

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k40-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4 ICSP™ Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 36.0 "Development Support"**.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
FE2h	FSR1H	—	—	—	—	Indirec	t Data Memory	Address Point	er 1 High	xxxx
FE1h	FSR1L			Indirec	t Data Memory	Address Point	er 1 Low			xxxxxxxx
FE0h	BSR	—	—	—	—		Bank Sele	ct Register		0000
FDFh	INDF2	Uses contents	of FSR0 to ad	dress data me	emory – value o	f FSR2 not cha	anged (not a ph	ysical register)	
FDEh	POSTINC2	Uses contents	of FSR0 to ad	dress data me	emory – value o	f FSR2 post-in	cremented (not	a physical reg	jister)	
FDDh	POSTDEC2	Uses contents	of FSR0 to ad	dress data me	emory – value o	f FSR2 post-de	ecremented (no	t a physical re	gister)	
FDCh	PREINC2	Uses contents	of FSR0 to ad	dress data me	emory – value o	f FSR2 pre-inc	remented (not a	a physical regi	ster)	
FDBh	PLUSW2	Uses contents FSR0 offset by	of FSR0 to ad W	dress data me	emory – value o	f FSR2 pre-inc	remented (not a	a physical regi	ster) – value of	
FDAh	FSR2H	—	—	_	—	Indirec	t Data Memory	Address Point	er 2 High	xxxx
FD9h	FSR2L			Indired	t Data Memory	Address Point	er 2 Low			xxxxxxxx
FD8h	STATUS	—	TO	PD	Ν	OV	Z	DC	С	-1100000
FD7h	PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	0011110q
FD6h	T0CON1		T0CS<2:0>		T0ASYNC		TOCKF	'S<3:0>		00000000
FD5h	T0CON0	TOEN	—	TOOUT	T016BIT		TOOUT	PS<3:0>		0-000000
FD4h	TMR0H	Holding Registe	er for the Most	Significant Byte	e of the 16-bit T	/IR0 Register				11111111
FD3h	TMR0L	Holding Registe	er for the Least	Significant Byt	e of the 16-bit T	MR0 Register				00000000
FD2h	T1CLK	—	_	—	—		CS<	:3:0>		0000
FD1h	T1GATE	—	_	—	_		GSS	<3:0>		0000
FD0h	T1GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	—	—	x00000
FCFh	T1CON	—	_	CKP	S<1:0>	—	SYNC	RD16	ON	00-000
FCEh	TMR1H	Holding Registe	er for the Most	Significant Byte	e of the 16-bit TN	/IR1 Register				00000000
FCDh	TMR1L	Holding Registe	er for the Least	Significant Byt	e of the 16-bit T	MR1 Register				00000000
FCCh	T3CLK	—	—	—	—		CS<	:3:0>		0000
FCBh	T3GATE	—	_	—	_		GSS	<3:0>		0000
FCAh	T3GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	—	—	x00000
FC9h	T3CON	—	_	CKP	S<1:0>	—	SYNC	RD16	ON	00-000
FC8h	TMR3H	Holding Registe	er for the Most	Significant Byte	e of the 16-bit T	/IR3 Register				00000000
FC7h	TMR3L	Holding Registe	er for the Least	Significant Byt	e of the 16-bit T	MR3 Register				00000000
FC6h	TMR5CLK	—	—	—	—		CS<	:3:0>		0000
FC5h	T5GATE	—	—	—	_		GSS	<3:0>		0000
FC4h	T5GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL		—	x00000
FC3h	T5CON	—	_	CKPS	S<1:0>	—	SYNC	RD16	ON	00-000
FC2h	TMR5H	Holding Registe	er for the Most	Significant Byte	e of the 16-bit T	/R5 Register				00000000

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F26/45/46K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F26K40 (28-pin variants).

3: Not available on PIC18(L)F45K40 devices.

13.0 CYCLIC REDUNDANCY CHECK (CRC) MODULE WITH MEMORY SCANNER

The Cyclic Redundancy Check (CRC) module provides a software-configurable hardware-implemented CRC checksum generator. This module includes the following features:

- Any standard CRC up to 16 bits can be used
- Configurable Polynomial
- · Any seed value up to 16 bits can be used
- · Standard and reversed bit order available
- Augmented zeros can be added automatically or by the user
- Memory scanner for fast CRC calculations on program memory user data
- Software loadable data registers for communication CRC's

13.1 CRC Module Overview

The CRC module provides a means for calculating a check value of program memory. The CRC module is coupled with a memory scanner for faster CRC calculations. The memory scanner can automatically provide data to the CRC module. The CRC module can also be operated by directly writing data to SFRs, without using a scanner.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
HADR<15:8> ^(1, 2)											
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U = Un			U = Unimplemented bit, read as '0'								
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other			other Resets				
'1' = Bit is set		ʻ0' = Bit is clea	ared								

REGISTER 13-16: SCANHADRH: SCAN HIGH ADDRESS HIGH BYTE REGISTER

bit 7-0 HADR<15:8>: Scan End Address bits^(1, 2)

Most Significant bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 13-17: SCANHADRL: SCAN HIGH ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
	HADR<7:0> ^(1, 2)											
bit 7							bit 0					
Legend:												
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'								
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all o			other Resets					
'1' = Bit is set		'0' = Bit is clea	ared									

bit 7-0 HADR<7:0>: Scan End Address bits^(1, 2)

Least Significant bits of the address at the end of the designated scan

- **Note 1:** Registers SCANHADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

19.1 Register Definitions: Timer1/3/5

Long bit name prefixes for the Timer1/3/5 are shown in Table 20-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 19-1:

Peripheral	Bit Name Prefix
Timer1	T1
Timer3	Т3
Timer5	T5

REGISTER 19-1: TxCON: TIMERx CONTROL REGISTER

U-0	U-0	R/W-0/u	R/W-0/u	U-0	R/W-0/u	R/W-0/0	R/W-0/u
—	—	CKPS<1:0>		—	SYNC	RD16	ON
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged	

bit 7-6	Unimplemented: Read as '0'
---------	----------------------------

bit 5-4 CKPS<1:0>: Timerx Input Clock Prescale Select bits

- 11 = 1:8 Prescale value
- 10 = 1:4 Prescale value
- 01 = 1:2 Prescale value
- 00 = 1:1 Prescale value
- bit 3 Unimplemented: Read as '0'
- bit 2 SYNC: Timerx External Clock Input Synchronization Control bit TMRxCLK = Fosc/4 or Fosc:
 - This bit is ignored. Timer1 uses the incoming clock as is.

Else:

- 1 = Do not synchronize external clock input
- 0 = Synchronize external clock input with system clock
- bit 1 RD16: 16-Bit Read/Write Mode Enable bit
 - 1 = Enables register read/write of Timer in one 16-bit operation
 - 0 = Enables register read/write of Timer in two 8-bit operations
- bit 0 ON: Timerx On bit
 - 1 = Enables Timerx
 - 0 = Disables Timerx

22.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 22-4.

EQUATION 22-4: PWM RESOLUTION

Resolution = $\frac{\log[4(PR2 + 1)]}{\log(2)}$ bits

Note: If the pulse-width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 22-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)	
-------------	--	----------------	--

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 22-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

22.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

22.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

22.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

22.1.9 SETUP FOR PWM OPERATION USING PWMx PINS

The following steps should be taken when configuring the module for PWM operation using the PWMx pins:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR4 register. See Note 1 below.
 - Select the timer clock source to be as Fosc/4 using the TxCLKCON register. This is required for correct operation of the PWM module.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the T2ON bit of the T2CON register.
- Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIR4 register is set. See note below.
- Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the desired pin PPS control bits.
- 8. Configure the PWM module by loading the PWMxCON register with the appropriate values.
 - Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4.
 - **2:** For operation with other peripherals only, disable PWMx pin outputs.

22.1.10 SETUP FOR PWM OPERATION TO OTHER DEVICE PERIPHERALS

The following steps should be taken when configuring the module for PWM operation to be used by other device peripherals:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR4 register. See Note 1 below.
 - Select the timer clock source to be as Fosc/4 using the TxCLKCON register. This is required for correct operation of the PWM module.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the T2ON bit of the T2CON register.
- 6. Enable PWM output pin:
 - Wait until Timer2 overflows, TMR2IF bit of the PIR4 register is set. See Note 1 below.
- 7. Configure the PWM module by loading the PWMxCON register with the appropriate values.

Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

						-	
R/HS/HC	-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ACKTIN	1 PCIE ⁽¹⁾	SCIE ⁽¹⁾	BOEN ⁽²⁾	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value	at POR	'1' = Bit is set		HS/HC = Bit i	s set/cleared by	y hardware	
x = Bit is u	nknown	'0' = Bit is clea	ared				
bit 7	ACKTIM: Ack	knowledge Time	e Status bit				
	Unused in SP	임.		`			
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit()			
	1 = Enable in	terrupt on dete	ection of Stop (are disabled	condition			
bit 5	SCIE: Start C	ondition Interru	nt Enable hit(1)			
bit 0	1 = Enable in	terrupt on deter	ction of Start o	r Restart condit	ions		
	0 = Start dete	ction interrupts	are disabled				
bit 4	BOEN: Buffer	r Overwrite Ena	able bit ⁽²⁾				
	1 = SSPxBUF	⁻ updates every	/ time a new d	ata byte is shift	ed in, ignoring t	the BF bit	
	0 = If a new b	yte is received	with BF bit alr	eady set, SSPC	OV is set, and t	he buffer is not	updated
bit 3	SDAHT: SDA	Hold Time Sel	ection bit				
	Unused in SP	임.					
bit 2	SBCDE: Slav	e Mode Bus Co	ollision Detect	Enable bit			
	Unused in SP	י ו. יו <u>−</u>					
bit 1	AHEN: Addre	ess Hold Enable	e bit				
	Unused in SP	'l. 					
bit 0	DHEN: Data I	Hold Enable bit					
	Unusea in SP	Ί.					
Note 1:	This bit has no ef	fect in Slave m	odes that Star	and Stop cond	ition detection	is explicitly liste	ed as enabled.
2:	For daisy-chained	d SPI operation	; allows the us	er to ignore all I	out the last rece	eived byte. SSF	POV is still set

REGISTER 26-3: SSPxCON3: MSSPx CONTROL REGISTER 3 (SPI MODE)

2: For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPOV is still set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPxBUF.

26.9.3 SLAVE TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 26.9.6** "**Clock Stretching**" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPSR register. Then the SCL pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

26.9.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCLxIF bit of the PIR register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCLxIF bit to handle a slave bus collision.

26.9.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 26-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.

Note 1: If the master ACKs the clock will be stretched.

 ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.

- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

TABLE 27-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	395
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	_	INT2EDG	INT1EDG	INT0EDG	170
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	174
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	174
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	190
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	394
RxyPPS	—	—	_			RxyPPS<4:0	>		218
TXxPPS	—	—	_			TXPPS<4:0	>		216
SPxBRGH			EUSARTx	Baud Rate	Generator, H	ligh Byte			404*
SPxBRGL	EUSARTx Baud Rate Generator, Low Byte								404*
TXxREG			EU	SARTx Trar	smit Registe	er			396*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	393

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission. * Page provides register information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	395
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_		INT2EDG	INT1EDG	INT0EDG	170
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	182
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	174
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	190
RCxREG			El	JSARTx Rec	eive Registe	r			399*
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	394
RxyPPS		—				RxyPPS<4:0	>		218
RXxPPS	-	—	-			RXPPS<4:0>	>		216
SPxBRGH			EUSARTX	Baud Rate	Generator, H	igh Byte			404*
SPxBRGL		EUSARTx Baud Rate Generator, Low Byte							404*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	393

TABLE 27-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception. * Page provides register information.

31.2 ADC Operation

31.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. A conversion may be started by any of the following:

- Software setting the ADGO bit of ADCON0 to '1'
- An external trigger (selected by Register 31-3)
- A continuous-mode retrigger (see section Section 31.5.8 "Continuous Sampling mode")

Note: The ADGO bit should not be set in the same instruction that turns on the ADC. Refer to Section 31.2.6 "ADC Conversion Procedure (Basic Mode)".

31.2.2 COMPLETION OF A CONVERSION

When any individual conversion is complete, the value already in ADRES is written into ADPREV (if ADPSIS = 1) and the new conversion results appear in ADRES. When the conversion completes, the ADC module will:

- Clear the ADGO bit (unless the ADCONT bit of ADCON0 is set)
- · Set the ADIF Interrupt Flag bit
- Set the ADMATH bit
- Update ADACC

When ADDSEN = 0 then after every conversion, or when ADDSEN = 1 then after every other conversion, the following events occur:

- ADERR is calculated
- ADTIF is set if ADERR calculation meets threshold comparison

Importantly, filter and threshold computations occur after the conversion itself is complete. As such, interrupt handlers responding to ADIF should check ADTIF before reading filter and threshold results.

31.2.3 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

31.2.4 EXTERNAL TRIGGER DURING SLEEP

If the external trigger is received during sleep while ADC clock source is set to the FRC, ADC module will perform the conversion and set the ADIF bit upon completion.

If an external trigger is received when the ADC clock source is something other than FRC, the trigger will be recorded, but the conversion will not begin until the device exits Sleep.

31.2.5 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the ADGO bit is set by hardware.

The Auto-conversion Trigger source is selected with the ADACT<4:0> bits of the ADACT register.

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met. See Table 31-2 for auto-conversion sources.

TABLE 31-2: ADC AUTO-CONVERSION TABLE

Source Peripheral	Description
ADCACTPPS	Pin selected by ADCACTPPS
TMR0	Timer0 overflow condition
TMR1/3/5	Timer1/3/5 overflow condition
TMR2/4/6	Match between Timer2/4/6 postscaled value and PR2/4/6
CCP1/2	CCP1/2 output
PWM3/4	PWM3/4 output
C1/2	Comparator C1/2 output
IOC	Interrupt-on-change interrupt trigger
ADERR	Read of ADERRH register
ADRESH	Read of ADRESH register
ADPCH	Write of ADPCH register

31.3 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 31-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 31-4. The maximum recommended impedance for analog sources is 10 k Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be completed before the conversion can be started. To calculate the minimum acquisition time, Equation 31-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 31-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED} V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - 1}\right) \qquad ;combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

$$TC = -CHOLD(RIC + RSS + RS) \ln(1/2047)$$

= -10pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)
= 1.37\mus

Therefore:

$$TACQ = 2\mu s + 892ns + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.62\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

31.4.2 PRECHARGE CONTROL

The Precharge stage is an optional period of time that brings the external channel and internal sample and hold capacitor to known voltage levels. Precharge is enabled by writing a non-zero value to the ADPRE register. This stage is initiated when an ADC conversion begins, either from setting the ADGO bit, a special event trigger, or a conversion restart from the computation functionality. If the ADPRE register is cleared when an ADC conversion begins, this stage is skipped.

During the precharge time, CHOLD is disconnected from the outer portion of the sample path that leads to the external capacitive sensor and is connected to either VDD or VSS, depending on the value of the ADPPOL bit of ADCON1. At the same time, the port pin logic of the selected analog channel is overridden to drive a digital high or low out, in order to precharge the outer portion of the ADC's sample path, which includes the external sensor. The output polarity of this override is also determined by the ADPPOL bit of ADCON1. The amount of time that this charging needs is controlled by the ADPRE register.

Note:	The external charging overrides the TRIS				
	setting of the respective I/O pin. If there is				
	a device attached to this pin, Precharge				
	should not be used.				

31.4.3 ACQUISITION CONTROL

The Acquisition stage is an optional time for the voltage on the internal sample and hold capacitor to charge or discharge from the selected analog channel. This acquisition time is controlled by the ADACQ register. If ADPRE = 0, acquisition starts at the beginning of conversion. When ADPRE = 1, the acquisition stage begins when precharge ends.

At the start of the acquisition stage, the port pin logic of the selected analog channel is overridden to turn off the digital high/low output drivers so they do not affect the final result of the charge averaging. Also, the selected ADC channel is connected to CHOLD. This allows charge averaging to proceed between the precharged channel and the CHOLD capacitor.

Note: When ADPRE! = 0, acquisition time cannot be '0'. In this case, setting ADACQ to '0' will set a maximum acquisition time (256 ADC clock cycles). When precharge is disabled, setting ADACQ to '0' will disable hardware acquisition time control.

31.4.4 GUARD RING OUTPUTS

Figure 31-8 shows a typical guard ring circuit. CGUARD represents the capacitance of the guard ring trace placed on the PCB board. The user selects values for RA and RB that will create a voltage profile on CGUARD, which will match the selected acquisition channel.

The purpose of the guard ring is to generate a signal in phase with the CVD sensing signal to minimize the effects of the parasitic capacitance on sensing electrodes. It also can be used as a mutual drive for mutual capacitive sensing. For more information about active guard and mutual drive, see Application Note AN1478, "*mTouchTM Sensing Solution Acquisition Methods Capacitive Voltage Divider*" (DS01478).

The ADC has two guard ring drive outputs, ADGRDA and ADGRDB. These outputs can be routed through PPS controls to I/O pins (see **Section 17.0 "Peripheral Pin Select (PPS) Module"** for details) and the polarity of these outputs are controlled by the ADGPOL and ADIPEN bits of ADCON1.

At the start of the first precharge stage, both outputs are set to match the ADGPOL bit of ADCON1. Once the acquisition stage begins, ADGRDA changes polarity, while ADGRDB remains unchanged. When performing a double sample conversion, setting the ADIPEN bit of ADCON1 causes both guard ring outputs to transition to the opposite polarity of ADGPOL at the start of the second precharge stage, and ADGRDA toggles again for the second acquisition. For more information on the timing of the guard ring output, refer to Figure 31-8 and Figure 31-9.

-n/n = Value at POR and BOR/Value at all other Resets

REGISTER 31-27: ADERRL: ADC SETPOINT ERROR LOW BYTE REGISTER

x = Bit is unknown

r							
R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			ADER	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpler	nented bit, read	l as '0'	

'1' = Bit is set	'0' = Bit is cleared
bit 7-0	ADERR<7:0>: ADC Setpoint Error LSB. Lower byte of ADC Setpoint Error calculation is determined

REGISTER 31-28 ADI THH: ADC I OWER THRESHOLD HIGH BYTE REGISTER

by ADCALC bits of ADCON3, see Register 23-1 for more details.

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x		
ADLTH<15:8>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADLTH<15:8>: ADC Lower Threshold MSB. ADLTH and ADUTH are compared with ADERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

REGISTER 31-29: ADLTHL: ADC LOWER THRESHOLD LOW BYTE REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	
ADLTH<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADLTH<7:0>: ADC Lower Threshold LSB. ADLTH and ADUTH are compared with ADERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

© 2015-2017 Microchip Technology Inc.

u = Bit is unchanged

'1' = Rit is set

R/W-0/0	U-0	R-x	R-x	U-0	U-0	R/W-0/0	R/W-0/0
EN	-	OUT	RDY	—	—	INTH	INTL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown
bit 7	EN: High/Low	-voltage Detec	t Power Enab	le bit			
	1 = Enables	HLVD, powers	up HLVD circ	uit and suppo	rting reference o	circuitry	
	0 = Disables	HLVD, powers	s down HLVD	and supportin	g circuitry		
bit 6	Unimplemen	ted: Read as '	כי				
bit 5	OUT: HLVD C	comparator Out	put bit				
	1 = Voltage	\leq selected dete	ection limit (HL	_VDL<3:0>)			
	0 = Voltage	≥ selected dete	ection limit (HL	_VDL<3:0>)			
bit 4	RDY: Band G	ap Reference V	Voltages Stabl	e Status Flag	bit		
	1 = Indicates	s HLVD Module	e is ready and	output is stab	le		
	0 = Indicates	s HLVD Module	e is not ready				
bit 3-2	Unimplemen	ted: Read as ')'				
bit 1	INTH: HLVD F	Positive going ((High Voltage)	Interrupt Ena	ble		
	1 = HLVDIF	will be set whe	en voltage \geq se	elected detecti	on limit (HLVDS	EL<3:0>)	
	0 = HLVDIF	will not be set					
bit 0	INTL: HLVD N	Negative going	(Low Voltage)) Interrupt Ena	ble		
	1 = HLVDIF	will be set whe	en voltage \leq s	elected detect	ion limit (HLVDS	SEL<3:0>)	
	0 = HLVDIF	will not be set					

REGISTER 33-2: HLVDCON0: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
HLVDCON0	EN	—	OUT	RDY			INTH	INTL	482
HLVDCON1	-	-	-	-		481			
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	-	-	INT2EDG	INT1EDG	INT0EDG	170
PIR2	HLVDIF	ZCDIF	-	I	I	I	C2IF	C1IF	173
PIE2	HLVDIE	ZCDIE	-	-	-	-	C2IE	C1IE	181
IPR2	HLVDIP	ZCDIP	-	-	-	-	C2IP	C1IP	189
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	68

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

PIC18(L)F26/45/46K40

TABLE 37-3: POWE	R-DOWN CURRENT (PD) ^(1,2)
------------------	------------------	----------------------

PIC18LF26/45/46K40				Standard Operating Conditions (unless otherwise stated)					
PIC18F26/45/46K40				Standard Operating Conditions (unless otherwise stated) VREGPM = 1					
Param.		Davias Characteristics	Min	Turn ±	Max.	Max.	Unite	Conditions	
No.	Symbol	Device Characteristics	WIIII.	тур.т	+85°C	+125°C	Units	VDD	Note
D200	IPD	IPD Base	_	0.05	2	9	μΑ	3.0V	
D200	IPD	IPD Base	_	0.4	4	12	μΑ	3.0V	
D200A				20		_	μΑ	3.0V	VREGPM = 0
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT		0.4	3	10	μA	3.0V	
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	-	0.6	5	13	μA	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	0.6	5	13	μΑ	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)		0.8	8.5	15	μΑ	3.0V	
D203	IPD_FVR	FVR		31		—	μΑ	3.0V	FVRCON = 0X81 or 0x84
D203	IPD_FVR	FVR	_	32		—	μΑ	3.0V	FVRCON = 0X81 or 0x84
D204	IPD_BOR	Brown-out Reset (BOR)	-	9	14	18	μΑ	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)		14	19	21	μΑ	3.0V	
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)	-	0.5		—	μΑ	3.0V	
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)		0.7		_	μΑ	3.0V	
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)		31	_	—	μΑ	3.0V	
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)		32		—	μΑ	3.0V	
D207	IPD_ADCA	ADC - Active		250		—	μΑ	3.0V	ADC is converting (4)
D207	IPD_ADCA	ADC - Active		280		_	μΑ	3.0V	ADC is converting (4)
D208	IPD_CMP	Comparator	_	25	38	40	μΑ	3.0V	
D208	IPD_CMP	Comparator	_	28	50	60	μΑ	3.0V	

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

4: ADC clock source is FRC.

Standard Operating Conditions (unless otherwise stated)										
Param No.	Sym.	Characteristic	Min.	Typ†	ſyp† Max.		Conditions			
Data EE	Data EEPROM Memory Specifications									
MEM20	ED	DataEE Byte Endurance	100k	—	—	E/W	$-40^\circ C \leq T A \leq +85^\circ C$			
MEM21	T _{D_RET}	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated			
MEM22	N _{D_REF}	Total Erase/Write Cycles before Refresh	1M 500k	10M —		E/W	$\begin{array}{l} -40^\circ C \leq T_A \leq +60^\circ C \\ -40^\circ C \leq T_A \leq +85^\circ C \end{array}$			
MEM23	V _{D_RW}	VDD for Read or Erase/Write operation	VDDMIN	—	VDDMAX	V				
MEM24	$T_{D_{BEW}}$	Byte Erase and Write Cycle Time	—	4.0	5.0	ms				
Program	n Flash Me	emory Specifications								
MEM30	E _P	Flash Memory Cell Endurance	10k	—	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)			
MEM32	T _{P_RET}	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated			
MEM33	$V_{P_{RD}}$	VDD for Read operation	VDDMIN	—	VDDMAX	V				
MEM34	V _{P_REW}	VDD for Row Erase or Write operation	Vddmin	—	VDDMAX	V				
MEM35	T _{P_REW}	Self-Timed Row Erase or Self-Timed Write	_	2.0	2.5	ms				

TABLE 37-5: MEMORY PROGRAMMING SPECIFICATIONS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Flash Memory Cell Endurance for the Flash memory is defined as: One Row Erase operation and one Self-Timed Write.

TABLE 37-13: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

Operating Conditions (unless otherwise stated) VDD = $3.0V$, TA = $25^{\circ}C$, TAD = $1\mu s$									
Param No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions		
AD01	NR	Resolution	—	_	10	bit			
AD02	EIL	Integral Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD03	Edl	Differential Error	_	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD04	EOFF	Offset Error	_	0.5	±2.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD05	Egn	Gain Error	_	±0.2	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V		
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8		Vdd	V			
AD07	VAIN	Full-Scale Range	ADREF-		ADREF+	V			
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	10	_	kΩ			
AD09	RVREF	ADC Voltage Reference Ladder Impedance	—	50	—	kΩ	Note 3		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

3: This is the impedance seen by the VREF pads when the external reference pads are selected.