

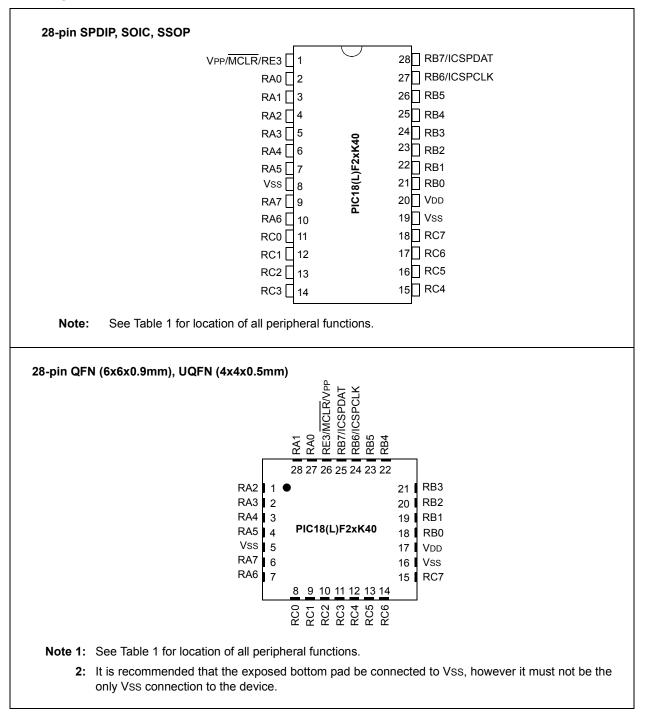
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f45k40t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

IADL	ABLE 2: 40/44-PIN ALLOCATION TABLE (PIC18(L)F45/46K40) (CONTINUED)																
I/O ⁽²⁾	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	A/D	Reference	Comparator	Timers	ссР	ЭМЭ	ZCD	Interrupt	EUSART	WSQ	MSSP	dn-llud	Basic
RC2	17	32	36	36	ANC2	_	_	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	_	_	IOCC2	_	_	_	Y	_
RC3	18	33	37	37	ANC3	_	—	T2AIN ⁽¹⁾	—	_	—	IOCC3	—	_	SCK1 ⁽¹⁾ SCL1 ^(3,4)	Y	_
RC4	23	38	42	42	ANC4	_	_	—	—	_	—	IOCC4	—	_	SDI1 ⁽¹⁾ SDA1 ^(3,4)	—	_
RC5	24	39	43	43	ANC5	_	_	T4AIN ⁽¹⁾	_	_	_	IOCC5	_	_	_	Y	_
RC6	25	40	44	44	ANC6	_	_	_	_	_	_	IOCC6	CK1 ⁽¹⁾	_	_	Y	_
RC7	26	1	1	1	ANC7	_	_	_	_	-	_	IOCC7	RX1/DT1 ⁽¹⁾	_	_	Y	
RD0	19	34	38	38	AND0	_	_	_	_	_	_	IOCD0	_	_	_	Y	_
RD1	20	35	39	39	AND1	_	_	_	_	_	_	IOCD1	_	_	_	Y	_
RD2	21	36	40	40	AND2	_	—	_	_	_	_	IOCD2	_	_		Y	_
RD3	22	37	41	41	AND3	_	_	_	_	_	_	IOCD3	_	_	—	Y	_
RD4	27	2	2	2	AND4	_	_	_	_	_	_	IOCD4	_	_	—	Y	_
RD5	28	3	3	3	AND5	_	_	-	_	_	_	IOCD5	_	_	—	Y	_
RD6	29	4	4	4	AND6	_	_	_	_	_	_	IOCD6	_	_	—	Y	_
RD7	30	5	5	5	AND7		—	_	—		—	IOCD7	_	_	—	Y	_
RE0	8	23	25	25	ANE0		—	_	_		—	—	_	—	—	Y	_
RE1	9	24	26	26	ANE1		—	—	_		—	—	—	—	—	Y	_
RE2	10	25	27	27	ANE2	_	—	—	—	—	—	—	—	—	—	Y	—
RE3	1	16	18	18	—	_	—	—	_	_	—	IOCE3	—	_	_	Y	VPP/MCLR
Vss	12	6	6	6	—	_	—	—	—	_	—	—	—	_	_	—	Vss
VDD	11	7	7	7	_		_	_	_	_	_	_	_	_	_		Vdd
VDD	32	26	28	28	—	_	—	—	—	_	—	—	—	_	_	—	Vdd
Vss	31	27	30	29	—	_	—	—	—	_	—	—	—	_	—	—	Vss
OUT ⁽²⁾	_	_	ADGRDA ADGRDB	_	C1OUT C2OUT	TMR0	CCP1 CCP2 PWM3 PWM4	CWG1A CWG1B CWG1C CWG1D	_	_	TX1/ CK1 ⁽³⁾ DT1 ⁽³⁾ TX2/ CK2 ⁽³⁾ DT2 ⁽³⁾	DSM	SDO1 SCK1 SDO2 SCK2	_	_	OUT ⁽²⁾	_

TABLE 2: 40/44-PIN ALLOCATION TABLE (PIC18(L)F45/46K40) (CONTINUED)

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers (Register 17-1).

2: All pin outputs default to PORT latch data. Any pin can be selected as a peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for I2C logic levels; The SCLx/SDAx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I2C specific or SMBus input buffer thresholds.

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18(L)F26/45/46K40 MICROCONTROLLERS

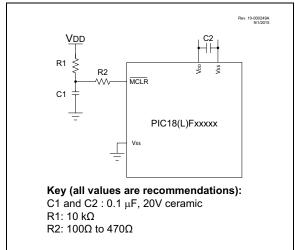
2.1 Basic Connection Requirements

Getting started with the PIC18(L)F26/45/46K40 family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:


- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP[™] Pins"**)
- OSCI and OSCO pins when an external oscillator source is used (see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins (VDD and VSS) is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

4.2 Register Definitions: Oscillator Control

REGISTER 4-1: OSCCON1: OSCILLATOR CONTROL REGISTER1

U-0	R/W-f/f	R/W-f/f	R/W-f/f	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q		
—		NOSC<2:0>		NDIV<3:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimpler	nented bit, read	d as '0'			

		0 - Onimplemented bit, read as 0
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	f = determined by fuse setting
		q = Reset value is determined by hardware

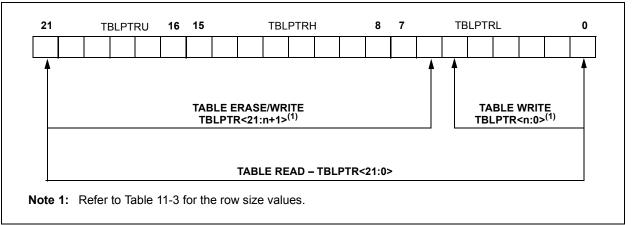
bit 7	Unimplemented: Read as '0'
bit 6-4	NOSC<2:0>: New Oscillator Source Request bits ^(1,2,3)
	The setting requests a source oscillator and PLL combination per Table 4-2.
	POR value = RSTOSC (Register 3-1).
bit 3-0	NDIV<3:0>: New Divider Selection Request bits ^(2,3)

The setting determines the new postscaler division ratio per Table 4-2.

- Note1: The default value (f/f) is determined by the RSTOSC Configuration bits. See Table 4-1below.
 - 2: If NOSC is written with a reserved value (Table 4-2), the operation is ignored and neither NOSC nor NDIV is written.
 - 3: When CSWEN = 0, this register is read-only and cannot be changed from the POR value.

TABLE 4-1:	DEFAULT OSCILLATOR SETTINGS USING RSTOSC BITS
------------	---

DOTOCO	SF	R Reset Value	S						
RSTOSC	NOSC/COSC	CDIV	OSCFRQ	Initial Fosc Frequency					
111	111	1:1		EXTOSC per FEXTOSC					
110	110	4:1	4 1411-	Fosc = 1 MHz (4 MHz/4)					
101	101	1:1	4 MHz	LFINTOSC					
100	100	1:1		SOSC					
011			Reserve	ed					
010	010	1:1	4 MHz	EXTOSC + 4xPLL (1)					
001		Reserved							
000	110	1:1	64 MHz	Fosc = 64 MHz					


Note 1: EXTOSC must meet the PLL specifications (Table 37-9).

TADLE IT-J.	TABLE I OINTER OF ERATIONS WITH THERE AND THEM INSTRUCTIONS					
Example	Operation on Table Pointer					
TBLRD* TBLWT*	TBLPTR is not modified					
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write					
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write					
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write					

TABLE 11-3: TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS

FIGURE 11-3:

TABLE POINTER BOUNDARIES BASED ON OPERATION

13.9 Program Memory Scan Configuration

If desired, the program memory scan module may be used in conjunction with the CRC module to perform a CRC calculation over a range of program memory addresses. In order to set up the scanner to work with the CRC you need to perform the following steps:

- Set the Enable bit in both the CRCCON0 and SCANCON0 registers. If they get disabled, all internal states of the scanner and the CRC are reset (registers are unaffected).
- Choose which memory access mode is to be used (see Section 13.11 "Scanning Modes") and set the MODE bits of the SCANCON0 register appropriately.
- 3. Based on the memory access mode, set the INTM bits of the SCANCON0 register to the appropriate interrupt mode (see Section 13.11.5 "Interrupt Interaction")
- 4. Set the SCANLADRL/H/U and SCANHADRL/H/ U registers with the beginning and ending locations in memory that are to be scanned.
- 5. The CRCGO bit must be set before setting the SCANGO bit. Setting the SCANGO bit starts the scan. Both CRCEN and CRCGO bits must be enabled to use the scanner. When either of these bits are disabled, the scan aborts and the INVALID bit SCANCON0 is set. The scanner will wait for the signal from the CRC that it is ready for the first Flash memory location, then begin loading data into the CRC. It will continue to do so until it either hits the configured end address or an address that is unimplemented on the device, at which point the SCANGO bit will clear, Scanner functions will cease, and the SCANIF interrupt will be triggered. Alternately, the SCANGO bit can be cleared in software if desired.

13.10 Scanner Interrupt

The scanner will trigger an interrupt when the SCANGO bit transitions from '1' to '0'. The SCANIF interrupt flag of PIR7 is set when the last memory location is reached and the data is entered into the CRCDATA registers. The SCANIF bit can only be cleared in software. The SCAN interrupt enable is the SCANIE bit of the PIE7 register.

13.11 Scanning Modes

The memory scanner can scan in four modes: Burst, Peek, Concurrent, and Triggered. These modes are controlled by the MODE bits of the SCANCON0 register. The four modes are summarized in Table 13-2.

13.11.1 BURST MODE

When MODE = 01, the scanner is in Burst mode. In Burst mode, CPU operation is stalled beginning with the operation after the one that sets the SCANGO bit, and the scan begins, using the instruction clock to execute. The CPU is held in its current state until the scan stops. Note that because the CPU is not executing instructions, the SCANGO bit cannot be cleared in software, so the CPU will remain stalled until one of the hardware endconditions occurs. Burst mode has the highest throughput for the scanner, but has the cost of stalling other execution while it occurs.

13.11.2 CONCURRENT MODE

When MODE = 00, the scanner is in Concurrent mode. Concurrent mode, like Burst mode, stalls the CPU while performing accesses of memory. However, while Burst mode stalls until all accesses are complete, Concurrent mode allows the CPU to execute in between access cycles.

13.11.3 TRIGGERED MODE

When MODE = 11, the scanner is in Triggered mode. Triggered mode behaves identically to Concurrent mode, except instead of beginning the scan immediately upon the SCANGO bit being set, it waits for a rising edge from a separate trigger clock, the source of which is determined by the SCANTRIG register.

13.11.4 PEEK MODE

When MODE = 10, the scanner is in Peek mode. Peek mode waits for an instruction cycle in which the CPU does not need to access the NVM (such as a branch instruction) and uses that cycle to do its own NVM access. This results in the lowest throughput for the NVM access (and can take a much longer time to complete a scan than the other modes), but does so without any impact on execution times, unlike the other modes.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1					
RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP					
bit 7							bit (
Legend:												
R = Readable	e bit	W = Writable	bit	•	nented bit, rea	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown					
bit 7	RC2IP: FUS	ART2 Receive	Interrunt Priori	ity hit								
	1 = High pri		interrupt i non									
	0 = Low price											
bit 6	TX2IP: EUS	ART2 Transmit	Interrupt Prior	ity bit								
	1 = High prie	•										
	0 = Low price	ority										
bit 5		ART1 Receive	Interrupt Priori	ity bit								
	 1 = High priority 0 = Low priority 											
h:+ 4	•	•		:4. / L. :4								
bit 4	1 = High prior	ART1 Transmit	interrupt Phor									
	0 = Low price											
bit 3	•	-	ion Interrupt P	riority bit								
	BCL2IP: MSSP2 Bus Collision Interrupt Priority bit 1 = High priority											
	0 = Low priority											
bit 2	SSP2IP: Syr	nchronous Seria	al Port 2 Interru	upt Priority bit								
	1 = High priority											
	0 = Low price	•										
bit 1		BCL1IP: MSSP1 Bus Collision Interrupt Priority bit										
	1 = High prid0 = Low prid	•										
bit 0	•	nchronous Seria	al Port 1 Intern	int Priority hit								
	1 = High pri											
	0 = Low price	,										

REGISTER 14-21: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
IOCEP	—	_	_	_	IOCEP3 ⁽¹⁾	_	—	—
IOCEN					IOCEN3 ⁽¹⁾			
IOCEF					IOCEF3 ⁽¹⁾			_

TABLE 16-1: IOC REGISTERS

Note 1: If MCLRE = 1 or LVP = 1, RE3 port functionality is disabled and IOC on RE3 is not available.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	170
IOCxF	IOCxF7	IOCxF6	IOCxF5	IOCxF4	IOCxF3	IOCxF2	IOCxF1	IOCxF0	211
IOCxN	IOCxN7	IOCxN6	IOCxN5	IOCxN4	IOCxN3	IOCxN2	IOCxN1	IOCxN0	211
IOCxP	IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0	211

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R-x	U-0	U-0		
GE	GPOL	GTM	GSPM	GGO/DONE	GVAL		_		
bit 7	-						bit C		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpleme	nted bit, read a	ıs '0'			
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cleare		x = Bit is unkr	nown		
bit 7	If TMRxON = 1 = Timerx 0 = Timerx If TMRxON =	counting is co is always cou	ontrolled by th	e Timerx gate fur	ction				
bit 6	GPOL: Time	POL: Timerx Gate Polarity bit Timerx gate is active-high (Timerx counts when gate is high)							
bit 5	1 = Timerx 0 = Timerx	GTM: Timerx Gate Toggle Mode bit							
bit 4	GSPM: Time 1 = Timerx	 PM: Timerx Gate Single Pulse Mode bit Timerx Gate Single Pulse mode is enabled and is controlling Timerx gate) Timerx Gate Single Pulse mode is disabled 							
bit 3	GGO/DONE 1 = Timerx 0 = Timerx	GO/DONE: Timerx Gate Single Pulse Acquisition Status bit = Timerx Gate Single Pulse Acquisition is ready, waiting for an edge							
bit 2	GVAL: Time Indicates the	AL: Timerx Gate Current State bit cates the current state of the Timerx gate that could be provided to TMRxH:TMRxL ffected by Timerx Gate Enable (TMRxGE)							
bit 1-0	Unimpleme	Unimplemented: Read as '0'							

REGISTER 19-2: TxGCON: TIMERx GATE CONTROL REGISTER

REGISTER 19-3: TMRxCLK: TIMERx CLOCK REGISTER

- - CS<3:0> bit 7 - - - CS<3:0>	-0/u	R/W-0/u R/W-0/	R/W-0/u	R/W-0/u	U-0	U-0	U-0	U-0
bit 7		3:0>	CS		_	—	—	—
	bit 0	ł						bit 7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **CS<3:0>:** Timerx Clock Source Selection bits

cs	Timer1	Timer3	Timer5
03	Clock Source	Clock Source	Clock Source
1111-1100	Reserved	Reserved	Reserved
1011	TMR5 overflow	TMR5 overflow	Reserved
1010	TMR3 overflow	Reserved	TMR3 overflow
1001	Reserved	TMR1 overflow	TMR1 overflow
1000	TMR0 overflow	TMR0 overflow	TMR0 overflow
0111	CLKREF	CLKREF	CLKREF
0110	SOSC	SOSC	SOSC
0101	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)
0100	LFINTOSC	LFINTOSC	LFINTOSC
0011	HFINTOSC	HFINTOSC	HFINTOSC
0010	Fosc	Fosc	Fosc
0001	Fosc/4	Fosc/4	Fosc/4
0000	T1CKIPPS	T3CKIPPS	T5CKIPPS

20.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal can also gate the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 20-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

Rev. 10.000 1988 5/30/2014	
MODE 0b00001	
TMRx_ers	
PRx 5	
$TMRx \left(\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$	
TMRx_postscaled	
PWM Duty 3 Cycle	

26.9.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 10-bit Addressing mode.

Figure 26-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- 2. Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCL.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a data byte to the slave and clocks out the slaves ACK on the ninth SCL pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

26.9.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 26-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 26-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					
BAUDxCON	ABDOVF	RCIDL		SCKP	SCKP BRG16 — WUE ABDEN					
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	-	— — INT2EDG INT1EDG INT0EDG					
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	182	
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	TX1IF BCL2IF SSP2IF BCL1IF SSP1IF					
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	TX1IP BCL2IP SSP2IP BCL1IP SSP1IP					
RCxREG			EL	JSARTx Rec	RTx Receive Register				399*	
RCxSTA	SPEN	RX9	SREN	CREN	CREN ADDEN FERR OERR RX9D					
RxyPPS	_	_	_		RxyPPS<4:0>				218	
RXxPPS	_	_	_		RXPPS<4:0>					
SPxBRGH	EUSARTx Baud Rate Generator, High Byte					404*				
SPxBRGL			EUSART>	x Baud Rate Generator, Low Byte				404*		
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	393	

TABLE 27-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception. * Page provides register information.

FIGURE 27-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RXx/DTx pin TXx/CKx pin (SCKP = 0)	
TXx/CKx pin (SCKP = 1) Write to bit SREN	
SREN bit	·0'
RCxIF bit (Interrupt) ——— Read RCxREG ————	
Note: Timing dia	agram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .

TABLE 27-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					
ANSELB	ANSELB7	ANSELB6	ANSELB5	ANSELB4	NSELB4 ANSELB3 ANSELB2 ANSELB1 ANSELB0					
ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC4 ANSELC3 ANSELC2 ANSELC1 ANSELC0					
BAUDxCON	ABDOVF	RCIDL		SCKP	SCKP BRG16 — WUE ABDEN					
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	-	— — INT2EDG INT1EDG INT0EDG					
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	TX1IE BCL2IE SSP2IE BCL1IE SSP1IE					
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	TX1IF BCL2IF SSP2IF BCL1IF SSP1IF					
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	TX1IP BCL2IP SSP2IP BCL1IP SSP1IP					
RCxREG			EUS	ARTx Receiv	RTx Receive Data Register					
RCxSTA	SPEN	RX9	SREN	CREN	CREN ADDEN FERR OERR RX9D					
RxyPPS	_	_	_		RxyPPS<4:0>					
RXxPPS	_	_	_		RXPPS<4:0>					
SPxBRGH		EUSARTx Baud Rate Generator, High Byte					404*			
SPxBRGL			EUSART	x Baud Rate	Generator, Lo	ow Byte			404*	
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	393	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

REGISTER 31-4: ADCON3: ADC CONTROL REGISTER 3

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0
_		ADCALC<2:0>		ADSOI		ADTMD<2:0>	
bit 7							bit 0
Legend.							

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7 Unimplemented: Read as '0'

bit 6-4 ADCALC<2:0>: ADC Error Calculation Mode Select bits

	Action During	1st Precharge Stage	
ADCALC	ADDSEN = 0 ADDSEN = 1 CVD Single-Sample Mode Double-Sample Mode ⁽¹⁾		Application
111	Reserved	Reserved	Reserved
110	Reserved	Reserved	Reserved
101	ADLFTR-ADSTPT	ADFLTR-ADSTPT	Average/filtered value vs. setpoint
100	ADPREV-ADFLTR	ADPREV-ADFLTR	First derivative of filtered value ⁽³⁾ (negative)
011	Reserved	Reserved	Reserved
010	ADRES-ADFLTR	(ADRES-ADPREV)-ADFLTR	Actual result vs. averaged/filtered value
001	ADRES-ADSTPT	(ADRES-ADPREV)-ADSTPT	Actual result vs.setpoint
000	ADRES-ADPREV	ADRES-ADPREV	First derivative of single measurement ⁽²⁾
			Actual CVD result in CVD mode ⁽²⁾

bit 3 ADSOI: ADC Stop-on-Interrupt bit

If ADCONT = 1:

- 1 = ADGO is cleared when the threshold conditions are met, otherwise the conversion is retriggered
- 0 = ADGO is not cleared by hardware, must be cleared by software to stop retriggers

bit 2-0 ADTMD<2:0>: Threshold Interrupt Mode Select bits

- 111 = Interrupt regardless of threshold test results
- 110 = Interrupt if ADERR>ADUTH
- 101 = Interrupt if ADERR≤ADUTH
- 100 = Interrupt if ADERR<ADLTH or ADERR>ADUTH
- 011 = Interrupt if ADERR>ADLTH and ADERR<ADUTH
- 010 = Interrupt if ADERR≥ADLTH
- 001 = Interrupt if ADERR<ADLTH
- 000 = Never interrupt
- Note 1: When ADPSIS = 0, the value of ADRES-ADPREV) is the value of (S2-S1) from Table 31-3.
 - 2: When ADPSIS = 0
 - 3: When ADPSIS = 1.

PIC18(L)F26/45/46K40

BTFSC	Bit Test Fil	e, Skip if Cle	ear	BTFSS	Bit Te	est File, Ski	ip if Set		
Syntax:	BTFSC f, b	{,a}		Syntax:	BTFS	BTFSS f, b {,a}			
Operands:	Operands:	0 ≤ f ≤ 0 ≤ b · a ∈ [0	< 7						
Operation:	peration: $skip \text{ if } (f < b >) = 0$ Operation: $skip \text{ if } (f < b >) = 1$								
Status Affected:	None			Status Affect	ted: None				
Encoding:	1011	bbba ff	ff ffff	Encoding:	101	L0 bbba	fff	f fff	
Description:	instruction is the next instru- and a NOP is this a 2-cycle If 'a' is '0', th 'a' is '1', the GPR bank. If 'a' is '0' an set is enable Indexed Liter mode where See Section Bit-Oriented	gister 'f' is '0', t skipped. If bit ruction fetched uction executio s executed inst e instruction. e Access Bank BSR is used to d the extended d, this instruction al Offset Addre ver $f \le 95$ (5FH 35.2.3 "Byte- I Instructions et Mode" for do	'b' is '0', then during the n is discarded ead, making : is selected. If o select the l instruction on operates in essing n). Oriented and in Indexed	Description:	instruct the net currer and a this a If 'a' is 'a' is ' GPR I If 'a' is set is in Inde See S Bit-Of	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution is discarde and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 35.2.3 "Byte-Oriented an Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			
Words:	1			Words: 1					
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction.				Cycles:	1(2) Note:	3 cycles if a by a 2-wor			
Q Cycle Activity:				Q Cycle Ac	tivity:				
Q1	Q2	Q3	Q4				Q3	Q4	
Decode	Read register 'f'	Process Data	No operation	Dec			ocess Data	No operation	
lf skip:	register i	Dala	operation	lf skip:	Tegia		Jala	operation	
Q1	Q2 Q3		Q4		1 C	22	Q3	Q4	
No	No	No	No				No	No	
operation	operation	operation	operation	oper	ation oper	ration ope	eration	operation	
If skip and followed	•		_		ollowed by 2-			_	
Q1	Q2	Q3	Q4				Q3	Q4	
No operation	No operation	No operation	No operation				No eration	No operation	
No	No	No	No	N		10	No eration	No	
Example: Before Instruct PC After Instructio If FLAG< PC If FLAG< PC	FALSE : TRUE : ion = add n 1> = 0; = add 1> = 1;	ress (HERE) ress (TRUE) ress (TRUE)	, 1, 0	Pe After In If	struction FLAG<1> = PC = FLAG<1> =	SE : E : = address = 0;	(HERE) (FALSE)	

PIC18(L)F26/45/46K40

CLRF	Clear f		CLRWDT	Clear Wat	chdog Time	er		
Syntax:	CLRF f {,a}		Syntax:	CLRWDT	CLRWDT			
Operands:	$0 \leq f \leq 255$		Operands:	None				
_	a ∈ [0,1]		Operation:	$000h \rightarrow WDT$,				
Operation:	$\begin{array}{l} 000h \rightarrow f \\ 1 \rightarrow Z \end{array}$			$\begin{array}{c} 000h \rightarrow WI \\ 1 \rightarrow TO, \\ 1 \rightarrow PD \end{array}$	DT postscaler,			
Status Affected:	Z		Status Affected:	$T \rightarrow PD$ TO, PD				
Encoding:	0110 101a	ffff ffff		0000	0000 00	0.0.01.0.0		
Description:	Clears the contents of	the specified	Encoding:					
	register. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.		Description: CLRWDT instruction resets the Watchdog Timer. It also resets scaler of the WDT. Status bits, PD, are set.					
	If 'a' is '0' and the extended this inc		Words:	1				
	set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.		Cycles:	1				
			Q Cycle Activity:					
			Q1	Q2	Q3	Q4		
			Decode	No	Process	No		
Words:	1			operation	Data	operation		
Cycles:	1		Example:	CLRWDT				
Q Cycle Activity:			Before Instruc					
Q1	Q2 Q3	Q4	WDT Counter = ? After Instruction WDT Counter = 00h WDT Postscaler = 0					
Decode	Read Process register 'f' Data	s Write register 'f'						
Example:	CLRF FLAG_RE	G, 1	TO PD	=	1 1			
Before Instruc FLAG_R After Instructic	EG = 5Ah							

PIC18(L)F26/45/46K40

MOVLW		Move lite	Move literal to W					
Syntax:		MOVLW	MOVLW k					
Operands:		$0 \le k \le 25$	$0 \le k \le 255$					
Operation:		$k\toW$	$k \rightarrow W$					
Status Affected:		None	None					
Encoding:		0000	1110	kkk}	k kkkk			
Description:		The 8-bit I	The 8-bit literal 'k' is loaded into W.					
Words:		1	1					
Cycles:		1						
Q Cycle Activity:								
	Q1	Q2	Q3	5	Q4			
	Decode	Read literal 'k'	Proce Dat		Write to W			
Example:		MOVLW	5Ah					
After Instruction								
	W	= 5Ah						

MOVWF	Move W to f						
Syntax:	MOVWF	f {,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]						
Operation:	$(W) \to f$	$(W) \rightarrow f$					
Status Affected:	None	None					
Encoding:	0110	111a ffff fff					
	256-byte b If 'a' is '0', If 'a' is '1', ' GPR bank If 'a' is '0' a set is enab in Indexed mode whe tion 35.2.3 Oriented I	Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.					
Words:	1	1					
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Proce Data		Write gister 'f'			
Example:	MOVWF	reg, 0					
Before Instruc	tion						
W REG After Instructio	= 4Fh = FFh on						
W REG	= 4Fh = 4Fh						

© 2015-2017 Microchip Technology Inc.

TABLE 37-23: SPI MODE REQUIREMENTS

Standard	Standard Operating Conditions (unless otherwise stated)						
Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	2.25*Tcy	-	—	ns	
SP71*	TscH	SCK input high time (Slave mode)	Tcy + 20		_	ns	
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20		—	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100	—	—	ns	
SP74*	TscH2DIL, TscL2DIL	Hold time of SDI data input to SCK edge	100	—	—	ns	
SP75* TDOR	TDOR	SDO data output rise time	_	10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$
			_	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP76*	TDOF	SDO data output fall time	_	10	25	ns	
SP77*	TssH2doZ	SS↑ to SDO output high-impedance	10	_	50	ns	
SP78*	TscR	SCK output rise time	_	10	25	ns	$3.0V \le V\text{DD} \le 5.5V$
		(Master mode)	_	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP79*	TscF	SCK output fall time (Master mode)	_	10	25	ns	
SP80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	$3.0V \leq V\text{DD} \leq 5.5V$
				_	145	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge	1 Tcy	—	—	ns	
SP82*	TssL2doV	SDO data output valid after $\overline{\text{SS}}\downarrow$ edge	_	_	50	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 Tcy + 40	—	—	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

APPENDIX A: REVISION HISTORY

Revision A (9/2015)

Initial Release.

Revision B (5/2016)

Updated Example 11-6; Figures 37-1, 37-2, 37-5; Register 31-5; Sections 1.1.2, 21.4.1, 21.4.2, 22.1.3, 22.1.9, 22.1.10, 37.2; Tables 37-1, 37-2, 37-3, 37-7, 37-8, 37-9, 37-11, 37-13.

Removed Register 5-3.

Added long name bit/short name bits section 1.4 and updated bit names accordingly.

Revision C (9/2016)

Updated Peripheral Module, Memory and Core features descriptions on cover page. Updated the PIC18(L)F2x/4xK40 Family Types Table. Updated Examples 11-1, 11-3, 11-5 and 11-6; Figures 14-1 and 31-2; Registers 4-2, 4-5, 13-18 and 31-6; Sections 1.2, 4.4.1, 4.5, 4.5.4, 17.3, 17.5, 17.7, 18.1, 18.1.1, 18.1.1.1, 18.1.2, 18.1.6, 18.3, 18.4, 18.7, 19.0, 19.8.1, 20.0, 21.3, and 25.3; Tables 4-2, 37-2, 37-3, 37-5, 37-13 and 37-14.

Revision D (4/2017)

Updated Cover page. Updated Example 13-1; Figures 6-1 and 11-11; Registers 3-6, 3-13, 19-1, and 26-9; Sections 1.1.2, 4.3, 13.8, 23.5, 26.5.1, 26.10, 31.1.2, and 31.1.6; Tables 4-1, 10-5, 37-11 and 37-15.

New Timer 2 chapter.

Removed Section 4.4.2 and 31.2.3.

Added Section 23.5.1