

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k40-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 Device ID and Revision ID

The 16-bit device ID word is located at 3F FFFEh and the 16-bit revision ID is located at 3F FFFCh. These locations are read-only and cannot be erased or modified.

Development tools, such as device programmers and debuggers, may be used to read the Device ID, Revision ID and Configuration Words. Refer to **11.0 "Nonvolatile Memory (NVM) Control"** for more information on accessing these locations.

3.7 Register Definitions: Device and Revision

R	R	R	R	R	R	R	R
DEV15	DEV14	DEV13	DEV12	DEV11	DEV10	DEV9	DEV8
bit 15							bit 8

R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:

R = Readable bit '1' = Bit is set	0' = Bit is cleared	x = Bit is unknown
-----------------------------------	---------------------	--------------------

bit 15-0 DEV<15:0>: Device ID bits

Device	Device ID
PIC18F26K40	6980h
PIC18F45K40	6940h
PIC18F46K40	6920h
PIC18LF26K40	6A60h
PIC18LF45K40	6A20h
PIC18LF46K40	6A00h

5.5 Register Definitions: Reference Clock

Long bit name prefixes for the Reference Clock peripherals are shown in Table 5-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 5-1:

Peripheral	Bit Name Prefix
CLKR	CLKR

REGISTER 5-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER

R/W-0/0	U-0	U-0	R/W-1/1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN	_	_	DC<1:0>				
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: Reference Clock Module Enable bit
	1 = Reference clock module enabled
	0 = Reference clock module is disabled
bit 6-5	Unimplemented: Read as '0'
bit 4-3	DC<1:0>: Reference Clock Duty Cycle bits ⁽¹⁾
	11 = Clock outputs duty cycle of 75%
	10 = Clock outputs duty cycle of 50%
	01 = Clock outputs duty cycle of 25%
	00 = Clock outputs duty cycle of 0%
bit 2-0	DIV<2:0>: Reference Clock Divider bits
	111 = Base clock value divided by 128
	110 = Base clock value divided by 64
	101 = Base clock value divided by 32
	100 = Base clock value divided by 16
	011 = Base clock value divided by 8
	010 = Base clock value divided by 4
	001 = Base clock value divided by 2
	000 = Base clock value

Note 1: Bits are valid for reference clock divider values of two or larger, the base clock cannot be further divided.

6.4 Register Definitions: Voltage Regulator Control

REGISTER 6-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	
_	—			—	_	VREGPM	Reserved	
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable I	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-2 Unimplemented: Read as '0'

VREGPM: Voltage Regulator Power Mode Selection bit

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾
- Draws lowest current in Sleep, slower wake-up
- 0 =Normal Power mode enabled in Sleep⁽²⁾
- Draws higher current in Sleep, faster wake-up

bit 0 **Reserved:** Read as '1'. Maintain this bit set.

Note 1: PIC18F2x/4xK40 only.

bit 1

2: See Section 37.0 "Electrical Specifications".

8.0 RESETS

There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Low-Power Brown-Out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- Stack Underflow
- · Programming mode exit

To allow VDD to stabilize, an optional Power-up Timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 8-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR	
F74h	CRCDATL		DATA<7:0>								
F73h	ADFLTRH		ADFLTRH<15:8>								
F72h	ADFLTRL		ADFLTRL<7:0>								
F71h	ADACCH				ADACC	H<15:8>				xxxxxxxx	
F70h	ADACCL				ADAC	CL<7:0>				xxxxxxxx	
F6Fh	ADERRH				ADERR	H<15:8>				00000000	
F6Eh	ADERRL				ADER	RL<7:0>				00000000	
F6Dh	ADUTHH				ADUTH	H<15:8>				00000000	
F6Ch	ADUTHL				ADUTI	HL<7:0>				00000000	
F6Bh	ADLTHH				ADLTH	H<15:8>				00000000	
F6Ah	ADLTHL				ADLTH	HL<7:0>				00000000	
F69h	ADSTPTH				ADSTP	TH<15:8>				00000000	
F68h	ADSTPTL				ADSTF	PTL<7:0>				00000000	
F67h	ADCNT		ADCNT<7:0>							00000000	
F66h	ADRPT		ADRPT<7:0>							00000000	
F65h	ADSTAT	ADAOV	ADAOV ADUTHR ADLTHR ADMATH - ADSTAT<2:0>						000-000		
F64h	ADRESH		ADRESH<7:0>							00000000	
F63h	ADRESL				ADRE	SL<7:0>				00000000	
F62h	ADPREVH				ADPRE	/H<15:8>				00000000	
F61h	ADPREVL				ADPRE	VL<7:0>				00000000	
F60h	ADCON0	ADON	ADCONT	—	ADSC	-	ADFM	—	ADGO	00-000-0	
F5Fh	ADPCH	—	—			ADPC	CH<5:0>			000000	
F5Eh	ADPRE				ADPR	E<7:0>				00000000	
F5Dh	ADCAP	—	—	—			ADCAP<4:0>			00000	
F5Ch	ADACQ		-		ADAC	Q<7:0>				00000000	
F5Bh	ADCON3	—		ADCALC<2:0	>	ADSOI		ADTMD<2:0>	>	-0000000	
F5Ah	ADCON2	ADPSIS		ADCRS<2:0>	>	ADACLR		ADMD<2:0>		00000000	
F59h	ADCON1	ADPPOL	ADIPEN	ADGPOL	—	—	—	—	ADDSEN	0000	
F58h	ADREF	—	—	—	ADNREF	—	—	ADPR	EF<1:0>	0-00	
F57h	ADCLK	—	—		-	ADC	S<5:0>			000000	
F56h	ADACT	—	—	—			ADACT<4:0>			00000	
F55h	MDCARH	—	—	—	—	—		CHS<2:0>		000	
F54h	MDCARL	—	—	—	—	—		CLS<2:0>		000	
F53h	MDSRC	—	—	—	—		SRCS	8<3:0>		0000	
F52h	MDCON1	—	—	CHPOL	CHSYNC	—	—	CLPOL	CLSYNC	0000	
F51h	MDCON0	EN	—	OUT	OPOL	—	—	—	MDBIT	0-000	
F50h	SCANTRIG	_	—	_	_		TSEL	<3:0>		0000	
F4Fh	SCANCON0	SCANEN	SCANGO	BUSY	INVALID	INTM	-	MOD	E<1:0>	00000-00	
F4Eh	SCANHADRU	_	—			HADR	<21:16>			111111	

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F26/45/46K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F26K40 (28-pin variants).

3: Not available on PIC18(L)F45K40 devices.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F4Dh	SCANHADRH				HADR	<15:8>		•		11111111
F4Ch	SCANHADRL				HAD	R<7:0>				11111111
F4Bh	SCANLADRU	—	_			LADR	<21:16>			000000
F4Ah	SCANLADRH				LADR	<15:8>				00000000
F49h	SCANLADRL				LADF	R<7:0>				00000000
F48h	CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	00000000
F47h	CWG1AS1	_	_	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	000000
F46h	CWG1AS0	SHUTDOWN	REN	LSBI	D<1:0>	LSAC	C<1:0>	—	—	000101
F45h	CWG1CON1	_	_	IN	—	POLD	POLC	POLB	POLA	x-0000
F44h	CWG1CON0	EN	LD	_	—	_		MODE<2:0>		00000
F43h	CWG1DBF	_	_			DBF	<5:0>			000000
F42h	CWG1DBR	—	_			DBF	<<5:0>			000000
F41h	CWG1ISM	_	_	_	—	—		ISM<2:0>		000
F40h	CWG1CLKCON	—	_	_	_	_	—	—	CS	0
F3Fh	CLKRCLK	_	_	_	_	_	CLKRxCLK<2:0>			000
F3Eh	CLKRCON	CLKREN	_	_	CLKRD	C<1:0>	CLKRDIV<2:0>			010000
F3Dh	CMOUT	—	_	_	_	—	—	MC2OUT	MC1OUT	00
F3Ch	CM1PCH	—	_	_	_	_		PCH<2:0>		000
F3Bh	CM1NCH	—	_	_	_	_		NCH<2:0>		000
F3Ah	CM1CON1	—	_	_	_	_	—	INTP	INTN	100
F39h	CM1CON0	EN	OUT	_	POL	_	—	HYS	SYNC	00-000
F38h	CM2PCH	_		_	-	-		C2PCH<2:0>		000
F37h	CM2NCH	—	_	_	_	_		C2NCH<2:0>		000
F36h	CM2CON1	—	_	_	_	_	—	INTP	INTN	100
F35h	CM2CON0	EN	OUT	_	POL	-	—	HYS	SYNC	00-000
F34h	DAC1CON1	_	-	_			DAC1R<4:0>			xxxxx
F33h	DAC1CON0	EN	_	OE1	OE2	PSS	<1:0>	_	NSS	0-0000-0
F32h	ZCDCON	SEN		OUT	POL	—	—	INTP	INTN	0-x000
F31h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAF\	/R<1:0>	ADF\	/R<1:0>	0x000000
F30h	HLVDCON1	-	_		1		HLVDS	EL<3:0>		0000
F2Fh	HLVDCON0	EN	-	OUT	RDY	-	-	INTH	INTL	0-xx00
F2Eh	ANSELE ⁽²⁾	—	_	_	_	_	ANSELE2	ANSELE1	ANSELE0	111
F2Dh	WPUE	—	_	_	_	WPUE3	WPUE2 ⁽²⁾	WPUE1 ⁽²⁾	WPUE0 ⁽²⁾	0000
F2Ch	ODCONE ⁽²⁾	—	_	_	_	_	ODCE2	ODCE1	ODCE0	000
F2Bh	SLRCONE ⁽²⁾	—	—	—	—	—	SLRE2	SLRE1	SLRE0	111
F2Ah	INLVLE	—	—	—	—	INLVLE3	INLVLE2 ⁽²⁾	INLVLE1 ⁽²⁾	INLVLE0 ⁽²⁾	1111
F29h	IOCEP	—	_	—	—	IOCEP3	—	—	—	0
F28h	IOCEN	—	_	—	—	IOCEN3	—	—	—	0
F27h	IOCEF			_	_	IOCEF3	_	_	_	0

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F26/45/46K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F26K40 (28-pin variants).

3: Not available on PIC18(L)F45K40 devices.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			HADR<	15:8> ^(1, 2)			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all c	other Resets
'1' = Bit is set		ʻ0' = Bit is clea	ared				

REGISTER 13-16: SCANHADRH: SCAN HIGH ADDRESS HIGH BYTE REGISTER

bit 7-0 HADR<15:8>: Scan End Address bits^(1, 2)

Most Significant bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 13-17: SCANHADRL: SCAN HIGH ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			HADR<	7:0> ^(1, 2)			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 HADR<7:0>: Scan End Address bits^(1, 2)

Least Significant bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

PIC18(L)F26/45/46K40

18.0 TIMER0 MODULE

Timer0 module is an 8/16-bit timer/counter with the following features:

- 16-bit timer/counter
- 8-bit timer/counter with programmable period
- Synchronous or asynchronous operation
- Selectable clock sources
- · Programmable prescaler
- · Programmable postscaler
- · Operation during Sleep mode
- · Interrupt on match or overflow
- Output on I/O pin (via PPS) or to other peripherals

19.2 Timer1/3/5 Operation

The Timer1/3/5 module is a 16-bit incrementing counter which is accessed through the TMRxH:TMRxL register pair. Writes to TMRxH or TMRxL directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1/3/5 is enabled by configuring the ON and GE bits in the TxCON and TxGCON registers, respectively. Table 19-2 displays the Timer1/3/5 enable selections.

TABLE 19-2:TIMER1/3/5 ENABLESELECTIONS

ON	GE	Timer1/3/5 Operation
1	1	Count Enabled
1	0	Always On
0	1	Off
0	0	Off

19.3 Clock Source Selection

The CS<3:0> bits of the TMRxCLK register (Register 19-3) are used to select the clock source for Timer1/3/5. The four TMRxCLK bits allow the selection of several possible synchronous and asynchronous clock sources. Register 19-3 displays the clock source selections.

19.3.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMRxH:TMRxL register pair will increment on multiples of Fosc as determined by the Timer1/3/5 prescaler.

When the Fosc internal clock source is selected, the Timer1/3/5 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1/3/5 value. To utilize the full resolution of Timer1/3/5, an asynchronous input signal must be used to gate the Timer1/3/5 clock input.

The following asynchronous sources may be used at the Timer1/3/5 gate:

- · Asynchronous event on the TxGPPS pin
- TMR0OUT
- TMR1/3/5OUT (excluding the TMR for which it is being used)
- TMR 2/4/6OUT (post-scaled)
- CCP1/2OUT
- PWM3/4OUT
- CMP1/2OUT
- ZCDOUT

Note:	In Counter mode, a falling edge must be
	registered by the counter prior to the first
	incrementing rising edge after any one or
	more of the following conditions:

- Timer1/3/5 enabled after POR
- Write to TMRxH or TMRxL
- Timer1/3/5 is disabled
- Timer1/3/5 is disabled (TMRxON = 0) when TxCKI is high then Timer1/3/5 is enabled (TMRxON = 1) when TxCKI is low.

19.3.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1/3/5 module may work as a timer or a counter.

When enabled to count, Timer1/3/5 is incremented on the rising edge of the external clock input of the TxCKIPPS pin. This external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated secondary internal oscillator circuit.

FIGURE 21-4: SIMPLIFIED PWM BLOCK DIAGRAM

24.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces half-bridge, full-bridge, and steering of PWM waveforms. It is backwards compatible with previous CCP functions. The PIC18(L)F2x/4xK40 family has one instance of the CWG module.

The CWG has the following features:

- Six operating modes:
 - Synchronous Steering mode
 - Asynchronous Steering mode
 - Full-Bridge mode, Forward
 - Full-Bridge mode, Reverse
 - Half-Bridge mode
 - Push-Pull mode
- Output polarity control
- Output steering
- Independent 6-bit rising and falling event deadband timers
 - Clocked dead band
 - Independent rising and falling dead-band enables
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart option
 - Auto-shutdown pin override control

24.1 Fundamental Operation

The CWG generates two output waveforms from the selected input source.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in **Section 24.6 "Dead-Band Control"**.

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 24.10 "Auto-Shutdown"**.

24.2 Operating Modes

The CWG module can operate in six different modes, as specified by the MODE<2:0> bits of the CWG1CON0 register:

- Half-Bridge mode
- Push-Pull mode
- Asynchronous Steering mode
- Synchronous Steering mode
- Full-Bridge mode, Forward
- Full-Bridge mode, Reverse

All modes accept a single pulse data input, and provide up to four outputs as described in the following sections.

All modes include auto-shutdown control as described in Section 24.10 "Auto-Shutdown"

Note: Except as noted for Full-bridge mode (Section 24.2.3 "Full-Bridge Modes"), mode changes should only be performed while EN = 0 (Register 24-1).

24.2.1 HALF-BRIDGE MODE

In Half-Bridge mode, two output signals are generated as true and inverted versions of the input as illustrated in Figure 24-2. A non-overlap (dead-band) time is inserted between the two outputs to prevent shoot through current in various power supply applications. Dead-band control is described in **Section 24.6 "Dead-Band Control"**. The output steering feature cannot be used in this mode. A basic block diagram of this mode is shown in Figure 24-1.

The unused outputs CWG1C and CWG1D drive similar signals, with polarity independently controlled by the POLC and POLD bits of the CWG1CON1 register, respectively.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWG1CON0	EN	LD	—	_	-	MODE<2:0>			315
CWG1CON1	_	—	IN	_	POLD	POLC	POLB	POLA	316
CWG1CLKCON		—	_	_	_	_	—	CS	317
CWG1ISM	—	—	—	_	_	ISM<2:0>			317
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	318
CWG1AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	<1:0>	—	—	319
CWG1AS1	—	_	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	320
CWG1DBR	—	_			DBR<	:5:0>			321
CWG1DBF	—	_			DBF<	:5:0>			321
PIE7	SCANIE	CRCIE	NVMIE	_	—	_	_	CWG1IE	186
PIR7	SCANIF	CRCIF	NVMIF	_	_	_	—	CWG1IF	178
IPR7	SCANIP	CRCIP	NVMIP	_	_	_	_	CWG1IP	194
PMD4	UART2MD	UART1MD	MSSP2MD	MSSP1MD	_	_	_	CWG1MD	72

TABLE 24-3: SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Legend: -= unimplemented locations read as '0'. Shaded cells are not used by CWG.

FIGURE 26-15: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)

PIC18(L)F26/45/46K40

FIGURE 27-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

648048-00 2022/2213 (C2895) 1886-1886	ander instru 2010-1000 2010-1000		NUUU VUUU	NACA NACANA NACANANA	andre nam			ANGURAUKU AURUAUA UNUNUNUAUAUA
		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			 · · · · · · · · · · · · · · · · · · ·			
	: : : : : : : : : : : : : : : : : : :	: ////////////////////////////////////	: ////////////////////////////////////	: : ::::::::::::::::::::::::::::::::::	Stevenie Millinninnin Millinninnin	ise is gane ta IIIIIIIIIIIIIIIIIII	996 (S. Ş. 1111111111	ostoot aanaanaanaanaanaanaan
FIGURE 27-8:	AUT	O-WAKE	-UP BIT	(WUE) T		SLEEP		

© 2015-2017 Microchip Technology Inc.

ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES^(1,4) TABLE 31-1:

ADC C	lock Period (TAD)	Device Frequency (Fosc)							
ADC Clock Source	ADCS<5:0>	64 MHz	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz	
Fosc/2	000000	31.25 ns ⁽²⁾	62.5 ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	
Fosc/4	000001	62.5 ns ⁽²⁾	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs	
Fosc/6	000010	125 ns ⁽²⁾	187.5 ns ⁽²⁾	300 ns ⁽²⁾	375 ns ⁽²⁾	750 ns ⁽²⁾	1.5 μs	6.0 μs	
Fosc/8	000011	187.5 ns ⁽²⁾	250 ns ⁽²⁾	400 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾	
Fosc/16	000100	250 ns ⁽²⁾	500 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾	
Fosc/128	111111	2.0 μs	4.0 μs	6.4 μs	8.0 μs	16.0 μs ⁽³⁾	32.0 μs ⁽²⁾	128.0 μs ⁽²⁾	
FRC	ADCS(ADCON0<4>) = 1	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	

Legend: Shaded cells are outside of recommended range. Note

1: See TAD parameter for FRC source typical TAD value.

These values violate the required TAD time. 2:

- 3: Outside the recommended TAD time.
- 4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock Fosc. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 31-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

		Bit Clear Conditions	Value after Trig	ger completion	Thres	hold Operation	ons	Value at ADTIF interrupt		
Mode	ADMD	ADACC and ADCNT	ADACC	ADCNT	Retrigger	Threshold Test	Interrupt	ADAOV	ADFLTR	ADCNT
Basic	0	ADACLR = 1	Unchanged	Unchanged	No	Every Sample	If thresh- old=true	N/A	N/A	count
Accumulate	1	ADACLR = 1	S + ADACC or (S2-S1) + ADACC	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	Every Sample	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count
Average	2	ADACLR = 1 or ADCNT>=ADRPT at ADGO or retrigger	S + ADACC or (S2-S1) + ADACC	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count
Burst Average	3	ADACLR = 1 or ADGO set or retrigger	Each repetition: same as Average End with sum of all samples	Each repetition: same as Average End with ADCNT=ADRPT	Repeat while ADCNT <adrpt< td=""><td>lf ADCNT>= ADRPT</td><td>If thresh- old=true</td><td>ADACC Overflow</td><td>ADACC/2^{ADCRS}</td><td>ADRPT</td></adrpt<>	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	ADRPT
Low-pass Filter	4	ADACLR = 1	S+ADACC-ADACC/ 2 ^{ADCRS} or (S2-S1)+ADACC-ADACC/ 2 ^{ADCRS}	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	Filtered Value	count

Note: S1 and S2 are abbreviations for Sample 1 and Sample 2, respectively. When ADDSEN = 0, S1 = ADRES; When ADDSEN = 1, S1 = ADREV and S2 = ADRES.

PIC18(L)F26/45/46K40

NEGF	Negate f					
Syntax:	NEGF f {,a}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$					
Operation:	$(\overline{f}) + 1 \rightarrow f$					
Status Affected:	N, OV, C, DC, Z					
Encoding:	0110 110a ffff ffff					
	couplement. The result is placed using two s complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.					
Words:	1					
Cycles:	1					
O Cuala Activity						

NOF	•	No Opera	No Operation						
Synta	ax:	NOP	NOP						
Oper	ands:	None	None						
Oper	ation:	No operati	on						
Statu	s Affected:	None							
Enco	ding:	0000 1111	0000 xxxx	000 xxx	00 1x	0000 xxxx			
Desc	ription:	No operation.							
Word	ls:	1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Decode No No No operation operation operation							

Example:

None.

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example: NEGF REG, 1

> Before Instruction REG = 0011 1010 [3Ah] After Instruction REG = 1100 0110 [C6h]

© 2015-2017 Microchip Technology Inc.

37.2 Standard Operating Conditions

The standard operating c	onditions for any device are defined as:	
Operating Voltage: Operating Temperature:	$\label{eq:VDDMAX} VDDMIN \leq VDD \leq VDDMAX \\ TA_MIN \leq TA \leq TA_MAX \\$	
VDD — Operating Suppl	y Voltage ⁽¹⁾	
PIC18LF26/45/46	<40	
VDDMIN (Fosc \leq 16 MHz)	+1.8V
VDDMIN (Fosc \leq 32 MHz)	+2.5V
VDDMIN (I	Fosc \leq 64 MHz)	+3.0V
VDDMAX.	· · · · · · · · · · · · · · · · · · ·	+3.6V
PIC18F26/45/46K4	40	
VDDMIN (I	Fosc \leq 16 MHz)	+2.3V
VDDMIN ($Fosc \leq 32 \text{ MHz}$	+2.5V
VDDMIN (I	- Fosc ≤ 64 MHz)	+3.0V
VDDMAX.	·	+5.5V
TA — Operating Ambier	t Temperature Range	
Industrial Tempera	ture	
TA MIN		40°C
		+85°C
Extended Tempera	iture	
TA MIN		-40°C
Та мах		
Note 1: See Paramete	er Supply Voltage, DS Characteristics: Supply Voltage.	

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е	0.65 BSC		
Optional Center Pad Width	X2			6.60
Optional Center Pad Length	Y2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Contact Pad to Contact Pad (X40)	G1	0.30		
Contact Pad to Center Pad (X44)	G2	0.28		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C

© 2015-2017 Microchip Technology Inc.