
Syntax:	ADDLW	ADDLW k					
Operands:	$0 \le k \le 255$	5					
Operation:	(W) + k \rightarrow	$(W) + k \to W$					
Status Affected:	N, OV, C, [N, OV, C, DC, Z					
Encoding:	0000	1111 kk	kk kkkk				
Description:		The contents of W are added to the 8-bit literal 'k' and the result is placed in W.					
Words:	1	1					
Cycles:	1	1					
Q Cycle Activity	<u>.</u>						
Q1	Q2	Q3	Q4				
Decode	Read literal 'k'	Process Data	Write to W				
Example: Before Inst W After Instru W =	ruction = 10h	15h					

ADDWF	ADD W to f					
Syntax:	ADDWF f {,d {,a}}					
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]					
Operation:	(W) + (f) \rightarrow dest					
Status Affected:	N, OV, C, DC, Z					
Encoding:	0010 01da ffff ffff					
Description:	Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.					
Words:	1					
Cycles:	1					


QC	ycle Activity:						
	Q1		Q2		23	Q4	
	Decode	Read register 'f'		Process Data		Write to destination	
<u>Exan</u>	Example:		DDWF	REG,	0, 0		
	Before Instruc						
	W REG After Instructio		17h 0C2h				
	W REG	=	0D9h 0C2h				

Note:	All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
	symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

PIC18(L)F26/45/46K40

