

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k40-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

4.1 Overview

The oscillator module has multiple clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 4-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz-crystal resonators and ceramic resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 (Register 3-1) determine the type of oscillator that will be used when the device runs after Reset, including when it is first powered up.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used in conjunction with the RSTOSC bits to select the External Clock mode.

The external oscillator module can be configured in one of the following clock modes, by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode (below 100 kHz)
- 2. ECM External Clock Medium Power mode (100 kHz to 8 MHz)
- 3. ECH External Clock High-Power mode (above 8 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 8 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)

The ECH, ECM, and ECL Clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS Clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 4-1). Multiple device clock frequencies may be derived from these clock sources.

U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	DACMD	ADCMD		—	CMP2MD	CMP1MD	ZCDMD ⁽¹⁾
bit 7							bit C
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is u	nchanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	set	'0' = Bit is clea	ared	q = Value dep	pends on condit	tion	
bit 7	Unimplemer	nted: Read as 'o)'				
bit 6	DACMD: Dis	able DAC bit					
		dule disabled					
	0 = DAC mo	dule enabled					
bit 5	ADCMD: Dis	able ADC bit					
		dule disabled					
		dule enabled					
bit 4-3	Unimplemer	nted: Read as ')'				
bit 2	CMP2MD: D	isable Compara	tor CMP2 bit				
		nodule disabled					
		nodule enabled					
bit 1		isable Compara	tor CMP1 bit				
		nodule disabled					
		nodule enabled		(1)			
bit 0		able Zero-Cross	S Detect modu	ule bit"			
	1 = ZCD mod						
	0 = ZCD mod	dule enabled					
Note 1	Subject to $\overline{7CD}$ k		4				

REGISTER 7-3: PMD2: PMD CONTROL REGISTER 2

Note 1: Subject to ZCD bit in CONFIG2H.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
FC1h	TMR5L	Holding Registe	er for the Least	Significant Byte	e of the 16-bit T	MR5 Register				00000000
FC0h	T2RST	—	_	—	_		RSEL	<3:0>		0000
FBFh	T2CLKCON	-	_	_	_		CS<	:3:0>		0000
FBEh	T2HLT	PSYNC	CPOL	CSYNC			MODE<4:0>			00000000
FBDh	T2CON	ON		CKPS<2:0>			OUTP	S<3:0>		00000000
FBCh	T2PR	TMR2 Period R	egister							11111111
FBBh	T2TMR	Holding Registe	er for the 8-bit 1	MR2 Register						00000000
FBAh	T4RST	—	_	—	_		RSEL	<3:0>		0000
FB9h	T4CLKCON	-	_	_	_			0000		
FB8h	T4HLT	PSYNC	CPOL	CSYNC			MODE<4:0>			00000000
FB7h	T4CON	ON		CKPS<2:0>			OUTP	S<3:0>		00000000
FB6h	T4PR	TMR4 Period R	egister							11111111
FB5h	T4TMR	Holding Registe	er for the 8-bit 1	MR4 Register						00000000
FB4h	T6RST	-	_	_	_		RSEL	<3:0>		0000
FB3h	T6CLKCON	_	_	_	_		CS<	:3:0>		0000
FB2h	T6HLT	PSYNC	PSYNC CPOL CSYNC MODE<4:0>						00000000	
FB1h	T6CON	ON	DN CKPS<2:0> OUTPS<3:0>						00000000	
FB0h	T6PR	TMR6 Period R	egister							11111111
FAFh	T6TMR	Holding Registe	er for the 8-bit 1	MR6 Register						00000000
FAEh	CCPTMRS	P4TSEL	<1:0>	P3TSE	L<1:0>	C2TSI	EL<1:0>	C1TS	EL<1:0>	01010101
FADh	CCP1CAP	-	_	_	_	-	—	CTS	S<1:0>	00
FACh	CCP1CON	EN	_	OUT	FMT		MODE	=<3:0>		0-000000
FABh	CCPR1H	Capture/Compa	are/PWM Regis	ster 1 (MSB)						xxxxxxxx
FAAh	CCPR1L	Capture/Compa	are/PWM Regis	ster 1 (LSB)						xxxxxxx
FA9h	CCP2CAP	—	_	_	—	-	—	CTS	S<1:0>	00
FA8h	CCP2CON	EN	_	OUT	FMT		MODE	=<3:0>		0-000000
FA7h	CCPR2H	Capture/Compa	are/PWM Regis	ster 2 (MSB)						xxxxxxxx
FA6h	CCPR2L	Capture/Compa	are/PWM Regis	ster 2 (LSB)						xxxxxxxx
FA5h	PWM3CON	EN	_	OUT	POL	-	—	—	_	0-00
FA4h	PWM3DCH				DC	<7:0>				xxxxxxxx
FA3h	PWM3DCL	DC<9	9:8>	_	_	-	—	—	_	xx
FA2h	PWM4CON	EN	—	OUT	POL	—	—	—	—	0-00
FA1h	PWM4DCH				DC	27:0>				xxxxxxxx
FA0h	PWM4DCL	DC<9	9:8>	—	—	-	—	—	—	xx
F9Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-00-00
F9Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	00000010
F9Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	00000000
F9Ch	SP1BRGH			EUSA	RT1 Baud Rat	e Generator, H	igh Byte			00000000

TABLE 10-5:REGISTER FILE SUMMARY FOR PIC18(L)F26/45/46K40 DEVICES (CONTINUED)

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F26K40 (28-pin variants).

3: Not available on PIC18(L)F45K40 devices.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of indexed addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

10.6.3.3 Operations by FSRs on FSRs

Indirect addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to either the INDF2 or POSTDEC2 register will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses indirect addressing.

Similarly, operations by indirect addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

10.7 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect addressing with FSR0 and FSR1 also remain unchanged.

10.7.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of indirect addressing using the FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of indexed addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0) and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in direct addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

10.7.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 10-7.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 35.2.1 "Extended Instruction Syntax"**.

				= = = = = = =	. (
R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0					
SCANIF	CRCIF	NVMIF	—	_	—	—	CWG1IF					
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown					
bit 7	SCANIF: SC/	AN Interrupt Fla	ıg bit									
	1 = SCAN inte	errupt has occu	rred (must be	e cleared in sof	tware)							
	0 = SCAN inte	errupt has not o	occurred or ha	as not been sta	irted							
bit 6	CRCIF: CRC	Interrupt Flag b	bit									
	1 = CRC inter	rrupt has occuri	red (must be	cleared in softw	vare)							
	0 = CRC inter	rrupt has not oc	curred or has	s not been star	ted							
bit 5	NVMIF: NVM	Interrupt Flag I	oit									
	1 = NVM inte	rrupt has occur	red (must be	cleared in soft	ware)							
	0 = NVM inte	rrupt has not oc	curred or has	s not been star	ted							
bit 4-1	Unimplemen	ited: Read as 'd)'									
bit 0	CWG1IF: CWG Interrupt Flag bit											
		errupt has occur										
	0 = CWG inte	errupt has not o	ccurred or ha	s not been star	ted							

REGISTER 14-9: PIR7: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 7

16.0 INTERRUPT-ON-CHANGE

PORTA, PORTB, PORTC and pin RE3 of PORTE can be configured to operate as Interrupt-on-Change (IOC) pins on PIC18(L)F2x/4xK40 family devices. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual port pin, or combination of port pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- Individual pin interrupt flags

Figure 16-1 is a block diagram of the IOC module.

16.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the PIE0 register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

16.2 Individual Pin Configuration

For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and IOCxN registers, respectively.

16.3 Interrupt Flags

The IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits located in the IOCAF, IOCBF, IOCCF and IOCEF registers respectively, are status flags that correspond to the interrupt-on-change pins of the associated port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the PIRO register reflects the status of all IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits.

16.4 Clearing Interrupt Flags

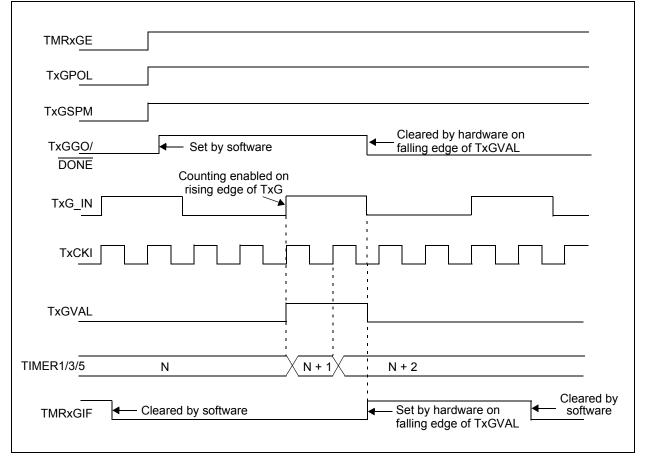
The individual status flags, (IOCAFx, IOCBFx, IOCCFx and IOCEF3 bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 16-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW	0xff	
XORWF	IOCAF,	W
ANDWF	IOCAF,	F
	XORWF	XORWF IOCAF,

16.5 Operation in Sleep


The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction executed out of Sleep.

PIC18(L)F26/45/46K40

FIGURE 19-5:	TIMER1/3/5 GATE TOGGLE MODE
TMRxGE	
TxGPOL	
TxGTM	
TxTxG_IN	
ТхСКІ	
TxGVAL	
TIMER1/3/5	N XN+1XN+2XN+3X N+4 XN+5XN+6XN+7X N+8

FIGURE 19-6: TIMER1/3/5 GATE SINGLE-PULSE MODE

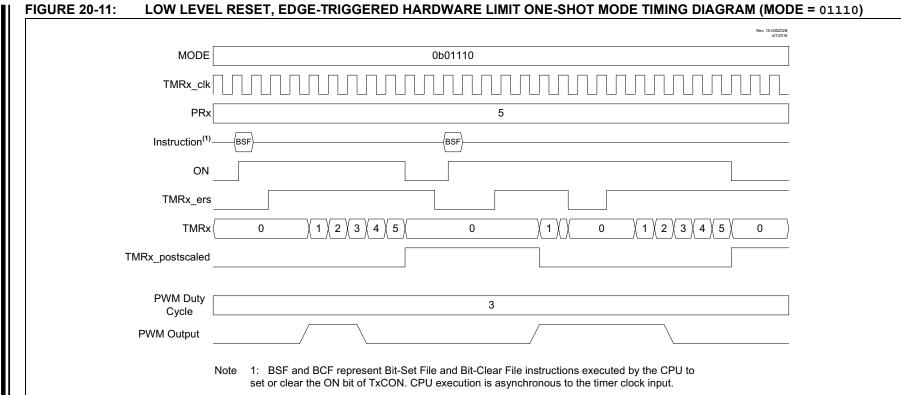

Mada	MODE	<4:0>	Output	On creation		Timer Control	
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop
		000		Software gate (Figure 20-4)	ON = 1	_	ON = 0
		001	Period Pulse	Hardware gate, active-high (Figure 20-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0
		010	Fuise	Hardware gate, active-low	ON = 1 and TMRx_ers = 0	_	ON = 0 or TMRx_ers = 1
Free	0.0	011		Rising or falling edge Reset		TMRx_ers	
Running Period	00	100	Period	Rising edge Reset (Figure 20-6)		TMRx_ers ↑	ON = 0
		101	Pulse	Falling edge Reset		TMRx_ers ↓	
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0
		111	Reset	High level Reset (Figure 20-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1
		000	One-shot	Software start (Figure 20-8)	ON = 1	_	
		001	Edge	Rising edge start (Figure 20-9)	ON = 1 and TMRx_ers ↑	_	
		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or Next clock
One-shot	01	100	Edge	Rising edge start and Rising edge Reset (Figure 20-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	after TMRx = PRx (Note 2)
		101	triggered start	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓	
		110	and hardware Reset	Rising edge start and Low level Reset (Figure 20-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0	
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1	
		000		Rese	rved		
		001	Edge	Rising edge start (Figure 20-12)	ON = 1 and TMRx_ers ↑	—	ON = 0 or
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	Next clock after
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)
Reserved	10	100		Rese	rved		•
Reserved		101		Rese	rved		
		110	Level triggered	High level start and Low level Reset (Figure 20-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)
Reserved	11	xxx		Rese	rved		

TABLE 20-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

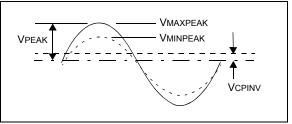
23.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 23-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- · Accurate long term time measurement
- · Dimmer phase delayed drive
- Low EMI cycle switching


23.1 External Resistor Selection

The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 23-1 and Figure 23-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 23-1: EXTERNAL RESISTOR

$$RSERIES = \frac{VPEAK}{3 \times 10^{-4}}$$

FIGURE 23-1: EXTERNAL VOLTAGE

EQUATION 23-2: R-C CALCULATIONS

- VPEAK = External voltage source peak voltage
- f = External voltage source frequency
- C = Series capacitor
- R = Series resistor
- $V_{\rm C}$ = Peak capacitor voltage
- Φ = Capacitor induced zero crossing phase advance in radians
- $T_\Phi\,$ = Time ZC event occurs before actual zero crossing

$$Z = \frac{VPEAK}{3 \times 10^{-4}}$$
$$XC = \frac{1}{2\pi fC}$$
$$R = \sqrt{Z^2 - Xc^2}$$
$$VC = XC(3 \times 10^{-4})$$
$$\Phi = Tan^{-1}\left(\frac{XC}{R}\right)$$
$$T\Phi = \frac{\Phi}{2\pi f}$$

EXAMPLE 23-1: R-C CALCULATIONS

VRMS = 120
VPEAK = VRMS *
$$\sqrt{2}$$
 = 169.7
f = 60 Hz
C = 0.1 µF

$$Z = \frac{VPEAK}{3 \times 10^{-4}} = \frac{169.7}{3 \times 10^{-4}} = 565.7 k\Omega$$
XC = $\frac{1}{2\pi fC} = \frac{1}{(2\pi \times 60 \times 1 \times 10^{-7})} = 26.53 k\Omega$
R = $\sqrt{(Z^2 \times Xc^2)} = 565.1 k\Omega$ (computed)
R = 560k Ω (used)
ZR = $\sqrt{R^2 + Xc^2} = 560.6 k\Omega$ (using actual resistor)
IPEAK = $\frac{VPEAK}{ZR} = 302.7 \times 10^{-6}$
VC = XC × Ipeak = 8.0V
 $\Phi = Tan^{-1}(\frac{XC}{R}) = 0.047$ radians
T $\Phi = \frac{\Phi}{2\pi f} = 125.6 \mu s$

23.5.2 CORRECTION BY OFFSET CURRENT

When the waveform is varying relative to Vss, then the zero cross is detected too early as the waveform falls and too late as the waveform rises. When the waveform is varying relative to VDD, then the zero cross is detected too late as the waveform rises and too early as the waveform falls. The actual offset time can be determined for sinusoidal waveforms with the corresponding equations shown in Equation 23-3.

EQUATION 23-3: ZCD EVENT OFFSET

When External Voltage Source is relative to Vss:

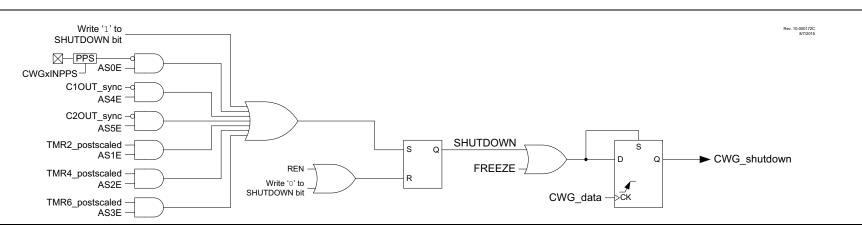
$$TOFFSET = \frac{\operatorname{asin}\left(\frac{VCPINV}{VPEAK}\right)}{2\pi \bullet Freq}$$

When External Voltage Source is relative to VDD:

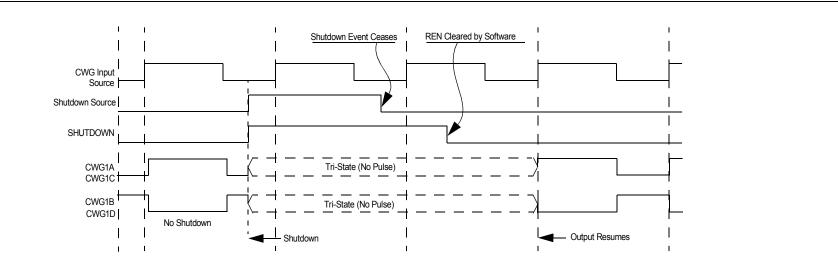
$$TOFFSET = \frac{\operatorname{asin}\left(\frac{VDD - VCPINV}{VPEAK}\right)}{2\pi \bullet Freq}$$

This offset time can be compensated for by adding a pull-up or pull-down biasing resistor to the ZCD pin. A pull-up resistor is used when the external voltage source is varying relative to VSS. A pull-down resistor is used when the voltage is varying relative to VDD. The resistor adds a bias to the ZCD pin so that the target external voltage source must go to zero to pull the pin voltage to the VCPINV switching voltage. The pull-up or pull-down value can be determined with the equations shown in Equation 23-4.

EQUATION 23-4: ZCD PULL-UP/DOWN


When External Signal is relative to Vss:

$$R_{PULLUP} = \frac{R_{SERIES}(V_{PULLUP} - V_{CPINV})}{V_{CPINV}}$$


When External Signal is relative to VDD:

$$R_{PULLDOWN} = \frac{R_{SERIES}(VCPINV)}{(VDD - VCPINV)}$$

FIGURE 24-15: SHUTDOWN FUNCTIONALITY, AUTO-RESTART DISABLED (REN = 0, LSAC = 01, LSBD = 01)

26.8.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 26-12 shows wave forms for Start and Stop conditions.

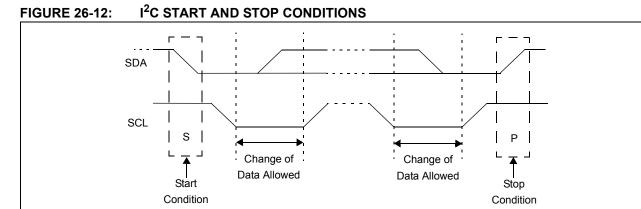
A bus collision can occur on a Start condition if the module samples the SDA line low before asserting it low. This does not conform to the I²C Specification that states no bus collision can occur on a Start.

26.8.6 STOP CONDITION

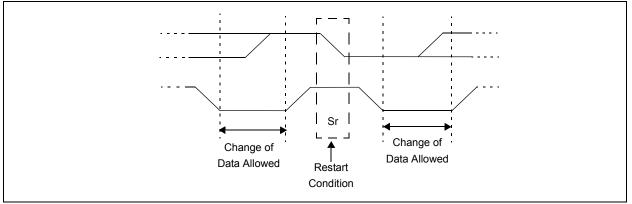
A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

Note: At least one SCL low time must appear before a Stop is valid, therefore, if the SDA line goes low then high again while the SCL line stays high, only the Start condition is detected.

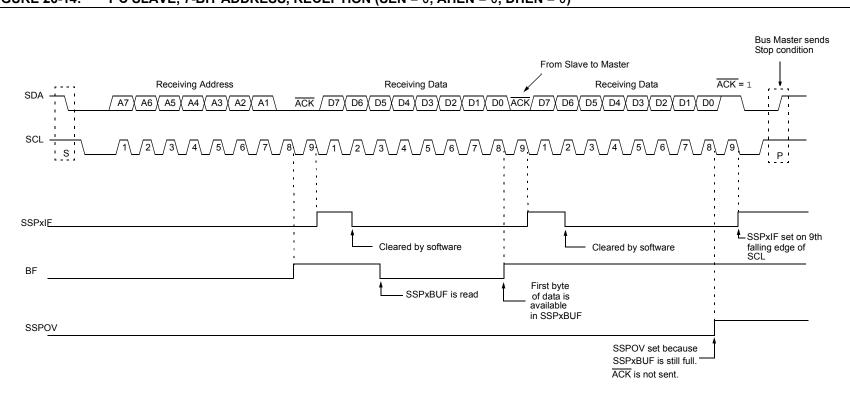
26.8.7 RESTART CONDITION

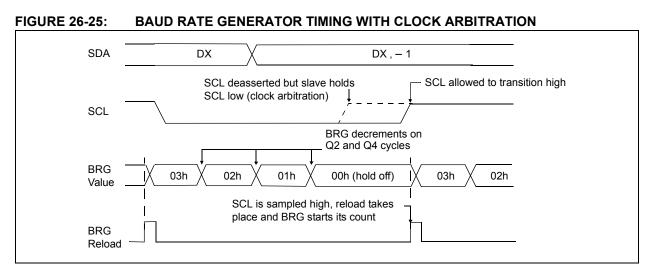

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 26-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/\overline{W} bit set. The slave logic will then hold the clock and prepare to clock out data.


After a full match with R/W clear in 10-bit mode, a prior match flag is set and maintained until a Stop condition, a high address with R/W clear, or high address match fails.

26.8.8 START/STOP CONDITION INTERRUPT MASKING


The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.



© 2015-2017 Microchip Technology Inc.

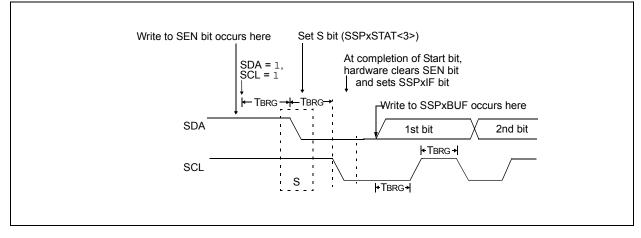
FIGURE 26-14: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0)

PIC18(L)F26/45/46K40

26.10.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed,
	writing to the lower five bits of SSPxCON2
	is disabled until the Start condition is
	complete.


26.10.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 26-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is

FIGURE 26-26: FIRST START BIT TIMING

the Start condition and causes the S bit of the SSPxSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - **2:** The Philips I²C specification states that a bus collision cannot occur on a Start.

© 2015-2017 Microchip Technology Inc.

				-	SYNC	= 0, BRGH	i = 1, BRO	G16 = 0				
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_	—	_		_	_	_	_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	_	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	—		—	—		—	115.2k	0.00	1	_	—	—

TABLE 27-5: SAMPLE BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

					SYNC	C = 0, BRG	I = 0, BRO	616 = 1					
BAUD	Fosc = 32.000 MHz			Fosc	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303	
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575	
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

					SYNC	C = 0, BRG	l = 0, BRG	616 = 1				
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual % SPBRG Rate Error (decimal)		Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_
57.6k	55556	-3.55	8	—	—	_	57.60k	0.00	3	—	_	_
115.2k	—	_	_	—	_	_	115.2k	0.00	1	—	_	_

REGISTER 31-8: ADPCH: ADC POSITIVE CHANNEL SELECTION REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_			ADP	CH<5:0>		
oit 7							bit
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimpler	mented bit, read as	; 'O'	
u = Bit is uncha	anged	x = Bit is unknow	n	-n/n = Value a	at POR and BOR/\	/alue at all other	Resets
'1' = Bit is set	-	'0' = Bit is cleared	t				
bit 7-6	Unimplemen	ted: Read as '0'					
bit 5-0	ADPCH<5:0>	: ADC Positive Inpu	t Channel Se	lection bits			
	111111 =	Fixed Voltage Refe	rence (FVR) ⁽²	2) 0101	111 = ANC7		
	1111110 =	DAC1 output ⁽¹⁾			110 = ANC6		
		Temperature Indica	tor ⁽³⁾	0101	L01 = ANC5		
	111100 =	AVss (Analog Grou	ind)	0101	L00 = ANC4		
	111011 =	Reserved. No chan	nel connecte	d. 0100	11 = ANC3		
	•				10 = ANC2		
	•				001 = ANC1		
	•				000 = ANC0		
	100010 =				111 = ANB7		
	100001 =				L10 = ANB6		
	100000 =				L01 = ANB5		
	011111 =	$AND^{(4)}$			L00 = ANB4		
	011110 = 011101 =				11 = ANB3		
	011101 =				10 = ANB2		
	011100 =				001 = ANB1 000 = ANB0		
	011011 =				111 = ANA7		
	011001 =				111 = ANA7 110 = ANA6		
	011000 =				L01 = ANA5		
	011000 -				L01 = ANA3		
					111 = ANA3		
					10 = ANA2		
					001 = ANA1		
					000 = ANA0		

Note 1: See Section 30.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information.

2: See Section 28.0 "Fixed Voltage Reference (FVR)" for more information.

3: See Section 29.0 "Temperature Indicator Module" for more information.

4: PIC18F45/46K40 only.

PIC18(L)F26/45/46K40

BZ		Branch if	Branch if Zero					
Syntax:		BZ n	BZ n					
Operands:		-128 ≤ n ≤ 1	27					
Operation:			if ZERO bit is '1' (PC) + 2 + 2n \rightarrow PC					
Statu	is Affected:	None						
Enco	oding:	1110	1110 0000 nnnn nnnn					
Description:		will branch. The 2's con added to the have incren instruction, PC + 2 + 2r	If the ZERO bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cvcle instruction.					
Word	ls:	1						
Cycle	es:	1(2)						
Q Cycle Activity: If Jump:								
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No operation	No operation	No operation	No operation				
lf No	o Jump:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	No operation				
Example: Before Instruction PC After Instruction If ZERO PC If ZERO PC		= ado = 1; = ado = 0;	BZ Jump dress (HERE) dress (Jump) dress (HERE)				

Syntax:	CALL k {,	CALL k {,s}						
Operands:	0 ≤ k ≤ 104 s ∈ [0,1]	$0 \leq k \leq 1048575$						
Operation:	$k \rightarrow PC < 20$ if s = 1 (W) \rightarrow WS (Status) \rightarrow	$(PC) + 4 \rightarrow TOS, k \rightarrow PC<20:1>,$						
Status Affected:	None							
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ kk kkkł		kkkk ₀ kkkk ₈			
Description:	memory ra (PC + 4) is	pushed of	t, returr onto the	n ado e ret	dress urn			
שפטווינויו.	memory ra	nge. Firs pushed of = 1, the ' re also pu shadow r and BSR curs (defa e 'k' is loa	t, return onto the W, Stat ushed in register S. If 's' oult). Th ided int	n ado e retitus a nto t rs, W = 0, nen, f to PC	dress urn nd BSR heir /S, no the			
Words:	memory ra (PC + 4) is stack. If 's' registers a respective STATUSS update occ 20-bit value	nge. Firs pushed of = 1, the ' re also pu shadow r and BSR curs (defa e 'k' is loa	t, return onto the W, Stat ushed in register S. If 's' oult). Th ided int	n ado e retitus a nto t rs, W = 0, nen, f to PC	dress urn nd BSR heir /S, no the			
	memory ra (PC + 4) is stack. If 's' registers a respective STATUSS update occ 20-bit value CALL is a	nge. Firs pushed of = 1, the ' re also pu shadow r and BSR curs (defa e 'k' is loa	t, return onto the W, Stat ushed in register S. If 's' oult). Th ided int	n ado e retitus a nto t rs, W = 0, nen, f to PC	dress urn nd BSR heir /S, no the			
Words:	memory ra (PC + 4) is stack. If 's' registers a respective STATUSS update occ 20-bit value CALL is a	nge. Firs pushed of = 1, the ' re also pu shadow r and BSR curs (defa e 'k' is loa	t, return onto the W, Stat ushed in register S. If 's' oult). Th ided int	n ado e retitus a nto t rs, W = 0, nen, f to PC	dress urn nd BSR heir /S, no the			
Words: Cycles:	memory ra (PC + 4) is stack. If 's' registers a respective STATUSS update occ 20-bit value CALL is a	nge. Firs pushed of = 1, the ' re also pu shadow r and BSR curs (defa e 'k' is loa	t, return onto the W, Stat ushed in register S. If 's' ult). Th ded int nstructio	n ado e retitus a nto t rs, W = 0, nen, f to PC	dress urn nd BSR heir /S, no the			
Words: Cycles: Q Cycle Activity:	memory ra (PC + 4) is stack. If 's' registers a respective STATUSS update occ 20-bit value CALL is a 2 2	nge. Firs: pushed of = 1, the ' re also pushadown and BSR urs (defa e 'k' is loa 2-cycle ir	t, returr onto the W, Stat ushed in register S. If 's' uult). Th ded int astructio	n add e ret tus a nto t rs, W ' = 0, hen, f to PC on. Rea 'k'<	dress urn nd BSR heir /S, no the ><20:1> Q4 d literal :19:8>,			
Words: Cycles: Q Cycle Activity: Q1	memory ra (PC + 4) is stack. If 's' registers a respective STATUSS update occ 20-bit value CALL is a 2 2 2 Read literal	nge. Firs: pushed (= 1, the ' re also pu shadow r and BSR urs (defa e 'k' is loa 2-cycle ir Q3 PUSH F	t, returr onto the W, Stat ushed in register S. If 's' ult). Th ded int ostruction	Rea Kk'<	dress urn nd BSR heir /S, no the C<20:1> Q4 d literal			

After Instruction

PC = TOS = WS = BSRS = STATUSS = address (THERE) address (HERE + 4) W BSR Status

PIC18(L)F26/45/46K40

RET	FIE	Return from Interrupt					
Synta	ax:	RETFIE {	RETFIE {s}				
Oper	ands:	$s \in [0,1]$	s ∈ [0,1]				
Operation:		$1 \rightarrow GIE/G$ if s = 1 (WS) \rightarrow W (STATUSS (BSRS) \rightarrow	$(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL},$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged.				
Statu	s Affected:	GIE/GIEH,	PEIE/GI	EL.			
Enco	ding:	0000	0000	0001	l 000s		
Description:		and Top-of the PC. Int setting eith global intel contents o STATUSS their corres Status and	Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If 's' = 0, no update of these registers occurs (default).				
Word	s:	1					
Cycle	es:	2					
QC	ycle Activity:						
Q1		Q2	Q3	3	Q4		
	Decode	No operation	Nc opera	tion	POP PC from stack Set GIEH or GIEL		
	No	No	No)	No		
	operation	operation	opera	tion	operation		
Example:		RETFIE	1				
	After Interrupt PC W BSR Status GIE/GIEH	1, PEIE/GIEL	= V = E = S	TOS VS BSRS STATUS	SS		

RETLW	Return I	Return literal to W					
Syntax:	RETLW	RETLW k					
Operands:	$0 \le k \le 25$	5					
Operation:		$k \rightarrow W$, (TOS) → PC, PCLATU, PCLATH are unchanged					
Status Affected:	None	None					
Encoding:	0000	0000 1100 kkkk kkk					
Description:	program of the stace high addre	W is loaded with the 8-bit literal 'k'. T program counter is loaded from the tr of the stack (the return address). The high address latch (PCLATH) remain unchanged.					
Words:	1						
Cycles:	2						
Q Cycle Activity	y:						
Q1	Q2	Q3		Q4			
Decode	e Read literal 'k'	Proce Data	a fro	POP Po m stac rite to			
No	No	No		No			
operatio	n operation	operat	ion o	peratic			
Example:							
CALL TAB	; offset ; W now]						
TABLE							
ADDWF PC							
RETLW k0 RETLW k1	- 5	cable					
RETLW KI : :	,	i					
RETLW kn	; End of	table					

After Instruction W = value of kn

TABLE 37-7: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS (CONTINUED)

Standard	Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
OS21	F _{CY}	Instruction Frequency	_	Fosc/4		MHz		
OS22	T _{CY}	Instruction Period	62.5	1/F _{CY}	_	ns		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: The system clock frequency (Fosc) is selected by the "main clock switch controls" as described in Section 6.0 "Power-Saving Operation Modes".

3: The system clock frequency (Fosc) must meet the voltage requirements defined in the Section 37.2 "Standard Operating Conditions".

4: LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device. For clocking the device with the external square wave, one of the EC mode selections must be used.