

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k40-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18(L)F26/45/46K40

PIC18(L)F2x/4xK40 Family Types

Device	Data Sheet Index	Program Memory Flash (bytes)	Data SRAM (bytes)	Data EEPROM (bytes)	I/O Pins	16-bit Timers	Comparators	10-bit ADC ² with Computation (ch)	5-bit DAC	Zero-Cross Detect	CCP/10-bit PWM	CWG	8-bit TMR with HLT	Windowed Watchdog Timer	CRC with Memory Scan	EUSART	I ² C/SPI	Sdd	Peripheral Module Disable	Temperature Indicator	Debug ⁽¹⁾
PIC18(L)F24K40	(1)	16k	1024	256	25	4	2	24	1	1	2/2	1	3	Y	Y	1	1	Y	Y	Y	Ι
PIC18(L)F25K40	(1)	32k	2048	256	25	4	2	24	1	1	2/2	1	3	Y	Y	1	1	Y	Y	Υ	Ι
PIC18(L)F26K40	(2)	64k	3728	1024	25	4	2	24	1	1	2/2	1	3	Y	Υ	2	2	Υ	Y	Y	Ι
PIC18(L)F27K40	(3)	128k	3728	1024	25	4	2	24	1	1	2/2	1	3	Y	Υ	2	2	Υ	Υ	Υ	Ι
PIC18(L)F45K40	(2)	32k	2048	256	36	4	2	35	1	1	2/2	1	3	Y	Υ	2	2	Υ	Υ	Υ	Ι
PIC18(L)F46K40	(2)	64k	3728	1024	36	4	2	35	1	1	2/2	1	3	Y	Υ	2	2	Υ	Υ	Υ	Ι
PIC18(L)F47K40	(3)	128k	3728	1024	36	4	2	35	1	1	2/2	1	3	Y	Υ	2	2	Υ	Υ	Υ	Ι

Note 1: Debugging Methods: (I) – Integrated on Chip.

Data Sheet Index: (Unshaded devices are described in this document.)

1. DS40001843 PIC18(L)F24/25K40 Data Sheet, 28-Pin, 8-bit Flash Microcontrollers

2. DS40001816 PIC18(L)F26/45/46K40 Data Sheet, 28/40/44-Pin, 8-bit Flash Microcontrollers

3. DS40001844 PIC18(L)F27/47K40 Data Sheet, 28/40/44-Pin, 8-bit Flash Microcontrollers

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	
—	—	—	—	—	—	—	DSMMD	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'		
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets							other Resets	
'1' = Bit is set		'0' = Bit is clea	ared q = Value depends on condition					

REGISTER 7-6: PMD5: PMD CONTROL REGISTER 5

bit 7-1	Unimplemented: Read as '0'

bit 0 DSMMD: Disable Data Signal Modulator bit

1 = DSM module disabled

0 = DSM module enabled

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH PMD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	68
PMD1	_	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	69
PMD2	_	DACMD	ADCMD	_	_	CMP2MD	CMP1MD	ZCDMD	70
PMD3	_	_	_	-	PWM4MD	PWM3MD	CCP2MD	CCP1MD	71
PMD4	UART2MD	UART1MD	MSSP2MD	MSSP1MD	_	_	_	CWG1MD	72
PMD5	_		_	_	_			DSMMD	73

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the PMD.

The user needs to load the TBLPTR and TABLAT register with the address and data byte respectively before executing the write command. An unlock sequence needs to be followed for writing to the USER IDs/ DEVICE IDs/CONFIG words (Section 11.1.4, NVM Unlock Sequence). If WRTC = 0 or if TBLPTR points an invalid address location (see Table 11-3), WR bit is cleared without any effect and WRERR is set.

A single CONFIG word byte is written at once and the operation includes an implicit erase cycle for that byte (it is not necessary to set FREE). CPU execution is stalled and at the completion of the write cycle, the WR bit is cleared in hardware and the NVM Interrupt Flag bit (NVMIF) is set. The new CONFIG value takes effect when the CPU resumes operation.

TABLE 11-4: USER ID, DEV/REV ID AND CONFIGURATION WORD ACCESS (NVMREG<1:0> = x1)

Address	Function	Read Access	Write Access
20 0000h-20 000Fh	User IDs	Yes	Yes
3F FFFCh-3F FFFFh	Revision ID/Device ID	Yes	No
30 0000h-30 000Bh	Configuration Words 1-6	Yes	Yes

REGISTER 11-5: NVMDAT: DATA EEPROM MEMORY DATA

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NVMD	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'	
x = Bit is unkne	own	'0' = Bit is clea	ared	'1' = Bit is set			
-n = Value at F	POR						

bit 7-0 **NVMDAT<7:0>:** The value of the data memory word returned from NVMADR after a Read command, or the data written by a Write command.

TABLE 11-5: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
NVMCON1	NVMRE	G<1:0>	—	FREE	WRERR	WREN	WR RD		145			
NVMCON2				Unloc	k Pattern				146			
NVMADRL		NVMADR<7:0>										
NVMADRH ⁽¹⁾	_	—	—	—	_	—	NVMA	146				
NVMDAT		NVMDAT<7:0>							147			
TBLPTRU	_	_		Program N	lemory Table	Pointer (TBL	PTR<21:16>)		127*			
TBLPTRH			Program N	lemory Table	e Pointer (TB	LPTR<15:8>)			127*			
TBLPTRL			Program I	Memory Table	e Pointer (TB	LPTR<7:0>)			127*			
TABLAT				TA	BLAT				126*			
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	_	INT2EDG	INT1EDG	INT0EDG	170			
PIE7	SCANIE	CRCIE	NVMIE	—	—	—	—	CWG1IE	186			
PIR7	SCANIF	CRCIF	NVMIF	_	_	_	_	CWG1IF	178			
IPR7	SCANIP	CRCIP	NVMIP	—	—	_	—	CWG1IP	194			

Legend: — = unimplemented, read as '0'. Shaded bits are not used during EEPROM access.

*Page provides register information.

Note 1: The NVMADRH register is not implemented on PIC18(L)F26/45/46K40.

REGISTER 13-9: CRCXORH: CRC XOR HIGH BYTE REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			X<1	5:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets

bit 7-0 X<15:8>: XOR of Polynomial Term XN Enable bits

REGISTER 13-10: CRCXORL: CRC XOR LOW BYTE REGISTER

'0' = Bit is cleared

R/W-x/x	U-1						
			X<7:1>				—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 X<7:1>: XOR of Polynomial Term XN Enable bits

bit 0 Unimplemented: Read as '1'

'1' = Bit is set

					· · ·		
R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
OSCFIF	CSWIF ⁽¹⁾	—	_	_	—	ADTIF	ADIF
bit 7						•	bit 0
Legend:							
R = Readabl	e bit	W = Writable b	it	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7	OSCFIF: Osc	cillator Fail Interr	upt Flag bit				
		scillator failed, c	lock input ha	s changed to I	HFINTOSC (mu	st be cleared b	y software)
		lock operating	<i>(</i> 1)				
bit 6		k-Switch Interrup	•				
		illator is ready fo	•		• • •	e Figure 4-6 ar	nd Figure 4-7)
		illator is not read	-	or has not bee	n started		
bit 5-2	-	nted: Read as '0					
bit 1		Threshold Interr					
		reshold interrupt reshold event is i		•	•	e)	
bit 0	ADIF: ADC II	nterrupt Flag bit					
	1 = An A/D c	onversion compl	eted (must b	e cleared by so	oftware)		
	0 = The A/D	conversion is not	t complete or	has not been	started		
Note 1: 1	The CSWIF inter	rupt will not wak	e the systen	n from Sleep.	The system will	sleep until an	other interrupt

REGISTER 14-3: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

causes the wake-up.

			-	-			
R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0	R/W-1/1
SCANIP	CRCIP	NVMIP	_	—	—	—	CWG1IP
bit 7	·					•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7 bit 6	1 = High prio 0 = Low prior	rity	-				
	CRCIP: CRC Interrupt Priority bit 1 = High priority 0 = Low priority						
bit 5							
bit 4-1	Unimplemen	ted: Read as '	כ'				
bit 0	-	/G Interrupt Pri rity					

REGISTER 14-25: IPR7: PERIPHERAL INTERRUPT PRIORITY REGISTER 7

17.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (synchronous operation)
- MSSP (I²C)
- CCP module
- Note: The I²C default input pins are I²C and SMBus compatible. RB1 and RB2 are additional pins. RC4 and RC3 are default MMP1 pins and are SMBus compatible. Clock and data signals can be routed to any pin, however pins without I²C compatibility will operate at standard TTL/ST logic levels as selected by the INVLV register.

17.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in Example 17-1.

EXAMPLE 17-1: PPS LOCK SEQUENCE

; Disable interrupts: BCF INTCON,GIE
; Bank to PPSLOCK register BANKSEL PPSLOCK MOVLB PPSLOCK MOVLW 55h
; Required sequence, next 4 instructions MOVWF PPSLOCK MOVLW AAh MOVWF PPSLOCK
; Set PPSLOCKED bit to disable writes ; Only a BSF instruction will work BSF PPSLOCK,0
; Enable Interrupts BSF INTCON,GIE

EXAMPLE 17-2: PPS UNLOCK SEQUENCE

```
; Disable interrupts:
   BCF
           INTCON, GIE
; Bank to PPSLOCK register
   BANKSEL PPSLOCK
   MOVLB
           PPSLOCK
   MOVIW
            55h
; Required sequence, next 4 instructions
   MOVWF
           PPSLOCK
   MOVLW
           AAh
   MOVWF
           PPSLOCK
; Clear PPSLOCKED bit to enable writes
; Only a BCF instruction will work
   BCF
           PPSLOCK,0
; Enable Interrupts
   BSF
            INTCON.GIE
```

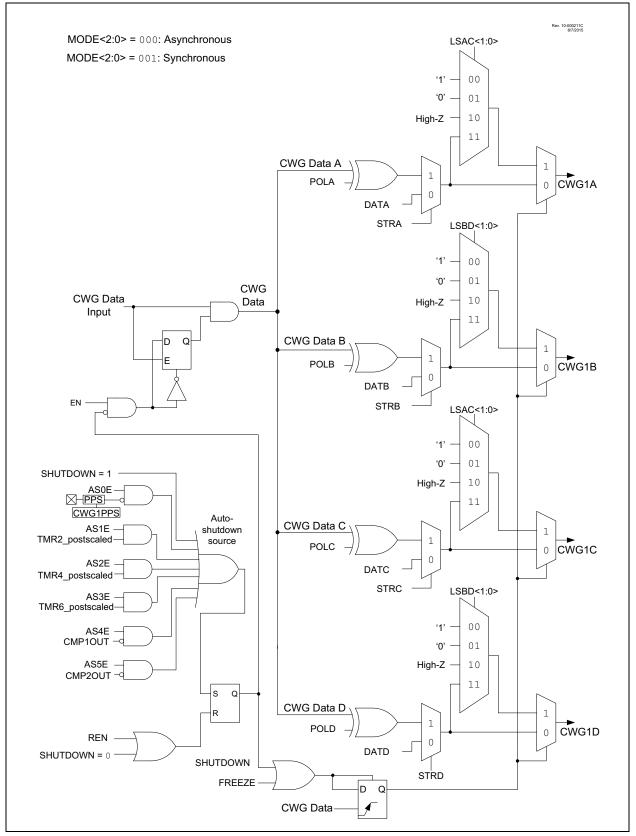
17.5 PPS One-Way Lock

Using the PPS1WAY Configuration bit, the PPS settings can be locked in. When this bit is set, the PPSLOCKED bit can only be cleared and set one time after a device Reset. This allows for clearing the PPSLOCKED bit so that the input and output selections can be made during initialization. When the PPSLOCKED bit is set after all selections have been made, it will remain set and cannot be cleared until after the next device Reset event.

17.6 Operation During Sleep

PPS input and output selections are unaffected by Sleep.

17.7 Effects of a Reset


A device Power-on-Reset (POR) clears all PPS input and output selections to their default values. All other Resets leave the selections unchanged. Default input selections are shown in the **Section "Pin Allocation Tables"**. The PPS one-way is also removed.

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
		CCPR	x<15:8>			
						bit 0
it	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'	
DR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown
	it	it W = Writable	CCPR it W = Writable bit	CCPRx<15:8> it W = Writable bit U = Unimplem	CCPRx<15:8>	it W = Writable bit U = Unimplemented bit, read as '0'

REGISTER 21-5: CCPRxH: CCPx REGISTER HIGH BYTE

bit 7-0
MODE = Capture Mode:
CCPRxH<7:0>: MSB of captured TMR1 value
MODE = Compare Mode:
CCPRxH<7:0>: MSB compared to TMR1 value
MODE = PWM Mode && FMT = 0:
CCPRxH<7:2>: Not used
CCPRxH<7:2>: Not used
CCPRxH<1:0>: CCPW<9:8> – Pulse-Width MS 2 bits
MODE = PWM Mode && FMT = 1:
CCPRxH<7:0>: CCPW<9:2> – Pulse-Width MS 8 bits

FIGURE 24-11: SIMPLIFIED CWG BLOCK DIAGRAM (OUTPUT STEERING MODES)

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0				
_	—	CHPOL	CHSYNC		—	CLPOL	CLSYNC				
bit 7							bit 0				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
u = Bit is u	nchanged	x = Bit is unkr	iown	-n/n = Value	at POR and BO	OR/Value at all	other Resets				
'1' = Bit is set '0' = Bit is cleared											
bit 7-6	Unimplem	Unimplemented: Read as '0'									
bit 5	CHPOL: Modulator High Carrier Polarity Select bit										
	1 = Selecte	1 = Selected high carrier signal is inverted									
		0	I high carrier signal is not inverted								
bit 4		CHSYNC: Modulator High Carrier Synchronization Enable bit									
		1 = Modulator waits for a falling edge on the high time carrier signal before allowing a switch to the									
		low time carrier 0 = Modulator output is not synchronized to the high time carrier signal ⁽¹⁾									
bit 3-2		ented: Read as '			e carrier eignar						
bit 1	-			elect bit							
		CLPOL: Modulator Low Carrier Polarity Select bit 1 = Selected low carrier signal is inverted									
	0 = Selecte	0 = Selected low carrier signal is not inverted									
bit 0		Modulator Low C									
	1 = Modula time c	ator waits for a fa	lling edge on th	e low time carr	rier signal befor	e allowing a sw	itch to the high				
		ator output is not	synchronized t	to the low time	carrier signal ⁽¹)					
Note 1.Nor		ulse widths or sn					aronizod				

REGISTER 25-2: MDCON1: MODULATION CONTROL REGISTER 1

Note 1:Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

Register Definitions: MSSP Control 26.4

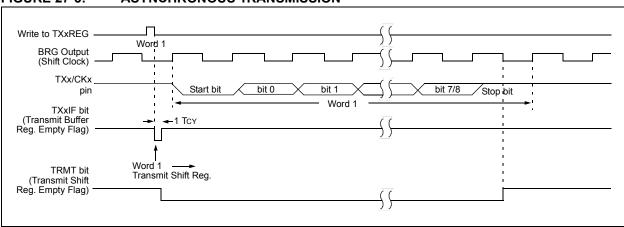
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF				
bit 7		1		1		1	bit C				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'					
-n = Value at POR bit 7 SMP: Samp		'1' = Bit is set	'1' = Bit is set		ared	x = Bit is unkr	nown				
		1. 1.9									
DIT /											
		SPI Master mode:									
	 I = Input data is sampled at the end of data output time Input data is sampled at the middle of data output time 										
	SPI Slave mode:										
	SMP must b	be cleared when	SPI is used in	n Slave mode.							
bit 6	CKE: SPI Clock Select bit ⁽¹⁾										
	1 = Transmit occurs on the transition from active to Idle clock state										
	0 = Transmit occurs on the transition from Idle to active clock state										
bit 5	D/A: Data/A	D/A: Data/Address bit									
	Used in I ² C	mode only.									
bit 4	P: Stop bit	P: Stop bit									
	Used in I ² C	mode only. This	bit is cleared	when the MSSF	Px module is d	isabled; SSPEN	l is cleared.				
bit 3	S: Start bit										
	Used in I ² C	-									
bit 2		R/W: Read/Write Information bit									
	Used in I ² C	Used in I ² C mode only.									
bit 1		Address bit									
	Used in I ² C	mode only.									
bit 0	BF: Buffer F	Full Status bit (Re	eceive mode	only)							
		e is complete, SS									
	0 = Receive	e is not complete	, SSPxBUF is	sempty							
Note 1: F	Polarity of clock	state is set by th	ne CKP bit (S	SPxCON1<4>).							

REGISTER 26-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

27.2.1.5 TSR Status

The TRMT bit of the TXxSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXxREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.


27.2.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXxSTA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXxSTA register is the ninth, and Most Significant data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXxREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXxREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 27.2.2.7 "Address Detection"** for more information on the Address mode.

27.2.1.7 Asynchronous Transmission Setup:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 27.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXxIF interrupt bit to be set.
- If interrupts are desired, set the TXxIE interrupt enable bit of the PIE3 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXxREG register. This will start the transmission.

FIGURE 27-3: ASYNCHRONOUS TRANSMISSION

30.6 Register Definitions: DAC Control

Long bit name prefixes for the DAC peripheral is shown in Table 30-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 30-1:

Peripheral	Bit Name Prefix
DAC	DAC

REGISTER 30-1: DAC1CON0: DAC CONTROL REGISTER

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
EN	—	OE1	OE2	PSS<1:0>		—	NSS
bit 7							bit 0

I

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: DAC Enable bit 1 = DAC is enabled 0 = DAC is disabled
bit 6	Unimplemented: Read as '0'
bit 5	 OE1: DAC Voltage Output Enable bit 1 = DAC voltage level is output on the DAC1OUT1 pin 0 = DAC voltage level is disconnected from the DAC1OUT1 pin
bit 4	 OE2: DAC Voltage Output Enable bit 1 = DAC voltage level is output on the DAC1OUT2 pin 0 = DAC voltage level is disconnected from the DAC1OUT2 pin
bit 3-2	PSS<1:0>: DAC Positive Source Select bit 11 = Reserved 10 = FVR buffer 01 = VREF+ 00 = AVDD
bit 1	Unimplemented: Read as '0'
bit 0	NSS: DAC Negative Source Select bit 1 = VREF- 0 = AVSS

31.3 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 31-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 31-4. The maximum recommended impedance for analog sources is 10 k Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be completed before the conversion can be started. To calculate the minimum acquisition time, Equation 31-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 31-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega$ 5.0V VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED} V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) \qquad ;combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

$$TC = -CHOLD(RIC + RSS + RS) \ln(1/2047)$$

= $-10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$
= $1.37\mu s$

Therefore:

$$TACQ = 2\mu s + 892ns + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.62\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

		Bit Clear Conditions Value after Trigger completion			Threshold Operations			Value at ADTIF interrupt		
Mode	ADMD	ADACC and ADCNT	ADACC	ADCNT	Retrigger	Threshold Test	Interrupt	ADAOV	ADFLTR	ADCNT
Basic	0	ADACLR = 1	Unchanged	Unchanged	No	Every Sample	If thresh- old=true	N/A	N/A	count
Accumulate	1	ADACLR = 1	S + ADACC or (S2-S1) + ADACC	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	Every Sample	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count
Average	2	ADACLR = 1 or ADCNT>=ADRPT at ADGO or retrigger	S + ADACC or (S2-S1) + ADACC	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count
Burst Average	3	ADACLR = 1 or ADGO set or retrigger	Each repetition: same as Average End with sum of all samples	Each repetition: same as Average End with ADCNT=ADRPT	Repeat while ADCNT <adrpt< td=""><td>lf ADCNT>= ADRPT</td><td>If thresh- old=true</td><td>ADACC Overflow</td><td>ADACC/2^{ADCRS}</td><td>ADRPT</td></adrpt<>	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	ADRPT
Low-pass Filter	4	ADACLR = 1	S+ADACC-ADACC/ 2 ^{ADCRS} or (S2-S1)+ADACC-ADACC/ 2 ^{ADCRS}	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	Filtered Value	count

Note: S1 and S2 are abbreviations for Sample 1 and Sample 2, respectively. When ADDSEN = 0, S1 = ADRES; When ADDSEN = 1, S1 = ADREV and S2 = ADRES.

-n/n = Value at POR and BOR/Value at all other Resets

REGISTER 31-27: ADERRL: ADC SETPOINT ERROR LOW BYTE REGISTER

x = Bit is unknown

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			ADER	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplen	nented bit, read	d as '0'	

'1' = Bit is set	'0' = Bit is cleared
bit 7-0	ADERR<7:0>: ADC Setpoint Error LSB. Lower byte of ADC Setpoint Error calculation is determined

REGISTER 31-28 ADI THH: ADC I OWER THRESHOLD HIGH BYTE REGISTER

by ADCALC bits of ADCON3, see Register 23-1 for more details.

ILE OIOTEIL O	LO. ADEN				DITEREOR		
R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			ADLTH	<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADLTH<15:8>: ADC Lower Threshold MSB. ADLTH and ADUTH are compared with ADERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

REGISTER 31-29: ADLTHL: ADC LOWER THRESHOLD LOW BYTE REGISTER

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADLTH | l<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADLTH<7:0>: ADC Lower Threshold LSB. ADLTH and ADUTH are compared with ADERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

© 2015-2017 Microchip Technology Inc.

u = Bit is unchanged

EN bit 7	_					-	
nit 7		OUT	RDY	-	_	INTH	INTL
5107					•	•	bit C
Legend:							
R = Readable bi	it	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
n = Value at PC	DR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	EN: High/Low-	-voltage Detec	t Power Enab	ole bit			
				cuit and suppo and supportin	rting reference g circuitry	circuitry	
bit 6	Unimplement	ed: Read as ')'				
bit 5	OUT: HLVD C	omparator Out	put bit				
	1 = Voltage		,	,			
	0 = Voltage ≥	selected determination	ection limit (HI	LVDL<3:0>)			
bit 4	RDY: Band Ga	ap Reference \	/oltages Stab	le Status Flag	bit		
			•	l output is stab	le		
		HLVD Module	,				
	Unimplement						
bit 1) Interrupt Enal			
			n voltage \geq se	elected detecti	on limit (HLVDS	SEL<3:0>)	
	• • • • • • • • •	will not be set			L.I.		
) Interrupt Ena			
		will be set whe will not be set	In voltage \leq s	selected detect	ion limit (HLVD	SEL<3:0>)	

REGISTER 33-2: HLVDCON0: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER 0

TABLE 33-2: F	REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE
---------------	--

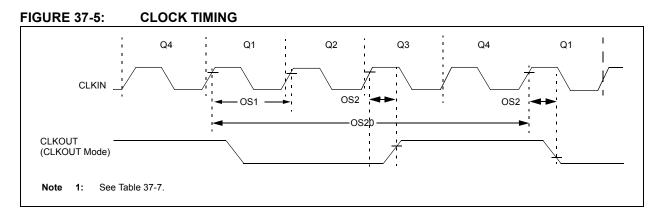
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
HLVDCON0	EN	-	OUT	RDY	-	-	INTH	INTL	482
HLVDCON1	_	-	-	-		SEL<	:3:0>		481
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	-	-	INT2EDG	INT1EDG	INT0EDG	170
PIR2	HLVDIF	ZCDIF	-	-	-	-	C2IF	C1IF	173
PIE2	HLVDIE	ZCDIE	-	-	-	-	C2IE	C1IE	181
IPR2	HLVDIP	ZCDIP	-	-	-	-	C2IP	C1IP	189
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	68

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

TABLE 37-3 :	POWER-DOWN CURRENT (IPD) ^(1,2)
---------------------	---

PIC18LF26/45/46K40					Standard Operating Conditions (unless otherwise stated)						
PIC18F2	26/45/46K40			Standa VREGF		ating Con	ditions	(unless	otherwise stated)		
Param.	Symbol	Device Characteristics	Min.	Turn ±	Max.	Max.	Units		Conditions		
No.	Symbol	Device Characteristics	wiiri.	Тур.†	+85°C	+125°C	Units	VDD	Note		
D200	IPD	IPD Base		0.05	2	9	μΑ	3.0V			
D200	IPD	IPD Base	_	0.4	4	12	μA	3.0V			
D200A				20			μΑ	3.0V	VREGPM = 0		
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	_	0.4	3	10	μΑ	3.0V			
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT		0.6	5	13	μΑ	3.0V			
D202	IPD_SOSC	Secondary Oscillator (Sosc)		0.6	5	13	μΑ	3.0V			
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	0.8	8.5	15	μΑ	3.0V			
D203	IPD_FVR	FVR		31	—	—	μΑ	3.0V	FVRCON = 0X81 or 0x84		
D203	IPD_FVR	FVR		32		_	μΑ	3.0V	FVRCON = 0X81 or 0x84		
D204	IPD_BOR	Brown-out Reset (BOR)	I	9	14	18	μΑ	3.0V			
D204	IPD_BOR	Brown-out Reset (BOR)		14	19	21	μΑ	3.0V			
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)	I	0.5		—	μΑ	3.0V			
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)		0.7	_	—	μΑ	3.0V			
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)		31	_	—	μΑ	3.0V			
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)	_	32	_	—	μΑ	3.0V			
D207	IPD_ADCA	ADC - Active	_	250	—	—	μΑ	3.0V	ADC is converting (4)		
D207	IPD_ADCA	ADC - Active	_	280	_	_	μΑ	3.0V	ADC is converting ⁽⁴⁾		
D208	IPD_CMP	Comparator	_	25	38	40	μΑ	3.0V			
D208	IPD_CMP	Comparator	_	28	50	60	μΑ	3.0V			


† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

4: ADC clock source is FRC.

TABLE 37-7: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS

Param Characteristic Min Turt Max Units Conditi										
No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
ECL Oso	cillator						•			
OS1	F _{ECL}	Clock Frequency	_	—	500	kHz				
OS2	T _{ECL_DC}	Clock Duty Cycle	40	—	60	%				
ECM Os	cillator									
OS3	F _{ECM}	Clock Frequency	_	—	8	MHz				
OS4	T _{ECM_DC}	Clock Duty Cycle	40	—	60	%				
ECH Os	cillator					•				
OS5	F _{ECH}	Clock Frequency	_	—	32	MHz				
OS6	T _{ECH_DC}	Clock Duty Cycle	40	—	60	%				
LP Osci	llator					•				
OS7	F _{LP}	Clock Frequency	—	—	100	kHz	Note 4			
XT Osci	llator					•				
OS8	F _{XT}	Clock Frequency	—	—	4	MHz	Note 4			
HS Osci	llator					•				
OS9	F _{HS}	Clock Frequency	—	—	20	MHz	Note 4			
Seconda	ary Oscillato	or				•				
OS10	F_{SEC}	Clock Frequency	32.4	32.768	33.1	kHz				
System	Oscillator	1	ı				•			
OS20	F _{OSC}	System Clock Frequency	_	—	64	MHz	(Note 2, Note 3)			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: The system clock frequency (FOSC) is selected by the "main clock switch controls" as described in Section 6.0 "Power-Saving Operation Modes".

3: The system clock frequency (Fosc) must meet the voltage requirements defined in the Section 37.2 "Standard Operating Conditions".

4: LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device. For clocking the device with the external square wave, one of the EC mode selections must be used.