

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k40-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with PIC18(L)F27/47K40 Microcontrollers	
3.0	Device Configuration	
4.0	Oscillator Module (with Fail-Safe Clock Monitor)	
5.0	Reference Clock Output Module	
6.0	Power-Saving Operation Modes	
7.0	Peripheral Module Disable (PMD)	
8.0	Resets	
9.0	Windowed Watchdog Timer (WWDT)	
10.0		
11.0		
12.0	8x8 Hardware Multiplier	
13.0		
	Interrupts	
	I/O Ports	
	Interrupt-on-Change	
	Peripheral Pin Select (PPS) Module	
	Timer0 Module	
19.0		
	Timer2/4/6 Module	
	Capture/Compare/PWM Module	
22.0	Pulse-Width Modulation (PWM)	
	Zero-Cross Detection (ZCD) Module	
	Complementary Waveform Generator (CWG) Module	
25.0		
26.0	Master Synchronous Serial Port Module	
	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	
28.0		
29.0	Temperature Indicator Module	
	5-Bit Digital-to-Analog Converter (DAC) Module	
	Analog-to-Digital Converter with Computation (ADC2) Module	
	Comparator Module	
33.0	High/Low-Voltage Detect (HLVD)	
34.0	In-Circuit Serial Programming™ (ICSP™)	
	Instruction Set Summary	
36.0	Development Support	535
37.0	Electrical Specifications	539
	DC and AC Characteristics Graphs and Tables	
	Packaging Information	
	endix A: Revision History	
	endix B: Device Differences	
	Microchip Website	
Cust	omer Change Notification Service	
Cust	omer Support	596
Prod	luct Identification System	597

1.2 Other Special Features

- **Memory Endurance:** The Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles up to 10K for program memory and 100K for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a boot loader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18(L)F2x/ 4xK40 family introduces an optional extension to the PIC18 instruction set, which adds eight new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced Peripheral Pin Select: The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins.
- Enhanced Addressable EUSART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- **10-bit A/D Converter with Computation:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead. It has a new module called ADC² with computation features, which provides a digital filter and threshold interrupt functions.
- Windowed Watchdog Timer (WWDT):
 - Timer monitoring of overflow and underflow events
 - Variable prescaler selection
 - Variable window size selection
 - All sources configurable in hardware or software

1.3 Details on Individual Family Members

Devices in the PIC18(L)F2x/4xK40 family are available in 28-pin and 40/44-pin packages. The block diagram for this device is shown in Figure 1-1.

The devices have the following differences:

- 1. Program Flash Memory
- 2. Data Memory SRAM
- 3. Data Memory EEPROM
- 4. A/D channels
- 5. I/O ports
- 6. Enhanced USART
- 7. Input Voltage Range/Power Consumption

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in the pin summary tables (Table 1 and Table 2).

	PIC18(L)F24K40	PIC18(L)F25K40 PIC18(L)F45K40	PIC18(L)F26K40 PIC18(L)F46K40	PIC18(L)F27K40 PIC18(L)F47K40					
Γ	PC<21:0>	PC<21:0>	PC<21:0>	PC<21:0>					
	Ŧ	Ť	Ŧ	Ŧ	_				
Note 1	Stack (31 levels)	Stack (31 levels)	Stack (31 levels)	Stack (31 levels)	Note				
	ł	+	. ↓	+	_				
0000h	Reset Vector	Reset Vector	Reset Vector	Reset Vector	00 000				
•••	• • •	•••	•••	•••	•••				
0008h	Interrupt Vector High	Interrupt Vector High	Interrupt Vector High	Interrupt Vector High	00 000				
•••	• • •	•••	•••	•••	•••				
0018h	Interrupt Vector Low	Interrupt Vector Low	Interrupt Vector Low	Interrupt Vector Low	00 00				
001Ah	User Flash Memory				00 00				
• 3FFFh	(8KW)	User Flash Memory			• 00 3FI				
4000h		(16KW)			00 400				
•			User Flash Memory		•				
7FFFh			(32KW)	PFM Flash Memory	00 7FF				
8000h				(64KW)	00 800				
•					•				
FFFFh	Not present ⁽¹⁾				00 FF				
0000h		Not present ⁽¹⁾			01 000				
FFFFh		Not present	(4)		01 FF				
0000h			Not present ⁽¹⁾		02 000				
•				Not present ⁽¹⁾	•				
FFFFh					1F FF				
0000h		Lises IDs.	(0.) (o. refe.)		20 000				
••• 000Fh		User IDs	(8 vvoras)		20 000				
0010h					20 00				
•••		Rese	rved		•••				
FFFFh					2F FF				
0000h					30 000				
••• 000Bh		Configuration W	fords (6 Words)		30 000				
000Ch					30 000				
•••		Rese	rved						
FFFFh					30 FF				
0000h	DataEl	EByte0	DataEE	ERvita	31 000				
•••			DataLL	LDyteo	•••				
00FFh	DataEE	Byte255	•••	•					
	Unimple	emented							
03FFh	Chimple		DataEEB	syte1023	31 03				
0400h					31 040				
•••		Rese	rved		•••				
FFFBh					3F FF 3F FF				
FFFCh									
FFFDh	Revision ID (1 Word) ⁽²⁾								
FFFEh					3F FF 3F FF				
•••		Device ID	(1 Word) ⁽²⁾		•••				
FFFFh					3F FF				
		over. The region is read a							

TABLE 10-1: PROGRAM AND DATA MEMORY MAP

13.11.7 IN-CIRCUIT DEBUG (ICD) INTERACTION

The scanner freezes when an ICD halt occurs, and remains frozen until user-mode operation resumes. The debugger may inspect the SCANCON0 and SCANLADR registers to determine the state of the scan.

The ICD interaction with each operating mode is summarized in Table 13-4.

	Scanner Operating Mode						
ICD Halt	Peek	Burst					
External Halt		If external halt is asserted during a scan cycle, the instruction (delayed by scan) may or may not execute before ICD entry, depending on external halt timing.	If external halt is asserted during the BSF (SCANCON.GO), ICD entry occurs, and the burst is delayed until ICD exit. Otherwise, the current NVM- access cycle will complete, and then the scanner will be interrupted for ICD entry.				
		If external halt is asserted during the cycle immediately prior to the scan cycle, both scan and instruction execution happen after the ICD exits.	If external halt is asserted during the burst, the burst is suspended and will resume with ICD exit.				
PC Breakpoint	If scanner would peek an instruction that is not executed (because of ICD entry), the peek	Scan cycle occurs before ICD entry and instruction execution happens after the ICD exits.	If PCPB (or single step) is on				
Data Breakpoint	will occur after ICD exit, when the instruction executes.	The instruction with the dataBP executes and ICD entry occurs immediately after. If scan is requested during that cycle, the scan cycle is postponed until the ICD exits.	BSF (SCANCON, GO), the ICD is entered before execution; execution of the burst will occur at ICD exit, and the burst will run to completion.				
Single Step		If a scan cycle is ready after the debug instruction is executed, the scan will read PFM and then the ICD is re-entered.	Note that the burst can be interrupted by an external halt.				
SWBP and ICDINST		If scan would stall a SWBP, the scan cycle occurs and the ICD is entered.	If SWBP replaces BSF(SCANCON.GO), the ICD will be entered; instruction execution will occur at ICD exit (from ICDINSTR register), and the burst will run to completion.				

TABLE 13-4 :	ICD AND SCANNER INTERACTIONS

13.11.8 PERIPHERAL MODULE DISABLE

Both the CRC and scanner module can be disabled individually by setting the CRCMD and SCANMD bits of the PMD0 register (Register 7-1). The SCANMD can be used to enable or disable to the scanner module only if the SCANE bit of Configuration Word 4 is set. If the SCANE bit is cleared, then the scanner module is not available for use and the SCANMD bit is ignored.

16.6 Register Definitions: Interrupt-on-Change Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0
bit 7			•				bit 0
Legend:							
R = Readable bi	t	W = Writable bi	t	U = Unimpleme	ented bit, read as	'0'	
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clear	ed				

REGISTER 16-1: IOCxP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER EXAMPLE

bit 7-0

IOCxP<7:0>: Interrupt-on-Change Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the IOCx pin for a positive-going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 16-2: IOCxN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER EXAMPLE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCxN7 | IOCxN6 | IOCxN5 | IOCxN4 | IOCxN3 | IOCxN2 | IOCxN1 | IOCxN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCxN<7:0>: Interrupt-on-Change Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the IOCx pin for a negative-going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

REGISTER 16-3: IOCxF: INTERRUPT-ON-CHANGE FLAG REGISTER EXAMPLE

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCxF7 | IOCxF6 | IOCxF5 | IOCxF4 | IOCxF3 | IOCxF2 | IOCxF1 | IOCxF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCxF<7:0>: Interrupt-on-Change Flag bits

1 = A enabled change was detected on the associated pin. Set when IOCP[n] = 1 and a positive edge was detected on the IOCn pin, or when IOCN[n] = 1 and a negative edge was detected on the IOCn pin

0 = No change was detected, or the user cleared the detected change

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
SSP2SSPPS	—	_	_	SSP2SSPPS<4:0>				216	
RX2PPS	—	_	_		RX2PPS<4:0>				218
TX2PPS	—	_	-	TX2PPS<4:0>			216		
RxyPPS	—				RxyPPS<4:0>				218

TABLE 17-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE (CONTINUED)

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

22.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 22-4.

EQUATION 22-4: PWM RESOLUTION

Resolution = $\frac{\log[4(PR2 + 1)]}{\log(2)}$ bits

Note: If the pulse-width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 22-1 :	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)
---------------------	---

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 22-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

22.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

22.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

22.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

24.7 Rising Edge and Reverse Dead Band

In Half-Bridge mode, the rising edge dead band delays the turn-on of the CWG1A output after the rising edge of the CWG data input. In Full-Bridge mode, the reverse dead-band delay is only inserted when changing directions from Forward mode to Reverse mode, and only the modulated output CWG1B is affected.

The CWG1DBR register determines the duration of the dead-band interval on the rising edge of the input source signal. This duration is from 0 to 64 periods of the CWG clock.

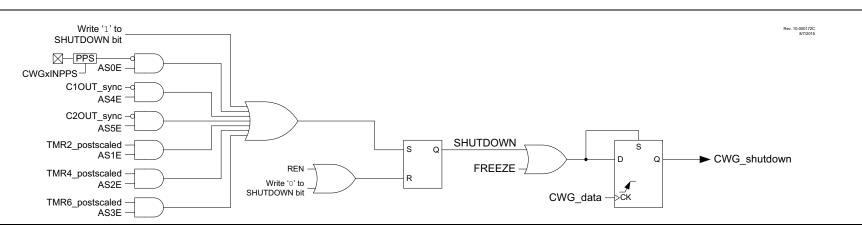
Dead band is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

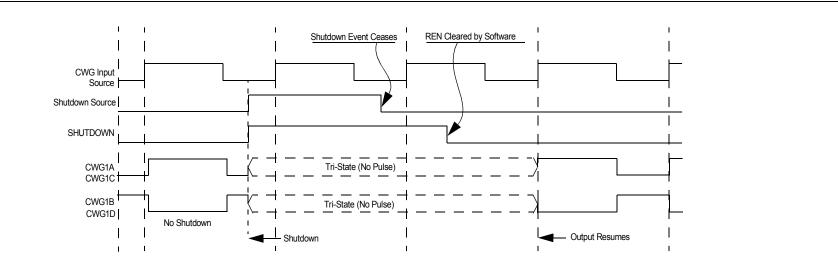
The CWG1DBR register value is double-buffered. When EN = 0 (Register 24-1), the buffer is loaded when CWG1DBR is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input, after the LD bit (Register 24-1) is set. Refer to Figure 24-12 for an example.

24.8 Falling Edge and Forward Dead Band

In Half-Bridge mode, the falling edge dead band delays the turn-on of the CWG1B output at the falling edge of the CWG data input. In Full-Bridge mode, the forward dead-band delay is only inserted when changing directions from Reverse mode to Forward mode, and only the modulated output CWG1D is affected.


The CWG1DBF register determines the duration of the dead-band interval on the falling edge of the input source signal. This duration is from zero to 64 periods of CWG clock.

Dead-band delay is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.


If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWG1DBF register value is double-buffered. When EN = 0 (Register 24-1), the buffer is loaded when CWG1DBF is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input after the LD (Register 24-1) is set. Refer to Figure 24-13 for an example.

FIGURE 24-15: SHUTDOWN FUNCTIONALITY, AUTO-RESTART DISABLED (REN = 0, LSAC = 01, LSBD = 01)

26.9.2.1 7-bit Addressing Reception

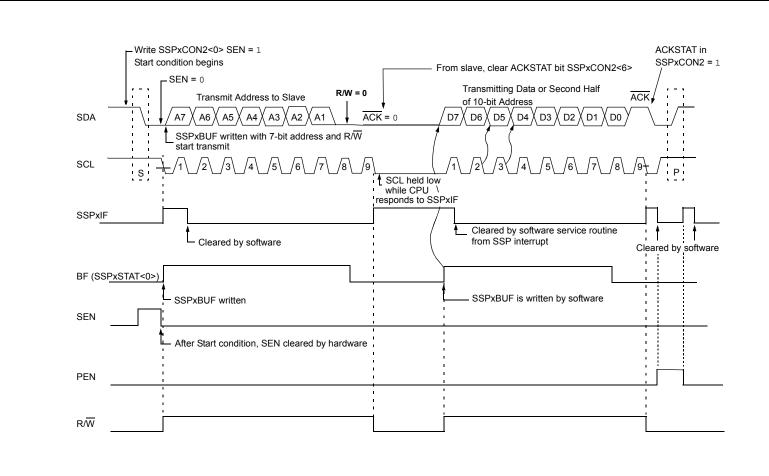
This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 7-bit Addressing mode. Figure 26-14 and Figure 26-15 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSPxIF bit.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDA low sending an ACK to the master, and sets SSPxIF bit.
- 10. Software clears SSPxIF.
- 11. Software reads the received byte from SSPxBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSPxSTAT, and the bus goes idle.

26.9.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the eighth falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.


This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 26-16 displays a module using both address and data holding. Figure 26-17 includes the operation with the SEN bit of the SSPxCON2 register set.

- 1. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPxIF is set and CKP cleared after the eighth falling edge of SCL.
- 3. Slave clears the SSPxIF.
- Slave can look at the ACKTIM bit of the SSPxCON3 register to <u>determine</u> if the SSPxIF was after or before the ACK.
- 5. Slave reads the address value from SSPxBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPxIF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSPxIF.

Note: SSPxIF is still set after the ninth falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSPxIF not set

- 11. SSPxIF set and CKP cleared after eighth falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPxCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPxBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.

PIC18(L)F26/45/46K40

27.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXxSTA register. The Break character transmission is then initiated by a write to the TXxREG. The value of data written to TXxREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXxSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 27-9 for the timing of the Break character sequence.

27.4.4.1 Break and Sync Transmit Sequence

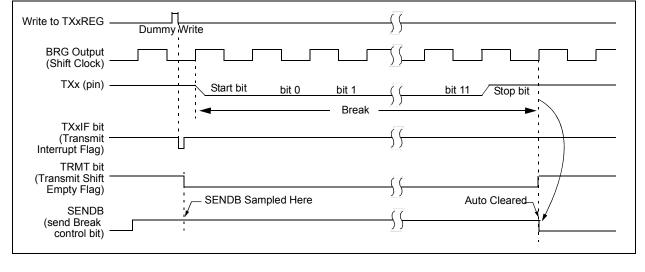
The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXxREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXxREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXxREG becomes empty, as indicated by the TXxIF, the next data byte can be written to TXxREG.

27.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.


The first method to detect a Break character uses the FERR bit of the RCxSTA register and the received data as indicated by RCxREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- · RCxIF bit is set
- FERR bit is set
- RCxREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 27.4.3 "Auto-Wake-up on Break"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCxIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDxCON register before placing the EUSART in Sleep mode.

FIGURE 27-9: SEND BREAK CHARACTER SEQUENCE

29.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between consecutive conversions of the temperature indicator output.

	TABLE 29-2:	SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR
--	-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDFVR<1:0>		ADFVF	R<1:0>	423

Legend: — = Unimplemented location, read as '0'. Shaded cells are unused by the temperature indicator module.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
_				ADCS	\$<5:0>					
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			U = Unimplen	nented bit, read	d as '0'					
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is se	'1' = Bit is set '0' = Bit is cleared		ared							
bit 7-6	Unimplemen	ited: Read as '	0'							
bit 5-0	ADCS<5:0>:	ADC Conversi	on Clock Sele	ect bits						
	111111 = F o	sc/128								
	111110 = F O	sc/126								
111101 = Fosc/124										
	•									
	•									
	•									
	000000 = F O	osc/2								

REGISTER 31-6: ADCLK: ADC CLOCK SELECTION REGISTER

REGISTER 31-7: ADREF: ADC REFERENCE SELECTION REGISTER

U-0	U-0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	ADNREF	—	—	ADPREF<1:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 bit 4	Unimplemented: Read as '0' ADNREF: ADC Negative Voltage Reference Selection bit 1 = VREF- is connected to external VREF- 0 = VREF- is connected to AVss
bit 3-2	Unimplemented: Read as '0'
bit 1-0	ADPREF: ADC Positive Voltage Reference Selection bits 11 = VREF+ is connected to internal Fixed Voltage Reference (FVR) module 10 = VREF+ is connected to external VREF+ 01 = Reserved 00 = VREF+ is connected to VDD

REGISTER 31-8: ADPCH: ADC POSITIVE CHANNEL SELECTION REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_			ADP	CH<5:0>		
oit 7							bit
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimpler	mented bit, read as	; 'O'	
u = Bit is uncha	anged	x = Bit is unknow	n	-n/n = Value a	at POR and BOR/\	/alue at all other	Resets
'1' = Bit is set '0' = Bit is cleared							
bit 7-6	Unimplemen	ted: Read as '0'					
bit 5-0	ADPCH<5:0>	: ADC Positive Inpu	t Channel Se	lection bits			
	111111 =	Fixed Voltage Refe	rence (FVR) ⁽²	2) 0101	111 = ANC7		
	1111110 =	DAC1 output ⁽¹⁾			110 = ANC6		
		Temperature Indica	tor ⁽³⁾	0101	L01 = ANC5		
	111100 =	AVss (Analog Grou	ind)	0101	L00 = ANC4		
	111011 =	111011 = Reserved. No channel connected.			11 = ANC3		
	•				10 = ANC2		
	•				001 = ANC1		
	•				000 = ANC0		
	100010 =				111 = ANB7		
	100001 =				L10 = ANB6		
	100000 =				L01 = ANB5		
	011111 =	$AND^{(4)}$			LOO = ANB4		
	011110 = 011101 =				11 = ANB3		
	011101 =				10 = ANB2		
	011100 =				001 = ANB1 000 = ANB0		
	011011 =				111 = ANA7		
	011001 =				111 = ANA7 110 = ANA6		
	011000 =				L01 = ANA5		
	011000 -				L01 = ANA3		
					111 = ANA3		
					10 = ANA2		
					001 = ANA1		
					000 = ANA0		

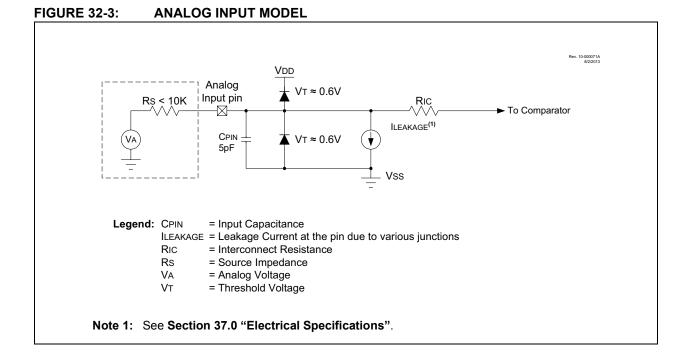
Note 1: See Section 30.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information.

2: See Section 28.0 "Fixed Voltage Reference (FVR)" for more information.

3: See Section 29.0 "Temperature Indicator Module" for more information.

4: PIC18F45/46K40 only.

32.9 Comparator Response Time


The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 37-15 and Table 37-17 for more details.

32.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 32-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

 Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.

Field	Description							
a	RAM access bit							
	a = 0: RAM location in Access RAM (BSR register is ignored) a = 1: RAM bank is specified by BSR register							
bbb	Bit address within an 8-bit file register (0 to 7).							
BSR	Bank Select Register. Used to select the current RAM bank.							
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.							
d	Destination select bit d = 0: store result in WREG d = 1: store result in file register f							
dest	Destination: either the WREG register or the specified register file location.							
f	8-bit Register file address (00h to FFh) or 2-bit FSR designator (0h to 3h).							
fs	12-bit Register file address (000h to FFFh). This is the source address.							
fd	12-bit Register file address (000h to FFFh). This is the destination address.							
GIE	Global Interrupt Enable bit.							
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).							
label	Label name.							
mm	The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions:							
*	No change to register (such as TBLPTR with table reads and writes)							
*+	Post-Increment register (such as TBLPTR with table reads and writes)							
*_	Post-Decrement register (such as TBLPTR with table reads and writes)							
+*	Pre-Increment register (such as TBLPTR with table reads and writes)							
n	The relative address (2's complement number) for relative branch instructions or the direct address for CALL/BRANCH and RETURN instructions.							
PC	Program Counter.							
PCL	Program Counter Low Byte.							
PCH	Program Counter High Byte.							
PCLATH	Program Counter High Byte Latch.							
PCLATU	Program Counter Upper Byte Latch.							
PD	Power-down bit.							
PRODH	Product of Multiply High Byte.							
PRODL	Product of Multiply Low Byte.							
S	Fast Call/Return mode select bit s = 0: do not update into/from shadow registers s = 1: certain registers loaded into/from shadow registers (Fast mode)							
TBLPTR	21-bit Table Pointer (points to a Program Memory location).							
TABLAT	8-bit Table Latch.							
TO	Time-out bit.							
TOS	Top-of-Stack.							
u	Unused or unchanged.							
WDT	Watchdog Timer.							
WREG	Working register (accumulator).							
x	Don't care ('0' or '1'). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.							
Zs	7-bit offset value for indirect addressing of register files (source).							
zd	7-bit offset value for indirect addressing of register files (destination).							
{ }	Optional argument.							
[text]	Indicates an indexed address.							
(text)	The contents of text.							
[expr] <n></n>	Specifies bit n of the register indicated by the pointer expr.							
\rightarrow	Assigned to.							
< >	Register bit field.							
e	In the set of.							
italics	User defined term (font is Courier).							

TABLE 35-1: OPCODE FIELD DESCRIPTIONS

PIC18(L)F26/45/46K40

RCALL Relative Call								
Synta	ax:	RCALL n						
Oper	ands:	-1024 ≤ n ≤	1023					
Oper	ation:	()	$(PC) + 2 \rightarrow TOS,$ (PC) + 2 + 2n \rightarrow PC					
Statu	s Affected:	None						
Enco	ding:	1101	1nnn	nnnn	nnnn			
Description: Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC w have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.								
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n' PUSH PC to stack	Proce Dat		Write to PC			
	No	No	No		No			
	operation	operation	opera	tion	operation			

Example: HERE RCALL Jump

Before Instruction

PC = Address (HERE) After Instruction

PC = TOS = Address (Jump) Address (HERE + 2)

RES	ET	Reset						
Synta	ax:	RESET						
Oper	ands:	None						
Oper	ation:	ion: Reset all registers and flags that are affected by a MCLR Reset.						
Statu								
Enco	ding:	0000	0000	0 1111 1111				
Desc	ription:		This instruction provides a way to execute a MCLR Reset by software.					
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Start	No)	No			
		Reset	opera	tion	operation			

Example:

After Instruction	
Desistant	D .

Reset Value Reset Value Registers = Flags* =

RESET

© 2015-2017 Microchip Technology Inc.

PIC18(L)F26/45/46K40

SLEEP	Enter Sle	ep mode			
Syntax:	SLEEP				
Operands:	None	None			
Operation:					
Status Affected:	TO, PD				
Encoding:	0000	0000 000	00 0011		
Description:	cleared. Th is set. Wat caler are c The proces	The Power-down Status bit (PD) is cleared. The Time-out Status bit (TO) is set. Watchdog Timer and its posts- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.			
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	No operation	Process Data	Go to Sleep		
Example: Before Instruct TO = PD = After Instructio TO = PD =	? ?				
† If WDT causes v	wake-up, this t	bit is cleared.			

SUBFWB	Subtract	f from W wi	th borrow
Syntax:	SUBFWB	f {,d {,a}}	
Operands:	$0 \le f \le 255$	5	
	d ∈ [0,1]		
Orientiere	a ∈ [0,1]	$\overline{(0)}$ dent	
Operation:		$\overline{(C)} \rightarrow \text{dest}$	
Status Affected:	N, OV, C,		
Encoding:	0101	01da fff	
Description:	(borrow) fr method). I in W. If 'd' register 'f' If 'a' is '0', selected. I to select th If 'a' is '0' a set is enat operates in Addressin $f \le 95$ (5Fh 35.2.3 "By ented Inst	the Access Ba f 'a' is '1', the B ne GPR bank. and the extended oled, this instru- n Indexed Liter g mode whene n). See Section rte-Oriented an gructions in Index	nplement esult is stored it is stored in ank is 3SR is used ed instruction iction ral Offset ever 1 n Bit-Ori-
Words:	Offset Mo	de" for details.	
Cycles:	1		
Q Cycle Activity:	I		
Q Cycle Activity. Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	register 'f'	Data	destination
Example 1:	SUBFWB	REG, 1, 0	
Before Instruct			
REG W	= 3 = 2		
C After Instructio	= 1		
After Instructio REG	= FF		
W C	= 2		
ž	= 0		
	= 0 = 0		
Ν	= 0 = 1 ; re	sult is negative)
N <u>Example 2</u> :	= 0 = 1 ; re SUBFWB		9
N Example 2: Before Instruct REG	= 0 = 1 ; re _{SUBFWB} tion = 2		9
N Example 2: Before Instruct	= 0 = 1 ; re SUBFWB		3
N <u>Example 2</u> : Before Instruct REG W C After Instructio	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n		2
N Example 2: Before Instruct REG W C	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1		2
N Example 2: Before Instruct W C After Instructio REG W C	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1		2
N Example 2: Before Instruct REG W C After Instructio REG W	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0		2
N Example 2: Before Instruct REG W C After Instructio REG W C	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0	REG, 0, 0	3
N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3: Before Instruct	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0 = 0 ; re SUBFWB tion	REG, 0, 0	2
N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3:	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0 = 0 ; re SUBFWB	REG, 0, 0	2
N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3: Before Instruct REG W C	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0 = 0 ; re SUBFWB tion = 1 = 2 = 0	REG, 0, 0	3
N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3: Before Instruct REG W	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0 = 0 ; re SUBFWB tion = 1 = 2 = 0	REG, 0, 0	3
N Example 2: Before Instruct REG W C After Instructio REG W Example 3: Before Instruct REG W C After Instructio REG W C	= 0 = 1; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0; re SUBFWB tion = 1 = 2 = 0 n = 2 = 1 n = 0; re	REG, 0, 0	2
N Example 2: Before Instruct REG W C After Instructio REG W Example 3: Before Instruct REG W C After Instructio REG	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0 ; re SUBFWB tion = 2 = 0; re SUBFWB tion = 2 = 0 = 1 = 1 = 1 = 2 = 3 = 1 = 0 = 0 = 1 = 1 = 1 = 1 = 1 = 2 = 1 = 1 = 1 = 1 = 1 = 1 = 0 = 1 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 0 = 1 = 0 = 0 = 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	REG, 0, 0	2

APPENDIX A: REVISION HISTORY

Revision A (9/2015)

Initial Release.

Revision B (5/2016)

Updated Example 11-6; Figures 37-1, 37-2, 37-5; Register 31-5; Sections 1.1.2, 21.4.1, 21.4.2, 22.1.3, 22.1.9, 22.1.10, 37.2; Tables 37-1, 37-2, 37-3, 37-7, 37-8, 37-9, 37-11, 37-13.

Removed Register 5-3.

Added long name bit/short name bits section 1.4 and updated bit names accordingly.

Revision C (9/2016)

Updated Peripheral Module, Memory and Core features descriptions on cover page. Updated the PIC18(L)F2x/4xK40 Family Types Table. Updated Examples 11-1, 11-3, 11-5 and 11-6; Figures 14-1 and 31-2; Registers 4-2, 4-5, 13-18 and 31-6; Sections 1.2, 4.4.1, 4.5, 4.5.4, 17.3, 17.5, 17.7, 18.1, 18.1.1, 18.1.1.1, 18.1.2, 18.1.6, 18.3, 18.4, 18.7, 19.0, 19.8.1, 20.0, 21.3, and 25.3; Tables 4-2, 37-2, 37-3, 37-5, 37-13 and 37-14.

Revision D (4/2017)

Updated Cover page. Updated Example 13-1; Figures 6-1 and 11-11; Registers 3-6, 3-13, 19-1, and 26-9; Sections 1.1.2, 4.3, 13.8, 23.5, 26.5.1, 26.10, 31.1.2, and 31.1.6; Tables 4-1, 10-5, 37-11 and 37-15.

New Timer 2 chapter.

Removed Section 4.4.2 and 31.2.3.

Added Section 23.5.1