



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 64MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                                |
| Number of I/O              | 36                                                                        |
| Program Memory Size        | 64KB (32K x 16)                                                           |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 1K x 8                                                                    |
| RAM Size                   | 3.6K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 5.5V                                                               |
| Data Converters            | A/D 35x10b; D/A 1x5b                                                      |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                        |
| Mounting Type              | Through Hole                                                              |
| Package / Case             | 40-DIP (0.600", 15.24mm)                                                  |
| Supplier Device Package    | 40-PDIP                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k40-e-p |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

## Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

#### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

#### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

## **Customer Notification System**

Register on our website at www.microchip.com to receive the most current information on all of our products.

| R/\/_1                                                                                                                                                                                                  | _1                                                                                                                                                                                                                                                                                               | R/\/_1                                                                              | R/\/_1                                                           | P/\/\_1                                                              | R/\\/_1                                            | R/\//_1                                |                             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|-----------------------------|--|
|                                                                                                                                                                                                         | 0-1                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                  |                                                                      |                                                    |                                        | 1.0                         |  |
| XINST                                                                                                                                                                                                   | —                                                                                                                                                                                                                                                                                                | DEBUG                                                                               | SIVREN                                                           | PPS1WAY                                                              | ZCD                                                | BORV                                   | <1:0>                       |  |
| bit 7                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                  |                                                                      |                                                    |                                        | bit 0                       |  |
| Laward                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                  |                                                                      |                                                    |                                        |                             |  |
| Legena:                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                  |                                                                      |                                                    |                                        |                             |  |
| R = Reauable                                                                                                                                                                                            | Dil<br>blank daviaa                                                                                                                                                                                                                                                                              | vv = vvritable                                                                      | DIL                                                              | 0 = 0 minipier                                                       | arad                                               | uas I<br>v = Ditio unkn                |                             |  |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                  |                                                                      | areu                                               |                                        | IOWII                       |  |
| bit 7 XINST: Extended Instruction Set Enable bit<br>1 = Extended Instruction Set and Indexed Addressing mode disabled (Legacy mode)<br>0 = Extended Instruction Set and Indexed Addressing mode enabled |                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                  |                                                                      |                                                    |                                        |                             |  |
| bit 6                                                                                                                                                                                                   | Unimplement                                                                                                                                                                                                                                                                                      | ed: Read as '1                                                                      | ,                                                                |                                                                      |                                                    |                                        |                             |  |
| bit 5                                                                                                                                                                                                   | <b>DEBUG:</b> Debut<br>1 = Backgrou<br>0 = Backgrou                                                                                                                                                                                                                                              | ugger Enable b<br>und debugger<br>und debugger                                      | it<br>disabled<br>enabled                                        |                                                                      |                                                    |                                        |                             |  |
| bit 4                                                                                                                                                                                                   | <ul> <li>STVREN: Stack Overflow/Underflow Reset Enable bit</li> <li>1 = Stack Overflow or Underflow will cause a Reset</li> <li>0 = Stack Overflow or Underflow will not cause a Reset</li> </ul>                                                                                                |                                                                                     |                                                                  |                                                                      |                                                    |                                        |                             |  |
| bit 3                                                                                                                                                                                                   | PPS1WAY: PF<br>1 = The PPS<br>PPSLOC<br>0 = The PPS<br>executed                                                                                                                                                                                                                                  | PSLOCKED bit<br>BLOCKED bit<br>CK is set, all fut<br>LOCKED bit c                   | One-Way Se<br>can only be s<br>ure changes t<br>an be set and    | t Enable bit<br>set once after<br>to PPS register<br>d cleared as no | an unlocking s<br>s are prevente<br>eeded (provide | sequence is ex<br>d<br>ed an unlocking | ecuted; once<br>sequence is |  |
| bit 2                                                                                                                                                                                                   | <b>ZCD</b> : ZCD Dis<br>1 = ZCD disa<br>0 = ZCD alwa                                                                                                                                                                                                                                             | able bit<br>abled. ZCD car<br>ays enabled, Z                                        | n be enabled l<br>CDMD bit is i                                  | by setting the Z<br>gnored                                           | CDSEN bit of                                       | ZCDCON                                 |                             |  |
| bit 1-0                                                                                                                                                                                                 | it 1-0 BORV<1:0>: Brown-out Reset Voltage Selection bit <sup>(1)</sup> PIC18F2x/4xK40 device: 11 = Brown-out Reset Voltage (VBOR) set to 2.45V 10 = Brown-out Reset Voltage (VBOR) set to 2.45V 01 = Brown-out Reset Voltage (VBOR) set to 2.7V 00 = Brown-out Reset Voltage (VBOR) set to 2.85V |                                                                                     |                                                                  |                                                                      |                                                    |                                        |                             |  |
| Note 1: The h                                                                                                                                                                                           | PIC18LF2x/4x<br>11 = Brow<br>10 = Brow<br>01 = Brow<br>00 = Brow                                                                                                                                                                                                                                 | K40 device:<br>wn-out Reset V<br>wn-out Reset V<br>wn-out Reset V<br>wn-out Reset V | 'oltage (VBOR<br>'oltage (VBOR<br>'oltage (VBOR<br>'oltage (VBOR | ) set to 1.90V<br>) set to 2.45V<br>) set to 2.7V<br>) set to 2.85V  | 201/0 16 M⊟7                                       |                                        |                             |  |

## REGISTER 3-4: Configuration Word 2H (30 0003h): Supervisor

## 9.0 WINDOWED WATCHDOG TIMER (WWDT)

The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events. The Windowed Watchdog Timer (WWDT) differs in that CLRWDT instructions are only accepted when they are performed within a specific window during the time-out period.

The WWDT has the following features:

- Selectable clock source
- Multiple operating modes
  - WWDT is always on
  - WWDT is off when in Sleep
  - WWDT is controlled by software
  - WWDT is always off
- Configurable time-out period is from 1 ms to 256s (nominal)
- Configurable window size from 12.5% to 100% of the time-out period
- Multiple Reset conditions

## 10.2.3 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

## 10.2.3.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 10-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of two (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

## EXAMPLE 10-2: COMPUTED GOTO USING AN OFFSET VALUE

|       | MOVF<br>CALL | OFFSET,<br>TABLE | W |
|-------|--------------|------------------|---|
| ORG   | nn00h        |                  |   |
| TABLE | ADDWF        | PCL              |   |
|       | RETLW        | nnh              |   |
|       | RETLW        | nnh              |   |
|       | RETLW        | nnh              |   |
|       |              |                  |   |
|       |              |                  |   |
|       |              |                  |   |

## 10.2.3.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 11.1.1 "Table Reads and Table Writes".

© 2015-2017 Microchip Technology Inc.

## **REGISTER 11-5: NVMDAT: DATA EEPROM MEMORY DATA**

| R/W-0/0                                                  | R/W-0/0     | R/W-0/0           | R/W-0/0          | R/W-0/0          | R/W-0/0 | R/W-0/0 | R/W-0/0 |  |  |  |
|----------------------------------------------------------|-------------|-------------------|------------------|------------------|---------|---------|---------|--|--|--|
|                                                          | NVMDAT<7:0> |                   |                  |                  |         |         |         |  |  |  |
| bit 7                                                    |             |                   |                  |                  |         |         | bit 0   |  |  |  |
|                                                          |             |                   |                  |                  |         |         |         |  |  |  |
| Legend:                                                  |             |                   |                  |                  |         |         |         |  |  |  |
| R = Readable bit W = Writable bit U = Unimplemented bit, |             |                   | mented bit, read | d as '0'         |         |         |         |  |  |  |
| x = Bit is unkn                                          | own         | '0' = Bit is clea | ared             | '1' = Bit is set | t       |         |         |  |  |  |
| -n = Value at F                                          | POR         |                   |                  |                  |         |         |         |  |  |  |

bit 7-0 **NVMDAT<7:0>:** The value of the data memory word returned from NVMADR after a Read command, or the data written by a Write command.

#### TABLE 11-5: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

| Name                   | Bit 7                                        | Bit 6     | Bit 5     | Bit 4        | Bit 3          | Bit 2       | Bit 1   | Bit 0   | Register<br>on Page |
|------------------------|----------------------------------------------|-----------|-----------|--------------|----------------|-------------|---------|---------|---------------------|
| NVMCON1                | NVMREG<1:0> — FREE WRERR WREN WR RD          |           |           |              |                |             | 145     |         |                     |
| NVMCON2                |                                              |           |           | Unloc        | k Pattern      |             |         |         | 146                 |
| NVMADRL                |                                              |           |           | NVMA         | .DR<7:0>       |             |         |         | 146                 |
| NVMADRH <sup>(1)</sup> | —                                            | _         | _         | —            | —              | —           | NVMA    | 146     |                     |
| NVMDAT                 | NVMDAT<7:0>                                  |           |           |              |                |             |         | 147     |                     |
| TBLPTRU                | Program Memory Table Pointer (TBLPTR<21:16>) |           |           |              |                |             |         | 127*    |                     |
| TBLPTRH                |                                              |           | Program N | lemory Table | e Pointer (TBI | LPTR<15:8>) |         |         | 127*                |
| TBLPTRL                |                                              |           | Program I | Memory Table | e Pointer (TB  | SLPTR<7:0>) |         |         | 127*                |
| TABLAT                 |                                              |           |           | TA           | BLAT           |             |         |         | 126*                |
| INTCON                 | GIE/GIEH                                     | PEIE/GIEL | IPEN      | —            | —              | INT2EDG     | INT1EDG | INT0EDG | 170                 |
| PIE7                   | SCANIE                                       | CRCIE     | NVMIE     | —            | —              | —           | —       | CWG1IE  | 186                 |
| PIR7                   | SCANIF                                       | CRCIF     | NVMIF     | _            | _              | _           | _       | CWG1IF  | 178                 |
| IPR7                   | SCANIP                                       | CRCIP     | NVMIP     | _            | _              | _           | _       | CWG1IP  | 194                 |

Legend: — = unimplemented, read as '0'. Shaded bits are not used during EEPROM access.

\*Page provides register information.

Note 1: The NVMADRH register is not implemented on PIC18(L)F26/45/46K40.





## PIC18(L)F26/45/46K40



## 19.1 Register Definitions: Timer1/3/5

Long bit name prefixes for the Timer1/3/5 are shown in Table 20-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

#### TABLE 19-1:

| Peripheral | Bit Name Prefix |
|------------|-----------------|
| Timer1     | T1              |
| Timer3     | Т3              |
| Timer5     | T5              |

## REGISTER 19-1: TxCON: TIMERx CONTROL REGISTER

| U-0   | U-0 | R/W-0/u   | R/W-0/u | U-0 | R/W-0/u | R/W-0/0 | R/W-0/u |
|-------|-----|-----------|---------|-----|---------|---------|---------|
| —     | —   | CKPS<1:0> |         | —   | SYNC    | RD16    | ON      |
| bit 7 |     |           |         |     |         |         | bit 0   |

| Legend:           |                  |                             |               |
|-------------------|------------------|-----------------------------|---------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | u = unchanged |

| bit 7-6 | Unimplemented: Read as '0' |
|---------|----------------------------|
|---------|----------------------------|

#### bit 5-4 CKPS<1:0>: Timerx Input Clock Prescale Select bits

- 11 = 1:8 Prescale value
- 10 = 1:4 Prescale value
- 01 = 1:2 Prescale value
- 00 = 1:1 Prescale value
- bit 3 Unimplemented: Read as '0'
- bit 2 SYNC: Timerx External Clock Input Synchronization Control bit TMRxCLK = Fosc/4 or Fosc:
  - This bit is ignored. Timer1 uses the incoming clock as is.

#### Else:

- 1 = Do not synchronize external clock input
- 0 = Synchronize external clock input with system clock
- bit 1 RD16: 16-Bit Read/Write Mode Enable bit
  - 1 = Enables register read/write of Timer in one 16-bit operation
    - 0 = Enables register read/write of Timer in two 8-bit operations
- bit 0 ON: Timerx On bit
  - 1 = Enables Timerx
    - 0 = Disables Timerx

## 20.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx\_ers external signal can also gate the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 20-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.



| Rev. 10.000 1988<br>5/30/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MODE 0b00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| TMRx_ers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| PRx 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| $TMRx \left( \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$ |  |
| TMRx_postscaled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| PWM Duty   3     Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

| R/W-0/0        | R/W-0/0                                             | R/W-0/0                                                   | R/W-0/0                                              | R/W-0/0                                                           | R/W-0/0          | R/W-0/0          | R/W-0/0          |
|----------------|-----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|------------------|------------------|------------------|
| PSYNC          | CPOL                                                | CSYNC                                                     |                                                      |                                                                   | MODE<4:0>        |                  |                  |
| bit 7          |                                                     |                                                           |                                                      |                                                                   |                  |                  | bit 0            |
|                |                                                     |                                                           |                                                      |                                                                   |                  |                  |                  |
| Legend:        |                                                     |                                                           |                                                      |                                                                   |                  |                  |                  |
| R = Reada      | ble bit                                             | W = Writable                                              | bit                                                  | U = Unimpler                                                      | nented bit, read | d as '0'         |                  |
| u = Bit is u   | nchanged                                            | x = Bit is unkr                                           | nown                                                 | -n/n = Value a                                                    | at POR and BC    | R/Value at all   | other Resets     |
| '1' = Bit is s | set                                                 | '0' = Bit is clea                                         | ared                                                 |                                                                   |                  |                  |                  |
| bit 7          | <b>PSYNC:</b> Time<br>1 = TMRx Pr<br>0 = TMRx Pr    | erx Prescaler S<br>rescaler Output<br>rescaler Output     | ynchronizatioi<br>is synchroniz<br>is not synchro    | n Enable bit <sup>(1, 2</sup><br>ed to Fosc/4<br>onized to Fosc/4 | )<br>4           |                  |                  |
| bit 6          | <b>CPOL:</b> Timer<br>1 = Falling e<br>0 = Rising e | x Clock Polarit<br>dge of input clo<br>dge of input clo   | y Selection bit<br>ock clocks time<br>ck clocks time | (3)<br>er/prescaler<br>r/prescaler                                |                  |                  |                  |
| bit 5          | CSYNC: Time<br>1 = ON regis<br>0 = ON regis         | erx Clock Sync<br>ster bit is synch<br>ster bit is not sy | hronization Er<br>ronized to TMI<br>nchronized to    | nable bit <sup>(4, 5)</sup><br>R2_clk input<br>TMR2_clk inpu      | t                |                  |                  |
| bit 4-0        | MODE<4:0>:<br>See Table 20-                         | Timerx Contro                                             | I Mode Select<br>ng modes.                           | ion bits <sup>(6, 7)</sup>                                        |                  |                  |                  |
| Note 1:        | Setting this bit er                                 | sures that read                                           | ling TMRx will                                       | return a valid o                                                  | lata value.      |                  |                  |
| 2:             | When this bit is ':                                 | 1', Timer2 cann                                           | ot operate in S                                      | Sleep mode.                                                       |                  |                  |                  |
| 3:             | CKPOL should n                                      | ot be changed                                             | while ON = 1.                                        |                                                                   |                  |                  |                  |
| 4:             | Setting this bit en                                 | nsures glitch-fre                                         | e operation w                                        | hen the ON is e                                                   | enabled or disa  | bled.            |                  |
| 5:             | When this bit is se                                 | et then the time                                          | operation will                                       | be delayed by t                                                   | wo TMRx input    | clocks after the | e ON bit is set. |
| 6:             | Unless otherwise affecting the value                | e indicated, all<br>e of TMRx).                           | modes start u                                        | upon ON = 1 a                                                     | nd stop upon (   | ON = 0 (stops    | occur without    |
| 7:             | When TMRx = P                                       | Rx, the next clo                                          | ck clears TMF                                        | Rx, regardless o                                                  | of the operating | mode.            |                  |

## REGISTER 20-2: TxHLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

| R/W-0/0         | R/W-1/1                                                                                                                                                                                                                                                                                                              | R/W-0/0          | R/W-1/1 | R/W-0/0           | R/W-1/1          | R/W-0/0         | R/W-1/1 |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|-------------------|------------------|-----------------|---------|
| P4TSE           | L<1:0>                                                                                                                                                                                                                                                                                                               | P3TSEL<1:0>      |         | C2TSEL<1:0>       |                  | C1TSE           | L<1:0>  |
| bit 7           |                                                                                                                                                                                                                                                                                                                      |                  |         |                   |                  |                 | bit 0   |
|                 |                                                                                                                                                                                                                                                                                                                      |                  |         |                   |                  |                 |         |
| Legend:         |                                                                                                                                                                                                                                                                                                                      |                  |         |                   |                  |                 |         |
| R = Readable    | bit                                                                                                                                                                                                                                                                                                                  | W = Writable     | bit     | U = Unimplem      | nented bit, read | l as '0'        |         |
| -n = Value at P | POR                                                                                                                                                                                                                                                                                                                  | '1' = Bit is set |         | '0' = Bit is clea | ared             | x = Bit is unkn | iown    |
| bit 7-6         | <ul> <li>P4TSEL&lt;1:0&gt;: PWM4 Timer Selection bi</li> <li>11 = PWM4 based on TMR6</li> <li>10 = PWM4 based on TMR4</li> <li>01 = PWM4 based on TMR2</li> <li>00 = Reserved</li> </ul>                                                                                                                             |                  |         | S                 |                  |                 |         |
| bit 5-4         | P3TSEL<1:0>: PWM3 Timer Selection bits<br>11 = PWM3 based on TMR6<br>10 = PWM3 based on TMR4<br>01 = PWM3 based on TMR2<br>00 = Reserved                                                                                                                                                                             |                  |         |                   |                  |                 |         |
| bit 3-2         | <b>C2TSEL&lt;1:0&gt;:</b> CCP2 Timer Selection bits<br>11 = CCP2 is based off Timer5 in Capture/Compare mode and Timer6 in PWM mode<br>10 = CCP2 is based off Timer3 in Capture/Compare mode and Timer4 in PWM mode<br>01 = CCP2 is based off Timer1 in Capture/Compare mode and Timer2 in PWM mode<br>00 = Reserved |                  |         |                   |                  |                 |         |
| bit 1-0         | <b>C1TSEL&lt;1:0&gt;:</b> CCP1 Timer Selection bits<br>11 = CCP1 is based off Timer5 in Capture/Compare mode and Timer6 in PWM mode<br>10 = CCP1 is based off Timer3 in Capture/Compare mode and Timer4 in PWM mode<br>01 = CCP1 is based off Timer1 in Capture/Compare mode and Timer2 in PWM mode<br>00 = Reserved |                  |         |                   |                  |                 |         |

## REGISTER 22-2: CCPTMRS: CCP TIMERS CONTROL REGISTER

## 26.8 I<sup>2</sup>C Mode Operation

All MSSP I<sup>2</sup>C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the PIC<sup>®</sup> microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I<sup>2</sup>C devices.

## 26.8.1 BYTE FORMAT

All communication in  $I^2C$  is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

## 26.8.2 DEFINITION OF I<sup>2</sup>C TERMINOLOGY

There is language and terminology in the description of  $I^2C$  communication that have definitions specific to  $I^2C$ . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips  $I^2C$  specification.

## 26.8.3 SDA AND SCL PINS

Selection of any I<sup>2</sup>C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

- Note 1: Data is tied to output zero when an I<sup>2</sup>C mode is enabled.
  - 2: Any device pin can be selected for SDA and SCL functions with the PPS peripheral. These functions are bidirectional. The SDA input is selected with the SSPxDATPPS registers. The SCL input is selected with the SSPxCLKPPS registers. Outputs are selected with the RxyPPS registers. It is the user's responsibility to make the selections so that both the input and the output for each function is on the same pin.

## 26.8.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

## TABLE 26-2: I<sup>2</sup>C BUS TERMS

| TERM                | Description                                                                                                                                                                                          |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transmitter         | The device which shifts data out                                                                                                                                                                     |
|                     | onto the bus.                                                                                                                                                                                        |
| Receiver            | The device which shifts data in from the bus.                                                                                                                                                        |
| Master              | The device that initiates a transfer,<br>generates clock signals and<br>terminates a transfer.                                                                                                       |
| Slave               | The device addressed by the master.                                                                                                                                                                  |
| Multi-master        | A bus with more than one device that can initiate data transfers.                                                                                                                                    |
| Arbitration         | Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.                                                                  |
| Synchronization     | Procedure to synchronize the clocks of two or more devices on the bus.                                                                                                                               |
| Idle                | No master is controlling the bus,<br>and both SDA and SCL lines are<br>high.                                                                                                                         |
| Active              | Any time one or more master devices are controlling the bus.                                                                                                                                         |
| Addressed<br>Slave  | Slave device that has received a matching address and is actively being clocked by a master.                                                                                                         |
| Matching<br>Address | Address byte that is clocked into a slave that matches the value stored in SSPxADD.                                                                                                                  |
| Write Request       | Slave receives a matching address with R/W bit clear, and is ready to clock in data.                                                                                                                 |
| Read Request        | Master sends an address byte with<br>the $R/W$ bit set, indicating that it<br>wishes to clock data out of the<br>Slave. This data is the next and all<br>following bytes until a Restart or<br>Stop. |
| Clock Stretching    | When a device on the bus hold SCL low to stall communication.                                                                                                                                        |
| Bus Collision       | Any time the SDA line is sampled<br>low by the module while it is out-<br>putting and expected high state.                                                                                           |

<sup>© 2015-2017</sup> Microchip Technology Inc.



## 26.10.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

| Note: | Because queuing of events is not allowed,  |  |  |  |  |  |  |  |
|-------|--------------------------------------------|--|--|--|--|--|--|--|
|       | writing to the lower five bits of SSPxCON2 |  |  |  |  |  |  |  |
|       | is disabled until the Start condition is   |  |  |  |  |  |  |  |
|       | complete.                                  |  |  |  |  |  |  |  |

## 26.10.4 I<sup>2</sup>C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 26-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is

FIGURE 26-26: FIRST START BIT TIMING

the Start condition and causes the S bit of the SSPxSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I<sup>2</sup>C module is reset into its Idle state.
  - **2:** The Philips I<sup>2</sup>C specification states that a bus collision cannot occur on a Start.



© 2015-2017 Microchip Technology Inc.

## 27.4.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDxCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RXx pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPxBRGH:SPxBRGL register pair. After the ABDOVF bit has been set, the counter continues to count until the fifth rising edge is detected on the RXx pin. Upon detecting the fifth RX edge, the hardware will set the RCxIF interrupt flag and clear the ABDEN bit of the BAUDxCON register. The RCxIF flag can be subsequently cleared by reading the RCxREG register. The ABDOVF flag of the BAUDxCON register can be cleared by software directly.

To terminate the auto-baud process before the RCxIF flag is set, clear the ABDEN bit then clear the ABDOVF bit of the BAUDxCON register. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

## 27.4.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDxCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCxIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 27-7), and asynchronously if the device is in Sleep mode (Figure 27-8). The interrupt condition is cleared by reading the RCxREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

## 27.4.3.1 Special Considerations

#### Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be ten or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

#### Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

## WUE Bit

The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCxREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

## 31.5.8 CONTINUOUS SAMPLING MODE

Setting the ADCONT bit in the ADCON0 register automatically retriggers a new conversion cycle after updating the ADACC register. That means the ADGO bit is set to generate automatic retriggering, until the device Reset occurs or the A/D Stop-on-interrupt bit (ADSOI in the ADCON3 register) is set (correct logic).

## 31.5.9 DOUBLE SAMPLE CONVERSION

Double sampling is enabled by setting the ADDSEN bit of the ADCON1 register. When this bit is set, two conversions are required before the module will calculate threshold error (each conversion must still be triggered separately). The first conversion will set the ADMATH bit of the ADSTAT register and update ADACC, but will not calculate ADERR or trigger ADTIF. When the second conversion completes, the first value is transferred to ADPREV (depending on the setting of ADPSIS) and the value of the second conversion is placed into ADRES. Only upon the completion of the second conversion is ADERR calculated and ADTIF triggered (depending on the value of ADCALC).

## 31.6 Register Definitions: ADC Control

| R/W-0/0          | R/W-0/0       | U-0               | R/W-0/0          | U-0                 | R/W-0/0          | U-0             | R/W/HC-0        |
|------------------|---------------|-------------------|------------------|---------------------|------------------|-----------------|-----------------|
| ADON             | ADCONT        | —                 | ADCS             | —                   | ADFM             | -               | ADGO            |
| bit 7            |               |                   |                  |                     |                  |                 | bit 0           |
|                  |               |                   |                  |                     |                  |                 |                 |
| Legend:          |               |                   |                  |                     |                  |                 |                 |
| R = Readable     | bit           | W = Writable      | bit              | U = Unimpler        | mented bit, read | d as '0'        |                 |
| u = Bit is unch  | anged         | x = Bit is unkr   | nown             | -n/n = Value a      | at POR and BO    | R/Value at all  | other Resets    |
| '1' = Bit is set |               | '0' = Bit is clea | ared             | HC = Bit is cl      | eared by hardw   | /are            |                 |
|                  |               |                   |                  |                     |                  |                 |                 |
| bit 7            | ADON: ADC     | Enable bit        |                  |                     |                  |                 |                 |
|                  | 1 = ADC is er | nabled            |                  |                     |                  |                 |                 |
|                  | 0 = ADC is di | sabled            |                  |                     |                  |                 |                 |
| bit 6            | ADCONT: AD    | DC Continuous     | Operation Ena    | able bit            |                  |                 |                 |
|                  | 1 = ADGO is   | s retriggered up  | on completion    | of each conve       | ersion trigger u | ntil ADTIF is s | et (if ADSOI is |
|                  | 0 = ADC is c  | leared upon co    | moletion of ea   | ach conversion      | trigger          | )               |                 |
| bit 5            | Unimplemen    | ited: Read as '   | 0'               |                     |                  |                 |                 |
| bit 4            | ADCS: ADC     | Clock Selection   | n bit            |                     |                  |                 |                 |
|                  | 1 = Clock su  | pplied from FR    | C dedicated o    | scillator           |                  |                 |                 |
|                  | 0 = Clock su  | pplied by Fosc    | , divided acco   | rding to ADCL       | K register       |                 |                 |
| bit 3            | Unimplemen    | ted: Read as '    | 0'               |                     |                  |                 |                 |
| bit 2            | ADFM: ADC     | results Format    | alignment Sel    | ection              |                  |                 |                 |
|                  | 1 = ADRES a   | and ADPREV of     | lata are right-j | ustified            |                  |                 |                 |
|                  | 0 = ADRES a   | and ADPREV of     | lata are left-ju | stified, zero-fille | ed               |                 |                 |
| bit 1            | Unimplemen    | ted: Read as '    | 0'               |                     |                  |                 |                 |
| bit 0            | ADGO: ADC     | Conversion Sta    | atus bit         |                     |                  | · · · · · ·     |                 |
|                  | 1 = ADC con   | iversion cycle    | In progress. S   |                     | starts an ADC    | conversion cy   | cie. The bit is |
|                  | 0 = ADC conv  | version comple    | ted/not in proc  | ress                | Sit              |                 |                 |
|                  |               |                   | 1                | •                   |                  |                 |                 |

#### REGISTER 31-1: ADCON0: ADC CONTROL REGISTER 0

| U-0                                    | U-0                 | R/W-0/0           | R/W-0/0       | R/W-0/0        | R/W-0/0          | R/W-0/0        | R/W-0/0      |  |  |
|----------------------------------------|---------------------|-------------------|---------------|----------------|------------------|----------------|--------------|--|--|
| —                                      | —                   |                   | ADCS<5:0>     |                |                  |                |              |  |  |
| bit 7                                  |                     |                   |               |                |                  |                | bit 0        |  |  |
|                                        |                     |                   |               |                |                  |                |              |  |  |
| Legend:                                |                     |                   |               |                |                  |                |              |  |  |
| R = Readable bit W = Writable bit      |                     |                   | bit           | U = Unimpler   | nented bit, read | d as '0'       |              |  |  |
| u = Bit is unchanged x = Bit is unknow |                     |                   | iown          | -n/n = Value a | at POR and BC    | R/Value at all | other Resets |  |  |
| '1' = Bit is set                       |                     | '0' = Bit is clea | ared          |                |                  |                |              |  |  |
|                                        |                     |                   |               |                |                  |                |              |  |  |
| bit 7-6                                | Unimplemer          | nted: Read as '   | כ'            |                |                  |                |              |  |  |
| bit 5-0                                | ADCS<5:0>:          | ADC Conversi      | on Clock Sele | ect bits       |                  |                |              |  |  |
|                                        | 111111 <b>= F</b> c | osc/128           |               |                |                  |                |              |  |  |
|                                        | 111110 <b>= F</b> c | osc/126           |               |                |                  |                |              |  |  |
| 111101 = Fosc/124                      |                     |                   |               |                |                  |                |              |  |  |
|                                        | •                   |                   |               |                |                  |                |              |  |  |
|                                        | •                   |                   |               |                |                  |                |              |  |  |
|                                        | •                   |                   |               |                |                  |                |              |  |  |
|                                        | 000000 <b>=</b> Fo  | osc/2             |               |                |                  |                |              |  |  |

## REGISTER 31-6: ADCLK: ADC CLOCK SELECTION REGISTER

## REGISTER 31-7: ADREF: ADC REFERENCE SELECTION REGISTER

| U-0   | U-0 | U-0 | R/W-0/0 | U-0 | U-0 | R/W-0/0 | R/W-0/0 |
|-------|-----|-----|---------|-----|-----|---------|---------|
| —     | —   | —   | ADNREF  |     |     | ADPRE   | F<1:0>  |
| bit 7 |     |     |         |     |     |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

| bit 7-5<br>bit 4 | Unimplemented: Read as '0'<br>ADNREF: ADC Negative Voltage Reference Selection bit<br>1 = VREF- is connected to external VREF-<br>0 = VREF- is connected to AVss                                                                  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 3-2          | Unimplemented: Read as '0'                                                                                                                                                                                                        |
| bit 1-0          | ADPREF: ADC Positive Voltage Reference Selection bits<br>11 = VREF+ is connected to internal Fixed Voltage Reference (FVR) module<br>10 = VREF+ is connected to external VREF+<br>01 = Reserved<br>00 = VREF+ is connected to VDD |

# PIC18(L)F26/45/46K40

| DEC         | FSZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Decremen                                                                       | nt f, skip if 0                  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DCF                | SNZ                                                                                                                                                                                                                                                                                                                                | Decreme                                                                                                                                                                                                                                                                                                               | nt f, skip if n                       | ot 0        |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|--|
| Synt        | syntax: DECFSZ f {,d {,a}}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                | Synt                             | ax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DCFSNZ f {,d {,a}} |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       |                                       |             |  |
| Oper        | ands:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$ | 5                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oper               | ands:                                                                                                                                                                                                                                                                                                                              | $0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$                                                                                                                                                                                                                                                                   | 0 ≤ f ≤ 255<br>d ∈ [0,1]<br>a ∈ [0,1] |             |  |
| Oper        | Operation: $(f) - 1 \rightarrow des$<br>skip if result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                | st,<br>= 0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oper               | Operation:                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       | est,<br>It ≠ 0                        |             |  |
| Statu       | is Affected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | None                                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Statu              | s Affected:                                                                                                                                                                                                                                                                                                                        | None                                                                                                                                                                                                                                                                                                                  |                                       |             |  |
| Enco        | oding:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0010                                                                           | 11da ffi                         | ff ffff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Enco               | ding:                                                                                                                                                                                                                                                                                                                              | 0100                                                                                                                                                                                                                                                                                                                  | 11da fff                              | ff ffff     |  |
| Desc        | Description:       The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.         If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 35.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details |                                                                                | Desc                             | Description:<br>The contents of register<br>decremented. If 'd' is '1'<br>placed in W. If 'd' is '1'<br>placed back in register<br>If the result is not '0', tl<br>instruction, which is all<br>discarded and a NOP is<br>instead, making it a 2-4<br>instruction.<br>If 'a' is '0', the Access I<br>If 'a' is '0', the Access I<br>If 'a' is '1', the BSR is u<br>GPR bank.<br>If 'a' is '0' and the exter<br>set is enabled, this inst<br>in Indexed Literal Offset<br>mode whenever f ≤ 95<br>tion 35.2.3 "Byte-Oried<br>Oriented Instructions<br>eral Offset Mode" for |                    | the sof register 'f<br>ed. If 'd' is '0', '<br>V. If 'd' is '1', th<br>k in register 'f'<br>t is not '0', the<br>which is alrea<br>and a NOP is e<br>aking it a 2-cyc<br>the Access Bar<br>the BSR is use<br>and the extend<br>led, this instruct<br>Literal Offset A<br>never $f \le 95$ (51<br>5; "Byte-Orient<br>nstructions in | ter 'f' are<br>'0', the result is<br>1', the result is<br>er 'f' (default).<br>the next<br>already fetched, is<br>is executed<br>2-cycle<br>a Bank is selected.<br>used to select the<br>tended instruction<br>istruction operates<br>iset Addressing<br>05 (5Fh). See Sec-<br>riented and Bit-<br>ns in Indexed Lit- |                                       |             |  |
| Word        | ds:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                                                                                                                                                                                                                                                                                                                    | eral Offset                                                                                                                                                                                                                                                                                                           | t Mode" for de                        | tails.      |  |
| Cycle       | es:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1(2)                                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Word               | ls:                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                     |                                       |             |  |
| ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Note: 3 cy<br>by a                                                             | cles if skip an<br>2-word instru | d followed<br>action.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cycle              | es:                                                                                                                                                                                                                                                                                                                                | 1(2)<br>Note: 3                                                                                                                                                                                                                                                                                                       | cycles if skip a                      | nd followed |  |
| QC          | ycle Activity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                | vele Activity:                                                                                                                                                                                                                                                                                                                     | by                                                                                                                                                                                                                                                                                                                    | a 2-woru insti                        |             |  |
|             | Q1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q2                                                                             | Q3                               | Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                                                                                                                                                                                                                                    | 02                                                                                                                                                                                                                                                                                                                    | 03                                    | 04          |  |
|             | Decode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Read<br>register 'f'                                                           | Process<br>Data                  | destination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Decode                                                                                                                                                                                                                                                                                                                             | Read                                                                                                                                                                                                                                                                                                                  | Process                               | Write to    |  |
| lf sk       | ip:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | regiotor r                                                                     | Bata                             | dootination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 200000                                                                                                                                                                                                                                                                                                                             | register 'f'                                                                                                                                                                                                                                                                                                          | Data                                  | destination |  |
|             | Q1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02                                                                             | Q3                               | Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lf sk              | ip:                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                       | •                                     | •           |  |
|             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No                                                                             | No                               | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Q1                                                                                                                                                                                                                                                                                                                                 | Q2                                                                                                                                                                                                                                                                                                                    | Q3                                    | Q4          |  |
|             | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | operation                                                                      | operation                        | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | No                                                                                                                                                                                                                                                                                                                                 | No                                                                                                                                                                                                                                                                                                                    | No                                    | No          |  |
| lf sk       | ip and followe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d by 2-word ins                                                                | struction:                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | operation                                                                                                                                                                                                                                                                                                                          | operation                                                                                                                                                                                                                                                                                                             | operation                             | operation   |  |
|             | Q1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q2                                                                             | Q3                               | Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lfsk               | ip and followe                                                                                                                                                                                                                                                                                                                     | d by 2-word ir                                                                                                                                                                                                                                                                                                        | struction:                            |             |  |
|             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No                                                                             | No                               | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | Q1                                                                                                                                                                                                                                                                                                                                 | Q2                                                                                                                                                                                                                                                                                                                    | Q3                                    | Q4          |  |
|             | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | operation                                                                      | operation                        | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | No                                                                                                                                                                                                                                                                                                                                 | No                                                                                                                                                                                                                                                                                                                    | No                                    | No          |  |
|             | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO                                                                             | NO                               | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | No                                                                                                                                                                                                                                                                                                                                 | No                                                                                                                                                                                                                                                                                                                    | No                                    | No          |  |
|             | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | operation                                                                      | operation                        | operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | operation                                                                                                                                                                                                                                                                                                                          | operation                                                                                                                                                                                                                                                                                                             | operation                             | operation   |  |
| <u>Exar</u> | nple:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HERE<br>CONTINUE                                                               | DECFSZ<br>GOTO                   | CNT, 1, 1<br>LOOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Exar               | nple:                                                                                                                                                                                                                                                                                                                              | HERE<br>ZERO<br>NZERO                                                                                                                                                                                                                                                                                                 | DCFSNZ TEM<br>:<br>:                  | 1P, 1, 0    |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | Before Instruc                                                                                                                                                                                                                                                                                                                     | tion                                                                                                                                                                                                                                                                                                                  |                                       |             |  |
|             | After Instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = Address                                                                      | (HERE)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | TEMP                                                                                                                                                                                                                                                                                                                               | =                                                                                                                                                                                                                                                                                                                     | ?                                     |             |  |
|             | CNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = CNT - 1                                                                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | After Instruction                                                                                                                                                                                                                                                                                                                  | on                                                                                                                                                                                                                                                                                                                    |                                       |             |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0;<br>= Address                                                              |                                  | · )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                                                                                                                                                                                                                                                                                                                    | =                                                                                                                                                                                                                                                                                                                     | TEMP – 1,<br>0 <sup>.</sup>           |             |  |
|             | If CNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - ∩uuress<br>≠ 0;                                                              | (CONTINUE                        | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | PC                                                                                                                                                                                                                                                                                                                                 | = 0,<br>= Address (ZERO)                                                                                                                                                                                                                                                                                              |                                       |             |  |
|             | PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = Address                                                                      | 6 (HERE + 2                      | 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | If TEMP<br>PC                                                                                                                                                                                                                                                                                                                      | ≠<br>=                                                                                                                                                                                                                                                                                                                | 0;<br>Address (1                      | NZERO)      |  |

| TABLE 37-3: POWE | R-DOWN CURRENT (I | PD) <sup>(1,2)</sup> |
|------------------|-------------------|----------------------|
|------------------|-------------------|----------------------|

| PIC18LF26/45/46K40 |           |                                           |      |       | Standard Operating Conditions (unless otherwise stated)               |        |       |      |                       |  |
|--------------------|-----------|-------------------------------------------|------|-------|-----------------------------------------------------------------------|--------|-------|------|-----------------------|--|
| PIC18F26/45/46K40  |           |                                           |      |       | Standard Operating Conditions (unless otherwise stated)<br>VREGPM = 1 |        |       |      |                       |  |
| Param.             | Cumbal    | Device Characteristics                    | Min  | Tree  | Max. Max.                                                             | Max.   | Unite |      | Conditions            |  |
| No.                | Symbol    | Device Characteristics                    | MIN. | тур.т | +85°C                                                                 | +125°C | Units | VDD  | Note                  |  |
| D200               | IPD       | IPD Base                                  | _    | 0.05  | 2                                                                     | 9      | μΑ    | 3.0V |                       |  |
| D200               | IPD       | IPD Base                                  | _    | 0.4   | 4                                                                     | 12     | μΑ    | 3.0V |                       |  |
| D200A              |           |                                           |      | 20    |                                                                       | _      | μΑ    | 3.0V | VREGPM = 0            |  |
| D201               | IPD_WDT   | Low-Frequency Internal Oscillator/<br>WDT |      | 0.4   | 3                                                                     | 10     | μΑ    | 3.0V |                       |  |
| D201               | IPD_WDT   | Low-Frequency Internal Oscillator/<br>WDT | -    | 0.6   | 5                                                                     | 13     | μA    | 3.0V |                       |  |
| D202               | IPD_SOSC  | Secondary Oscillator (SOSC)               | _    | 0.6   | 5                                                                     | 13     | μΑ    | 3.0V |                       |  |
| D202               | IPD_SOSC  | Secondary Oscillator (SOSC)               |      | 0.8   | 8.5                                                                   | 15     | μΑ    | 3.0V |                       |  |
| D203               | IPD_FVR   | FVR                                       |      | 31    |                                                                       | —      | μΑ    | 3.0V | FVRCON = 0X81 or 0x84 |  |
| D203               | IPD_FVR   | FVR                                       | _    | 32    |                                                                       | —      | μΑ    | 3.0V | FVRCON = 0X81 or 0x84 |  |
| D204               | IPD_BOR   | Brown-out Reset (BOR)                     | -    | 9     | 14                                                                    | 18     | μΑ    | 3.0V |                       |  |
| D204               | IPD_BOR   | Brown-out Reset (BOR)                     |      | 14    | 19                                                                    | 21     | μΑ    | 3.0V |                       |  |
| D205               | IPD_LPBOR | Low-Power Brown-out Reset (LPBOR)         | -    | 0.5   |                                                                       | —      | μΑ    | 3.0V |                       |  |
| D205               | IPD_LPBOR | Low-Power Brown-out Reset (LPBOR)         |      | 0.7   |                                                                       | _      | μΑ    | 3.0V |                       |  |
| D206               | IPD_HLVD  | High/Low Voltage Detect (HLVD)            |      | 31    | _                                                                     | —      | μΑ    | 3.0V |                       |  |
| D206               | IPD_HLVD  | High/Low Voltage Detect (HLVD)            |      | 32    |                                                                       | —      | μΑ    | 3.0V |                       |  |
| D207               | IPD_ADCA  | ADC - Active                              |      | 250   |                                                                       | —      | μΑ    | 3.0V | ADC is converting (4) |  |
| D207               | IPD_ADCA  | ADC - Active                              |      | 280   |                                                                       | _      | μΑ    | 3.0V | ADC is converting (4) |  |
| D208               | IPD_CMP   | Comparator                                | _    | 25    | 38                                                                    | 40     | μΑ    | 3.0V |                       |  |
| D208               | IPD_CMP   | Comparator                                | _    | 28    | 50                                                                    | 60     | μΑ    | 3.0V |                       |  |

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

4: ADC clock source is FRC.

## 38.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Graphs and tables are not available at this time.

## **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

| PART NO.                 | <u>[X]</u> <sup>(2)</sup> -                                                                                      | ¥                                                                                                                                                         | <u>/xx</u>                        | <u>xxx</u> | Exa      | mple                                                                            | 95:                                                                                                                                                                                                                                                 |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|----------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Device                   | Tape and Reel<br>Option                                                                                          | Temperature<br>Range                                                                                                                                      | Package                           | Pattern    | a)<br>b) | PIC<br>PDII<br>PIC<br>pack                                                      | 18F26K40-E/P 301 = Extended temp.,<br>P package, QTP pattern #301.<br>18F45K40-E/SO = Extended temp., SOIC<br>age.                                                                                                                                  |  |  |  |  |  |
| Device:                  | PIC18F26K40<br>PIC18F45K40<br>PIC18F46K40                                                                        | , PIC18LF26K40,<br>, PIC18LF45K40,<br>, PIC18LF46K40                                                                                                      |                                   |            | c)       | раскаде.<br>PIC18F46K40T-I/ML = Tape and reel, Industria<br>temp., QFN package. |                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Tape and Reel<br>Option: | Blank = standa<br>T = Tape and I                                                                                 | ard packaging (tube<br>Reel <sup>(1),</sup> (2)                                                                                                           | e or tray)                        |            |          |                                                                                 |                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Temperature<br>Range:    | E = -40<br>I = -40                                                                                               | °C to +125°C (E<br>°C to +85°C (I                                                                                                                         | Extended)<br>ndustrial)           |            | Note     | 1:                                                                              | Tape and Reel option is available for ML,                                                                                                                                                                                                           |  |  |  |  |  |
| Package:                 | ML = 28-1<br>ML = 44-1<br>MV = 28-1<br>MV = 40-1<br>P = 40-1<br>PT = 44-1<br>SO = 28-1<br>SP = 28-1<br>SS = 28-1 | ead QFN 6x6mm<br>ead QFN 8x8x0.9n<br>ead UQFN 8x8x0.9n<br>ead UQFN 5x5x0.5<br>ead PDIP<br>ead TQFP (Thin Qi<br>ead SOIC<br>ead SKinny Plastic<br>ead SSOP | nm<br>5mm<br>uad Flatpack)<br>DIP |            |          | 2:                                                                              | MV, PT, SO and SS packages with industrial<br>Temperature Range only.<br>Tape and Reel identifier only appears in<br>catalog part number description. This<br>identifier is used for ordering purposes and<br>is not printed on the device package. |  |  |  |  |  |
| Pattern:                 | QTP, SQTP, C<br>(blank otherwis                                                                                  | ode or Special Rec<br>se)                                                                                                                                 | quirements                        |            |          |                                                                                 |                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                          |                                                                                                                  |                                                                                                                                                           |                                   |            |          |                                                                                 |                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                          |                                                                                                                  |                                                                                                                                                           |                                   |            |          |                                                                                 |                                                                                                                                                                                                                                                     |  |  |  |  |  |