

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K × 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k40-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- **Memory Endurance:** The Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles up to 10K for program memory and 100K for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a boot loader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18(L)F2x/ 4xK40 family introduces an optional extension to the PIC18 instruction set, which adds eight new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced Peripheral Pin Select: The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins.
- Enhanced Addressable EUSART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- **10-bit A/D Converter with Computation:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead. It has a new module called ADC² with computation features, which provides a digital filter and threshold interrupt functions.
- Windowed Watchdog Timer (WWDT):
 - Timer monitoring of overflow and underflow events
 - Variable prescaler selection
 - Variable window size selection
 - All sources configurable in hardware or software

1.3 Details on Individual Family Members

Devices in the PIC18(L)F2x/4xK40 family are available in 28-pin and 40/44-pin packages. The block diagram for this device is shown in Figure 1-1.

The devices have the following differences:

- 1. Program Flash Memory
- 2. Data Memory SRAM
- 3. Data Memory EEPROM
- 4. A/D channels
- 5. I/O ports
- 6. Enhanced USART
- 7. Input Voltage Range/Power Consumption

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in the pin summary tables (Table 1 and Table 2).

Features	PIC18(L)F26K40	PIC18(L)F45K40	PIC18(L)F46K40					
Program Memory (Bytes)	65536	32768	65536					
Program Memory (Instructions)	32768	16384	32768					
Data Memory (Bytes)	3720	2048	3720					
Data EEPROM Memory (Bytes)	1024	256	1024					
I/O Ports	A,B,C,E ⁽¹⁾	A,B,C,D,E	A,B,C,D,E					
Capture/Compare/PWM Modules (CCP)	2	2	2					
10-Bit Pulse-Width Modulator (PWM)	2	2	2					
10-Bit Analog-to-Digital Module (ADC ²) with Computation Accelerator	4 internal 24 external	4 internal 35 external	4 internal 35 external					
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	40-pin PDIP 40-pin UQFN 44-pin QFN 44-pin TQFP	40-pin PDIP 40-pin UQFN 44-pin QFN 44-pin TQFP					
Interrupt Sources		36						
Timers (16-/8-bit)	4/3							
Serial Communications	2 MSSP, 2 EUSART							
Enhanced Complementary Waveform Generator (ECWG)	1							
Zero-Cross Detect (ZCD)	1							
Data Signal Modulator (DSM)		1						
Peripheral Pin Select (PPS)		Yes						
Peripheral Module Disable (PMD)		Yes						
16-bit CRC with NVMSCAN		Yes						
Programmable High/Low-Voltage Detect (HLVD)		Yes						
Programmable Brown-out Reset (BOR)		Yes						
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Overflow, Stack Underflow (PWRT, OST),							
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled							
Operating Frequency								

TABLE 1-1: DEVICE FEATURES

Note 1: PORTE contains the single RE3 read-only bit.

6.0 POWER-SAVING OPERATION MODES

The purpose of the Power-Down modes is to reduce power consumption. There are three Power-Down modes:

- Doze mode
- Sleep mode
- Idle mode

6.1 Doze Mode

Doze mode allows for power saving by reducing CPU operation and program memory (PFM) access, without affecting peripheral operation. Doze mode differs from Sleep mode because the bandgap and system oscillators continue to operate, while only the CPU and PFM are affected. The reduced execution saves power by eliminating unnecessary operations within the CPU and memory.

When the Doze Enable (DOZEN) bit is set (DOZEN = 1), the CPU executes only one instruction cycle out of every N cycles as defined by the DOZE<2:0> bits of the CPUDOZE register. For example, if DOZE<2:0> = 001, the instruction cycle ratio is 1:4. The CPU and memory execute for one instruction cycle and then lay idle for three instruction cycles. During the unused cycles, the peripherals continue to operate at the system clock speed.

6.1.1 DOZE OPERATION

The Doze operation is illustrated in Figure 6-1. For this example:

- Doze enable (DOZEN) bit set (DOZEN = 1)
- DOZE<2:0> = 001 (1:4) ratio
- Recover-on-Interrupt (ROI) bit set (ROI = 1)

As with normal operation, the PFM fetches for the next instruction cycle. The Q-clocks to the peripherals continue throughout.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
_	_	—	_		TSEL	<3:0>					
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unchanged x = Bit is unknown -				-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7-4	Unimplemen	ted: Read as '	0'								
bit 3-0	TSEL<3:0>: 8	Scanner Data T	rigger Input S	election bits							
	1111-1001 =	Reserved									
1000 = TMR6_postscaled											

REGISTER 13-18: SCANTRIG: SCAN TRIGGER SELECTION REGISTER

1000 = TMR6_postscaled 1010 = TMR5_output 0110 = TMR4_postscaled 0101 = TMR3_output 0100 = TMR2_postscaled 0011 = TMR1_output 0010 = TMR0_output 0001 = CLKREF_output

0000 = LFINTOSC

R-0/0	R-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	RC2IF: EUSA	ART2 Receive	Interrupt Flag	bit			
	1 = The EUS	SART2 receive	buffer, RC1R	EG, is full (clea	red by reading	RC2REG)	
	0 = The EUS	SART2 receive	buffer is emp	ty			
bit 6	TX2IF: EUSA	RT2 Transmit	Interrupt Flag	bit			
	1 = The EUS	SART2 transmit	buffer, TX2R	EG, is empty (cleared by writin	ng TX2REG)	
	0 = The EUS	SART2 transmit	buffer is full				
bit 5	RC1IF: EUSA	ART1 Receive	Interrupt Flag	bit			
	1 = The EUS	SART1 receive	buffer, RC1R	EG, is full (clea	red by reading	RC1REG)	
	0 = The EUS	SART1 receive	buffer is emp	ty			
bit 4	TX1IF: EUSA	RT1 Transmit	Interrupt Flag	bit			
	1 = The EUS	SART1 transmit	buffer, TX1R	EG, is empty (cleared by writin	ng TX1REG)	
	0 = The EUS	SART1 transmit	buffer is full				
bit 3	BCL2IF: MSS	SP2 Bus Collisi	on Interrupt F	lag bit		- 2 -	
	1 = A bus col	llision has occu	urred while the	e MSSP2 modu	ile configured in	n I ² C master wa	as transmitting
	0 = No bus c	ollision occurre	ware) ed				
bit 2	SSP2IF: Synd	chronous Seria	I Port 2 Interr	upt Flag bit			
	1 = The trans	smission/recep	tion is comple	ete (must be cle	ared in softwa	re)	
	0 = Waiting to	o transmit/rece	ive	,		,	
bit 1	BCL1IF: MSS	SP1 Bus Collisi	on Interrupt F	lag bit			
	1 = A bus co	llision has occu	urred while the	e MSSP1 modu	le configured i	n I ² C master wa	as transmitting
	(must be	cleared in soft	ware)				
bit U	SSP1IF: Sync	chronous Seria	I Port 1 Interr	upt Flag bit	and in a fl	>	
	\perp = 1 ne trans	smission/recep	tion is comple	ete (must de cle	eared in softwar	e)	

REGISTER 14-5: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3

					· · ·								
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0						
_			—			CCP2IF	CCP1IF						
bit 7		·		•			bit 0						
Legend:													
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown						
bit 7-2	Unimplemen	ted: Read as '	0'										
bit 1	CCP2IF: ECC	P2 Interrupt F	lag bit										
	Capture mode:												
1 = A TMR register capture occurred (must be cleared in software)													
	0 = No	TMR register of	apture occurre	ed									
	Compare mod	de:											
	1 = A T	MR register co	mpare match	occurred (mus	st be cleared in	software)							
	0 = No	TMR register o	ompare matcl	h occurred									
	PWM mode:												
	Unused	I in PWM mode	e.										
bit 0	CCP1IF: ECC	P1 Interrupt F	lag bit										
	Capture mode	<u>e:</u>											
	1 = A T	MR register ca	pture occurred	d (must be clea	ared in software	e)							
	0 = No	TMR register o	apture occurre	ed									
	Compare mod	de:											
	1 = A T	1 = A TMR register compare match occurred (must be cleared in software)											
	0 = No	TMR register o	ompare match	h occurred									
	PWM mode:												
	Unused	l in PWM mode) .										

REGISTER 14-8: PIR6: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 6

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
OSCFIE	CSWIE		_	_		ADTIE	ADIE
bit 7					•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	OSCFIE: Osc	illator Fail Inter	rupt Enable b	it			
	1 = Enabled						
	0 = Disabled						
bit 6	CSWIE: Clock	k-Switch Interru	upt Enable bit				
	1 = Enabled						
	0 = Disabled						
bit 5-2	Unimplemen	ted: Read as '	0'				
bit 1	ADTIE: ADC	Threshold Inter	rrupt Enable b	oit			
	1 = Enabled						
	0 = Disabled						
bit 0	ADIE: ADC In	nterrupt Enable	bit				
	1 = Enabled						
	0 = Disabled						

REGISTER 14-11: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

15.3.3 RE3 WEAK PULL-UP

The port RE3 pin has an individually controlled weak internal pull-up. When set, the WPUE3 bit enables the RE3 pin pull-up. When the RE3 port pin is configured as MCLR, (CONFIG2L, MCLRE = 1 and CONFIG4H, LVP = 0), or configured for Low-Voltage Programming, (MCLRE = x and LVP = 1), the pull-up is always enabled and the WPUE3 bit has no effect.

15.3.4 INTERRUPT-ON-CHANGE

The interrupt-on-change feature is available only on the RE3 pin for all devices. For further details refer to **Section 14.11 "Interrupt-on-Change"**.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
IOCEP	—	—	—	—	IOCEP3 ⁽¹⁾			
IOCEN					IOCEN3 ⁽¹⁾	_		
IOCEF	—	—	—	—	IOCEF3 ⁽¹⁾	_	—	_

TABLE 16-1: IOC REGISTERS

Note 1: If MCLRE = 1 or LVP = 1, RE3 port functionality is disabled and IOC on RE3 is not available.

TABLE 16-2:	SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANG
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	_	INT2EDG	INT1EDG	INT0EDG	170
IOCxF	IOCxF7	IOCxF6	IOCxF5	IOCxF4	IOCxF3	IOCxF2	IOCxF1	IOCxF0	211
IOCxN	IOCxN7	IOCxN6	IOCxN5	IOCxN4	IOCxN3	IOCxN2	IOCxN1	IOCxN0	211
IOCxP	IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0	211

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

20.7 Register Definitions: Timer2/4/6 Control

Long bit name prefixes for the Timer2/4/6 peripherals are shown in Table 20-2. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information. **TABLE 20-2:**

Peripheral	Bit Name Prefix
Timer2	T2
Timer4	T4
Timer6	Т6

22.0 PULSE-WIDTH MODULATION (PWM)

The PWM module generates a Pulse-Width Modulated signal determined by the duty cycle, period, and resolution that are configured by the following registers:

- PRx
- TxCON
- PWMxDCH
- PWMxDCL
- PWMxCON

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the PWMx pin. Each PWM module can select the timer source that controls the module. Each module has an independent timer selection which can be accessed using the CCPTMRS register (Register 21-2). Please note that the PWM mode operation is described with respect to TMR2 in the following sections.

Figure 22-1 shows a simplified block diagram of PWM operation.

Figure 22-2 shows a typical waveform of the PWM signal.

FIGURE 22-1: SIMPLIFIED PWM BLOCK DIAGRAM

FIGURE 22-2:

PWM OUTPUT

For a step-by-step procedure on how to set up this module for PWM operation, refer to Section 22.1.9 "Setup for PWM Operation using PWMx Pins".

24.2.2 PUSH-PULL MODE

In Push-Pull mode, two output signals are generated, alternating copies of the input as illustrated in Figure 24-4. This alternation creates the push-pull effect required for driving some transformer-based power supply designs. Steering modes are not used in Push-Pull mode. A basic block diagram for the Push-Pull mode is shown in Figure 24-3.

The push-pull sequencer is reset whenever EN = 0 or if an auto-shutdown event occurs. The sequencer is clocked by the first input pulse, and the first output appears on CWG1A.

The unused outputs CWG1C and CWG1D drive copies of CWG1A and CWG1B, respectively, but with polarity controlled by the POLC and POLD bits of the CWG1CON1 register, respectively.

24.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. The auto-shutdown circuit is illustrated in Figure 24-14.

24.10.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

24.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWG1AS0 register will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will clear automatically and resume operation on the next rising edge event. The SHUTDOWN bit indicates when a shutdown condition exists. The bit may be set or cleared in software or by hardware.

24.10.1.2 External Input Source

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. The override levels are selected by the LSBD<1:0> and LSAC<1:0> bits of the CWG1AS0 register (Register 24-6). Several input sources can be selected to cause a shutdown condition. All input sources are active-low. The sources are:

- Pin selected by CWG1PPS
- Timer2 post-scaled output
- Timer4 post-scaled output
- Timer6 post-scaled output
- · Comparator 1 output
- · Comparator 2 output

Shutdown input sources are individually enabled by the ASxE bits of the CWG1AS1 register (Register 24-7).

Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.

24.10.1.3 Pin Override Levels

The levels driven to the CWG outputs during an autoshutdown event are controlled by the LSBD<1:0> and LSAC<1:0> bits of the CWG1AS0 register (Register 24-6). The LSBD<1:0> bits control CWG1B/ D output levels, while the LSAC<1:0> bits control the CWG1A/C output levels.

24.10.1.4 Auto-Shutdown Interrupts

When an auto-shutdown event occurs, either by software or hardware setting SHUTDOWN, the CWG1IF flag bit of the PIR7 register is set (Register 14-5).

24.11 Auto-Shutdown Restart

After an auto-shutdown event has occurred, there are two ways to resume operation:

- · Software controlled
- Auto-restart

In either case, the shut-down source must be cleared before the restart can take place. That is, either the shutdown condition must be removed, or the corresponding ASxE bit must be cleared.

24.11.1 SOFTWARE-CONTROLLED RESTART

If the REN bit of the CWG1AS0 register is clear (REN = 0), the CWG module must be restarted after an auto-shutdown event through software.

Once all auto-shutdown sources are removed, the software must clear SHUTDOWN. Once SHUTDOWN is cleared, the CWG module will resume operation upon the first rising edge of the CWG data input.

Note: The SHUTDOWN bit cannot be cleared in software if the auto-shutdown condition is still present.

24.11.2 AUTO-RESTART

If the REN bit of the CWG1AS0 register is set (REN = 1), the CWG module will restart from the shutdown state automatically.

Once all auto-shutdown conditions are removed, the hardware will automatically clear SHUTDOWN. Once SHUTDOWN is cleared, the CWG module will resume operation upon the first rising edge of the CWG data input.

Note: The SHUTDOWN bit cannot be cleared in software if the auto-shutdown condition is still present.

FIGURE 26-17: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)

PIC18(L)F26/45/46K40

	SYNC = 0, BRGH = 0, BRG16 = 0												
BALID	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	_	_	_	_	_	_	_	_	_	_	_	
1200	—	—	—	1221	1.73	255	1200	0.00	239	1200	0.00	143	
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71	
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17	
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2	
115.2k	—	_		—	_	_	—	_	_	—	_	_	

TABLE 27-5: SAMPLE BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	_	—	
9600	9615	0.16	12	—	_	—	9600	0.00	5	—	_	—	
10417	10417	0.00	11	10417	0.00	5	—	_	_	_	_	—	
19.2k	_	_	_	—	_	_	19.20k	0.00	2	—	_	_	
57.6k	—	—	—	—	—	—	57.60k	0.00	0	—	—	—	
115.2k	—	_	—	—	_	—	—	_	—	—	_	—	

					SYNC	C = 0, BRG	i = 1, BRO	616 = 0				
BAUD	Fosc	= 32.00	0 MHz	Fosc	= 20.00	0 MHz	Foso	: = 18.43	2 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	—		—				—	—	—	—	—
1200	—	—	—	—	_	—	—	—	—	—	—	—
2400	—	_	_	—	_	_	_	_	_	_	_	_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

31.4 Capacitive Voltage Divider (CVD) Features

The ADC module contains several features that allow the user to perform a relative capacitance measurement on any ADC channel using the internal ADC sample and hold capacitance as a reference. This relative capacitance measurement can be used to implement capacitive touch or proximity sensing applications. Figure 31-6 shows the basic block diagram of the CVD portion of the ADC module.

35.2.2 EXTENDED INSTRUCTION SET

ADD	OFSR	Add Lite	Add Literal to FSR						
Synta	ax:	ADDFSR	ADDFSR f, k						
Operands:		0 ≤ k ≤ 63	$0 \le k \le 63$						
Oper	ation:	FSR(f) + k	$i \in [0, 1, 2]$ FSR(f) + k \rightarrow FSR(f)						
Statu	s Affected:	None	None						
Enco	oding:	1110	1000	ffk]	k	kkkk			
Description:		The 6-bit I contents of	The 6-bit literal 'k' is added to the contents of the FSR specified by 'f'.						
Word	ls:	1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3			Q4			
	Decode	Read	Proce	SS	٧	Vrite to			
		literal 'k'	Data	a		FSR			

_ ·			
Example:	ADDFSR	2,	23h

Before Instruction					
FSR2	=	03FFh			
After Instruct	ion				
FSR2	=	0422h			

ADDULNK	Add Literal to FSR2 and Return						
Syntax:	ADDULN	ADDULNK k					
Operands:	0 ≤ k ≤ 63	3					
Operation:	FSR2 + k	\rightarrow FSR2	,				
	$(TOS) \rightarrow$	PC					
Status Affected:	None						
Encoding:	1110 1000 11kk kkk						
	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.						
Words:	1						
Cycles:	2						
O Cuelo Activitur							

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

_		
-		

Refore Instruction

Before Instru		
FSR2	=	03FFh
PC	=	0100h
After Instructi	ion	
FSR2	=	0422h
PC	=	(TOS)

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

PIC18(L)F26/45/46K40

MO\	/SS	Move Ind	Move Indexed to Indexed					
Synta	ax:	MOVSS [z	z _s], [z _d]					
Oper	ands:	$0 \le z_s \le 12$ $0 \le z_d \le 12$	$0 \le z_s \le 127$ $0 \le z_d \le 127$					
Oper	ation:	((FSR2) + z	$(FS) \rightarrow (FS)$	R2)	+ z _d)	1		
Statu	s Affected:	None						
Enco 1st w 2nd v	ding: vord (source) word (dest.)	1110 1111	1011 xxxx	1zz xzz	z	zzzz _s zzzz _d		
Desc	ription	The conten moved to th addresses of registers ar 7-bit literal respectively registers ca the 4096-by (000h to FF The MOVSS PCL, TOSL destination If the result an indirect a value return resultant de an indirect a	The contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets ' z_s ' or ' z_d ', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the value returned will be 00h. If the resultant destination address points to an indirect addressing register the					
Word	ls:	2						
Cycle	es:	2						
Q Cycle Activity:								
	Q1	Q2	Q3			Q4		
	Decode	Determine	Determi	ine ddr	600	Read		
	Decode	Determino	Determi	ino	50	Write		
	Decode	dest addr	dest ad	ldr	to	dest reg		

Example:	MOVSS	[05h],	[06h]
Before Instructio FSR2	on =	80h	
of 85h	=	33h	
of 86h	=	11h	
After Instruction FSR2 Contents	=	80h	
of 85h	=	33h	
of 86h	=	33h	

PUSHL	S	tore Liter	al a	t FSR	2, Decr	ement FSR2	
Syntax:	Ρ	USHL k					
Operands:		$\leq k \leq 255$					
Operation:	k F	$k \rightarrow$ (FSR2), FSR2 – 1 \rightarrow FSR2					
Status Affected:	Ν	one					
Encoding:		1111	10	010	kkkk	kkkk	
Description.		emory add decremer nis instruc nto a softw	dress nted tion a /are	s spec by 1 a allows stack.	ified by fter the o users to	FSR2. FSR2 operation. o push values	
Words:	1						
Cycles:	1						
Q Cycle Activit	y:						
Q1		Q2		Q3 Process data		Q4	
Decode	e	Read 'l	K'			Write to destination	
Example:	4	PUSHL	081	1			
After Instruct FSR2F Memor After Instruct FSR2F Memor		ruction H:FSR2L iry (01ECh)		= =	01ECh 00h		
		on SR2L (01ECh)		= =	01EBh 08h		

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Microchip Technology Drawing C04-103D Sheet 1 of 2