

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k40-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8.13 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON0 registers are updated to indicate the cause of the Reset. Table 8-3 shows the Reset conditions of these registers.

	TABLE 8-3:	RESET CONDITION FOR SPECIAL REGISTERS
--	------------	--

Condition	Program Counter	STATUS Register ^(2,3)	PCON0 Register
Power-on Reset	0	-110 0000	0011 110x
Brown-out Reset	0	-110 0000	0011 11u0
MCLR Reset during normal operation	0	-uuu uuuu	uuuu Ouuu
MCLR Reset during Sleep	0	-10u uuuu	uuuu Ouuu
WDT Time-out Reset	0	-0uu uuuu	սսս0 սսսս
WDT Wake-up from Sleep	PC + 2	-00u uuuu	uuuu uuuu
WWDT Window Violation Reset	0	-uuu uuuu	uu0u uuuu
Interrupt Wake-up from Sleep	PC + 2 ⁽¹⁾	-10u 0uuu	uuuu uuuu
RESET Instruction Executed	0	-uuu uuuu	uuuu u0uu
Stack Overflow Reset (STVREN = 1)	0	-uuu uuuu	luuu uuuu
Stack Underflow Reset (STVREN = 1)	0	-uuu uuuu	uluu uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit (GIE) is set the return address is pushed on the stack and PC is loaded with the corresponding interrupt vector (depending on source, high or low priority) after execution of PC + 2.

2: If a Status bit is not implemented, that bit will be read as '0'.

3: Status bits Z, C, DC are reset by POR/BOR (Register 10-2).

8.14 Power Control (PCON0) Register

The Power Control (PCON0) register contains flag bits to differentiate between a:

- Brown-out Reset (BOR)
- Power-on Reset (POR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Window Violation (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON0 register bits are shown in Register 8-2.

Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 8-3).

Software should reset the bit to the inactive state after restart (hardware will not reset the bit).

Software may also set any PCON0 bit to the active state, so that user code may be tested, but no Reset action will be generated.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN							BORRDY	75
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	76
STATUS	_	TO	PD	Ν	OV	Z	DC	С	118
WDTCON0	_	_	- WDTPS<4:0>					SEN	85
WDTCON1		W	WDTCS<2:0> — WINDOW<2:0)>	86	

TABLE 8-4: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

TABLE 10-4: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F26/45/46K40 DEVICES

IABLE	10-4. SPLV						20/43/401.40	DEVICE	5
Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
F5Fh	ADPCH	F31h	FVRCON	F03h	RD4PPS ⁽¹⁾	ED5h	WDTPSH	EA7h	T3CKIPPS
F5Eh	ADPRE	F30h	HLVDCON1	F02h	RD3PPS ⁽¹⁾	ED4h	WDTPSL	EA6h	T1GPPS
F5Dh	ADCAP	F2Fh	HLVDCON0	F01h	RD2PPS ⁽¹⁾	ED3h	WDTCON1	EA5h	T1CKIPPS
F5Ch	ADACQ	F2Eh	ANSELE ⁽²⁾	F00h	RD1PPS ⁽²⁾	ED2h	WDTCON0	EA4h	T0CKIPPS
F5Bh	ADCON3	F2Dh	WPUE	EFFh	RD0PPS ⁽²⁾	ED1h	PIR7	EA3h	INT2PPS
F5Ah	ADCON2	F2Ch	ODCONE ⁽²⁾	EFEh	RC7PPS	ED0h	PIR6	EA2h	INT1PPS
F59h	ADCON1	F2Bh	SLRCONE ⁽²⁾	EFDh	RC6PPS	ECFh	PIR5	EA1h	INT0PPS
F58h	ADREF	F2Ah	INLVLE	EFCh	RC5PPS	ECEh	PIR4	EA0h	PPSLOCK
F57h	ADCLK	F29h	IOCEP	EFBh	RC4PPS	ECDh	PIR3	E9Fh	BAUD2CON
F56h	ADACT	F28h	IOCEN	EFAh	RC3PPS	ECCh	PIR2	E9Eh	TX2STA
F55h	MDCARH	F27h	IOCEF	EF9h	RC2PPS	ECBh	PIR1	E9Dh	RC2STA
F54h	MDCARL	F26h	ANSELD ⁽²⁾	EF8h	RC1PPS	ECAh	PIR0	E9Ch	SP2BRGH
F53h	MDSRC	F25h	WPUD ⁽²⁾	EF7h	RC0PPS	EC9h	PIE7	E9Bh	SP2BRGL
F52h	MDCON1	F24h	ODCOND ⁽²⁾	EF6h	RB7PPS	EC8h	PIE6	E9Ah	TX2REG
F51h	MDCON0	F23h	SLRCOND ⁽²⁾	EF5h	RB6PPS	EC7h	PIE5	E99h	RC2REG
F50h	SCANDTRIG	F22h	INLVLD ⁽²⁾	EF4h	RB5PPS	EC6h	PIE4	E98h	SSP2CON3
F4Fh	SCANCON0	F21h	ANSELC	EF3h	RB4PPS	EC5h	PIE3	E97h	SSP2CON2
F4Eh	SCANHADRU	F20h	WPUC	EF2h	RB3PPS	EC4h	PIE2	E96h	SSP2CON1
F4Dh	SCANHADRH	F1Fh	ODCONC	EF1h	RB2PPS	EC3h	PIE1	E95h	SSP2STAT
F4Ch	SCANHADRL	F1Eh	SLRCONC	EF0h	RB1PPS	EC2h	PIE0	E94h	SSP2MSK
F4Bh	SCANLADRU	F1Dh	INLVLC	EEFh	RB0PPS	EC1h	IPR7	E93h	SSP2ADD
F4Ah	SCANLADRH	F1Ch	IOCCP	EEEh	RA7PPS	EC0h	IPR6	E92h	SSP2BUF
F49h	SCANLADRL	F1Bh	IOCCN	EEDh	RA6PPS	EBFh	IPR5	E91h	SSP2SSPPS
F48h	CWG1STR	F1Ah	IOCCF	EECh	RA5PPS	EBEh	IPR4	E90h	SSP2DATPPS
F47h	CWG1AS1	F19h	ANSELB	EEBh	RA4PPS	EBDh	IPR3	E8Fh	SSP2CLKPPS
F46h	CWG1AS0	F18h	WPUB	EEAh	RA3PPS	EBCh	IPR2	E8Eh	TX2PPS
F45h	CWG1CON1	F17h	ODCONB	EE9h	RA2PPS	EBBh	IPR1	E8Dh	RX2PPS
F44h	CWG1CON0	F16h	SLRCONB	EE8h	RA1PPS	EBAh	IPR0		
F43h	CWG1DBF	F15h	INLVLB	EE7h	RA0PPS	EB9h	SSP1SSPPS		
F42h	CWG1DBR	F14h	IOCBP	EE6h	PMD5	EB8h	SSP1DATPPS		
F41h	CWG1ISM	F13h	IOCBN	EE5h	PMD4	EB7h	SSP1CLKPPS		
F40h	CWG1CLKCON	F12h	IOCBF	EE4h	PMD3	EB6h	TX1PPS		
F3Fh	CLKRCLK	F11h	ANSELA	EE3h	PMD2	EB5h	RX1PPS		
F3Eh	CLKRCON	F10h	WPUA	EE2h	PMD1	EB4h	MDSRCPPS		
F3Dh	CMOUT	F0Fh	ODCONA	EE1h	PMD0	EB3h	MDCARHPPS		
F3Ch	CM1PCH	F0Eh	SLRCONA	EE0h	BORCON	EB2h	MDCARLPPS		
F3Bh	CM1NCH	F0Dh	INLVLA	EDFh	VREGCON ⁽¹⁾	EB1h	CWGINPPS		
F3Ah	CM1CON1	F0Ch	IOCAP	EDEh	OSCFRQ	EB0h	CCP2PPS		
F39h	CM1CON0	F0Bh	IOCAN	EDDh	OSCTUNE	EAFh	CCP1PPS		
F38h	CM2PCH	F0Ah	IOCAF	EDCh	OSCEN	EAEh	ADACTPPS		
F37h	CM2NCH	F09h	RE2PPS ⁽²⁾	EDBh	OSCSTAT	EADh	T6INPPS		
F36h	CM2CON1	F08h	RE1PPS ⁽²⁾	EDAh	OSCCON3	EACh	T4INPPS		
F35h	CM2CON0	F07h	RE0PPS ⁽²⁾	ED9h	OSCCON2	EABh	T2INPPS		
F34h	DAC1CON1	F06h	RD7PPS ⁽²⁾	ED8h	OSCCON1	EAAh	T5GPPS		
F33h	DAC1CON0	F05h	RD6PPS ⁽²⁾	ED7h	CPUDOZE	EA9h	T5CKIPPS		
F32h	ZCDCON	F04h	RD5PPS ⁽²⁾	ED6h	WDTTMR	EA8h	T3GPPS	J	

Note 1: Not available on LF parts

2: Not available on PIC18(L)F26K40 (28-pin variants).

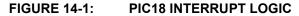
11.1 Program Flash Memory

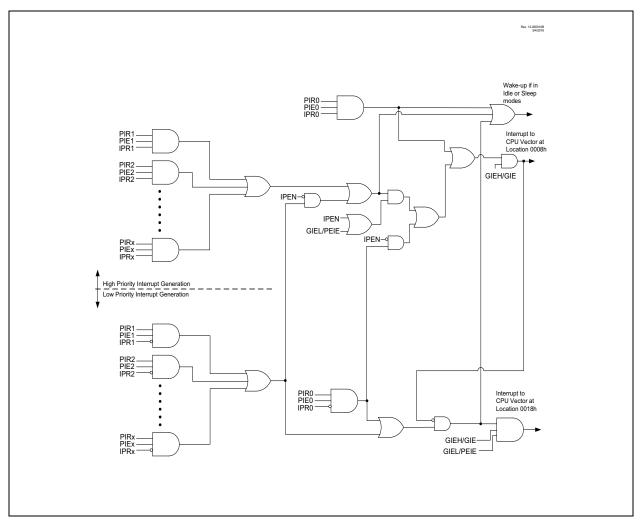
The Program Flash Memory is readable, writable and erasable during normal operation over the entire VDD range.

A read from program memory is executed one byte at a time. A write to program memory or program memory erase is executed on blocks of n bytes at a time. Refer to Table 11-3 for write and erase block sizes. A Bulk Erase operation cannot be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.


It is important to understand the PFM memory structure for erase and programming operations. Program memory word size is 16 bits wide. PFM is arranged in rows. A row is the minimum size that can be erased by user software. Refer to Table 11-3 for the row sizes for the these devices.


After a row has been erased, all or a portion of this row can be programmed. Data to be written into the program memory row is written to 6-bit wide data write latches. These latches are not directly accessible, but may be loaded via sequential writes to the TABLAT register.

Note: To modify only a portion of a previously programmed row, then the contents of the entire row must be read and saved in RAM prior to the erase. Then, the new data and retained data can be written into the write latches to reprogram the row of PFM. However, any unprogrammed locations can be written without first erasing the row. In this case, it is not necessary to save and rewrite the other previously programmed locations

TABLE 11-2 :	FLASH MEMORY ORGANIZATION BY DEVICE

Device	Row Erase Size (Words)	Write Latches (Bytes)	Program Flash Memory (Words)	Data Memory (Bytes)	
PIC18(L)F45K40			16384	256	
PIC18(L)F26K40	32	64	22769		
PIC18(L)F46K40			32768	1024	
PIC18(L)F27K40	64	100	65526	1024	
PIC18(L)F47K40	04	128	65536		

18.3 **Programmable Prescaler**

A software programmable prescaler is available for exclusive use with Timer0. There are 16 prescaler options for Timer0 ranging in powers of two from 1:1 to 1:32768. The prescaler values are selected using the T0CKPS<3:0> bits of the T0CON1 register.

The prescaler is not directly readable or writable. Clearing the prescaler register can be done by writing to the TMR0L register or the T0CON0, T0CON1 registers or by any Reset.

18.4 **Programmable Postscaler**

A software programmable postscaler (output divider) is available for exclusive use with Timer0. There are 16 postscaler options for Timer0 ranging from 1:1 to 1:16. The postscaler values are selected using the TOOUTPS<3:0> bits of the TOCON0 register.

The postscaler is not directly readable or writable. Clearing the postscaler register can be done by writing to the TMR0L register or the T0CON0, T0CON1 registers or by any Reset.

18.5 Operation During Sleep

When operating synchronously, Timer0 will halt. When operating asynchronously, Timer0 will continue to increment and wake the device from Sleep (if Timer0 interrupts are enabled) provided that the input clock source is active.

18.6 Timer0 Interrupts

The Timer0 interrupt flag bit (TMR0IF) is set when either of the following conditions occur:

- 8-bit TMR0L matches the TMR0H value
- 16-bit TMR0 rolls over from 'FFFFh'

When the postscaler bits (TOOUTPS<3:0>) are set to 1:1 operation (no division), the TOIF flag bit will be set with every TMR0 match or rollover. In general, the TMR0IF flag bit will be set every TOOUTPS +1 matches or rollovers.

If Timer0 interrupts are enabled (TMR0IE bit of the PIE0 register = '1'), the CPU will be interrupted and the device may wake from Sleep (see Section 18.2 "Clock Source Selection" for more details).

18.7 Timer0 Output

The Timer0 output can be routed to any I/O pin via the RxyPPS output selection register (see **Section 17.0 "Peripheral Pin Select (PPS) Module**" for additional information). The Timer0 output can also be used by other peripherals, such as the auto-conversion trigger of the Analog-to-Digital Converter. Finally, the Timer0 output can be monitored through software via the Timer0 output bit (TOOUT) of the TOCON0 register (Register 18-1).

TMR0_out will be a pulse of one postscaled clock period when a match occurs between TMR0L and PR0 (Period register for TMR0) in 8-bit mode, or when TMR0 rolls over in 16-bit mode. The Timer0 output is a 50% duty cycle that toggles on each TMR0_out rising clock edge.

REGISTER 21-3: CCPxCAP: CAPTURE INPUT SELECTION MULTIPLEXER REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x
—	—	—	_	_		CTS<	<1:0>
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-2 Unimplemented: Read as '0'

bit 1-0 CTS<1:0>: Capture Trigger Input Selection bits

CTS<1:0>		Connection		
013<1.02	CCP1	CCP2		
11	IOC_Interrupt			
10	CMP2_output			
01	CMP1_output			
00	Pin selected by CCP1PPS	Pin selected by CCP2PPS		

REGISTER 21-4: CCPRxL: CCPx REGISTER LOW BYTE

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
CCPRx<7:0>							
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0	MODE = Capture Mode:
	CCPRxL<7:0>: LSB of captured TMR1 value
	MODE = Compare Mode:
	CCPRxL<7:0>: LSB compared to TMR1 value
	MODE = PWM Mode && FMT = 0:
	CCPRxL<7:0>: CCPW<7:0> - Pulse-Width LS 8 bits
	MODE = PWM Mode && FMT = 1:
	CCPRxL<7:6>: CCPW<1:0> - Pulse-Width LS 2 bits
	CCPRxL<5:0>: Not used

© 2015-2017 Microchip Technology Inc.

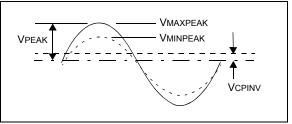
23.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 23-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- · Accurate long term time measurement
- · Dimmer phase delayed drive
- Low EMI cycle switching


23.1 External Resistor Selection

The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 23-1 and Figure 23-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 23-1: EXTERNAL RESISTOR

$$RSERIES = \frac{VPEAK}{3 \times 10^{-4}}$$

FIGURE 23-1: EXTERNAL VOLTAGE

REGISTER 26-11:	SSPxADD: MSSP ADDRESS REGISTER (I ² C MASTER MODE)	
-----------------	---	--

				•		,	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADD)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchan	nged	x = Bit is unknow	vn	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cleare	d				

Master mode: I²C mode

bit 7-0	Baud Rate Clock Divider bits ⁽¹⁾
	SCK/SCL pin clock period = ((SSPxADD<7:0> + 1) *4)/Fosc

10-Bit Slave mode – Most Significant Address Byte:

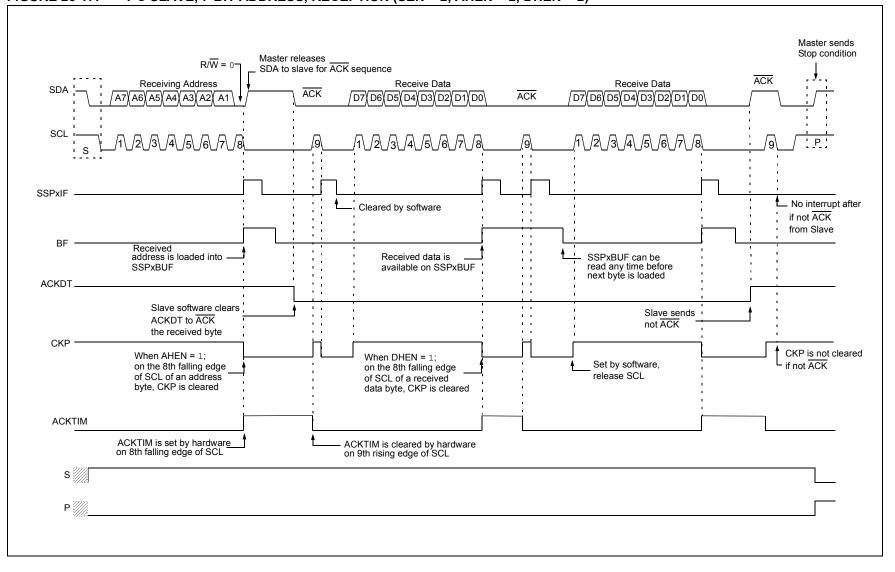
- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a don't care. Bit pattern sent by master is fixed by I²C specification and must be equal to, '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<9:8>: Two Most Significant bits of 10-bit Address
- bit 0 Not used: Unused in this mode. Bit state is a don't care.

10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit Address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a don't care.


Note 1: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

REGISTER 26-12: SSPxMSK: MSSPx ADDRESS MASK REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			MSK<7:1>				MSK0
bit 7							bit 0
Logond:							

as '0'
as 0
R/Value at all other Resets

bit 7-1	MSK<7:1>: Mask bits
	 1 = The received address bit n is compared to SSPxADDn to detect I²C address match 0 = The received address bit n is not used to detect I²C address match
bit 0	MSK0: Mask bit for I ² C Slave mode, 10-bit Address I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111): 1 = The received address bit 0 is compared to SSPxADD0 to detect I ² C address match 0 = The received address bit 0 is not used to detect I ² C address match I ² C Slave mode, 7-bit address, the bit is ignored.

FIGURE 26-17: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)

PIC18(L)F26/45/46K40

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
			ADPF	RE<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-0		 Precharge Ti Precharge time 			I ADC clock			
		= Precharge time						
	•							

REGISTER 31-9: ADPRE: ADC PRECHARGE TIME CONTROL REGISTER

00000001 = Precharge time is 1 clock of the selected ADC clock 00000000 = Precharge time is not included in the data conversion cycle

REGISTER 31-10: ADACQ: ADC ACQUISITION TIME CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADACO | Q<7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	ADACQ<7:0> : Acquisition (charge share time) Select bits 11111111 = Acquisition time is 255 clocks of the selected ADC clock 11111110 = Acquisition time is 254 clocks of the selected ADC clock
	•
	• 00000001 = Acquisition time is 1 clock of the selected ADC clock 00000000 = Acquisition time is not included in the data conversion cycle
Notor	If ADREE is not equal to (a), then ADACO = $b'(00000000)$ means Acquisition time is 256 closed

Note: If ADPRE is not equal to '0', then ADACQ = b'00000000 means Acquisition time is 256 clocks of the selected ADC clock.

-n/n = Value at POR and BOR/Value at all other Resets

REGISTER 31-27: ADERRL: ADC SETPOINT ERROR LOW BYTE REGISTER

x = Bit is unknown

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			ADER	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplen	nented bit, read	d as '0'	

'1' = Bit is set	'0' = Bit is cleared
bit 7-0	ADERR<7:0>: ADC Setpoint Error LSB. Lower byte of ADC Setpoint Error calculation is determined

REGISTER 31-28 ADI THH: ADC I OWER THRESHOLD HIGH BYTE REGISTER

by ADCALC bits of ADCON3, see Register 23-1 for more details.

ILE OIOTEILO	LO. ADEN				DITEREOR		
R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			ADLTH	<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADLTH<15:8>: ADC Lower Threshold MSB. ADLTH and ADUTH are compared with ADERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

REGISTER 31-29: ADLTHL: ADC LOWER THRESHOLD LOW BYTE REGISTER

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADLTH | l<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADLTH<7:0>: ADC Lower Threshold LSB. ADLTH and ADUTH are compared with ADERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

© 2015-2017 Microchip Technology Inc.

u = Bit is unchanged

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	_	INT2EDG	INT1EDG	INT0EDG	170
PIE1	OSCFIE	CSWIE	_	_	_	_	ADTIE	ADIE	180
PIR1	OSCFIF	CSWIF		_	_	_	ADTIF	ADIF	172
ADCON0	ADON	ADCON	_	ADCS	-	ADFM	—	ADGO	448
ADCON1	ADPPOL	ADIPEN	ADGPOL	_	_	_	_	ADDSEN	449
ADCON2	ADPSIS	A	DCRS<2:0	>	ADACLR		ADMD<2:0>	>	450
ADCON3	-	A	DCALC<2:0)>	ADSOI	A	DTMD<2:0	>	451
ADACT	_	_	—	—		ADAC	T<4:0>		450
ADRESH				ADRES	SH<7:0>				458, 458
ADRESL				ADRES	SL<7:0>				458, 459
ADPREVH				ADPRE	V<15:8>				459
ADPREVL				ADPRE	EV<7:0>				460
ADACCH				ADACO	C<15:8>				460
ADACCL				ADAC	C<7:0>				460
ADSTPTH				ADSTP	T<15:8>				461
ADSTPT				ADSTR	PT<7:0>				461
ADERRL				ADER	R<7:0>				462
ADLTHH				ADLTH	l<15:8>				462
ADLTHL				ADLTI	H<7:0>				462
ADUTHH				ADUTH	H<15:8>				463
ADUTHL				ADUT	H<7:0>				463
ADSTAT	ADAOV	ADUTHR	ADLTHR	ADMATH		ADSTA	T<3:0>		452
ADCLK	_	_			ADCS	6<5:0>			453
ADREF	—	—		ADNREF	—	_	ADPRE	EF<1:0>	453
ADPCH	—	_			ADPC	H<5:0>			454
ADPRE				ADPR	E<7:0>				455
ADACQ				ADAC	Q<7:0>				455
ADCAP	—		_		ŀ	ADCAP<4:0	>		456
ADRPT					T<7:0>				456
ADCNT					T<7:0>				457
ADFLTRH					R<15:8>				457
ADFLTRL	D.(22)		TOTI		R<7:0>	(D (.)		D . 1 0:	457
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	-	/R<1:0>		R<1:0>	423
DAC1CON1 OSCSTAT	– EXTOR	— HFOR	— MFOR	LFOR	SOR	DAC1R<4:0> ADOR	, 	PLLR	429 39
Legend:						-		FLLK	29

TABLE 31-5:	SUMMARY OF REGISTERS ASSOCIATED WITH ADC
-------------	--

Legend: - = unimplemented read as '0'. Shaded cells are not used for the ADC module.

32.0 COMPARATOR MODULE

Note: The PIC18(L)F26/45/46K40 devices have two comparators. Therefore, all information in this section refers to both C1 and C2.

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution.

The analog comparator module includes the following features:

- Programmable input selection
- Programmable output polarity
- Rising/falling output edge interrupts
- Wake-up from Sleep
- CWG Auto-shutdown source
- Selectable voltage reference
- ADC Auto-trigger
- TMR1/3/5 Gate
- TMR2/4/6 Reset
- CCP Capture Mode Input
- DSM Modulator Source
- Input and Window signal to Signal Measurement
 Timer

32.1 Comparator Overview

A single comparator is shown in Figure 32-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

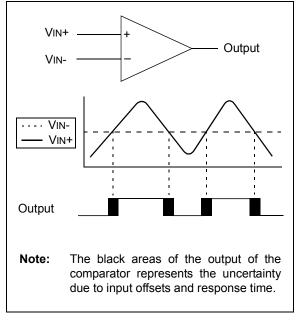


TABLE 35-2: INSTRUCTION SET

Mnemo	onic,	Description	Civalaa	16-	Bit Instr	uction W	/ord	Status	Notoo
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED (OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and CARRY bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	3/ U	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	,
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	•, =
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	,
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	,
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

RLNCF	Rotate Le	eft f (No Car	ry)
Syntax:	RLNCF	f {,d {,a}}	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$		
Operation:	$(f \le n >) \rightarrow d$ $(f \le 7 >) \rightarrow d$	est <n +="" 1="">, est<0></n>	
Status Affected:	N, Z		
Encoding:	0100	01da ff:	ff ffff
Description:	one bit to t is placed ir stored bac If 'a' is '0', 1 If 'a' is '1', 1 GPR bank If 'a' is '0' a set is enab in Indexed mode when tion 35.2.3 Oriented I	and the extend led, this instruc- Literal Offset λ never f \leq 95 (5 5 "Byte-Orien	'0', the result , the result is (default). nk is selected. d to select the led instruction ction operates Addressing Fh). See Sec- ted and Bit- n Indexed Lit- etails.
Words:	1		
Cycles:	1		
,	I		
Q Cycle Activity: Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
Example: Before Instruct REG After Instructio REG	RLNCF ion = 1010 1		0

RRCF	Rotate Ri	-	
Syntax:	RRCF f{,	d {,a}}	
Operands:	$0 \leq f \leq 255$		
	d ∈ [0,1]		
o "	a ∈ [0,1]		
Operation:	$(f < n >) \rightarrow de$ $(f < 0 >) \rightarrow C$ $(C) \rightarrow dest$,	
Status Affected:	C, N, Z		
Encoding:	0011	00da ff:	ff ffff
Description:	one bit to th flag. If 'd' is If 'd' is '1', t register 'f' (If 'a' is '0', t	ts of register 'f he right throug '0', the result i he result is pla default). he Access Bai he BSR is use	h the CARRY is placed in W aced back in nk is selected
	set is enabl in Indexed mode when tion 35.2.3 Oriented Ir	nd the extende ed, this instruct Literal Offset A lever f ≤ 95 (5) "Byte-Orient hstructions in Mode" for de registe	ction operates Addressing Fh). See Sec ed and Bit- Indexed Lite tails.
Words:	set is enabl in Indexed mode when tion 35.2.3 Oriented In eral Offset	ed, this instruct Literal Offset A lever $f \le 95$ (50 "Byte-Orient instructions in Mode" for de	ction operates Addressing Fh). See Sec ed and Bit- Indexed Lite tails.
Words: Cycles:	set is enabl in Indexed mode wher tion 35.2.3 Oriented Ir eral Offset	ed, this instruct Literal Offset A lever $f \le 95$ (50 "Byte-Orient instructions in Mode" for de	ction operates Addressing Fh). See Sec ed and Bit- Indexed Lite tails.
Cycles:	set is enablin Indexed mode when tion 35.2.3 Oriented In eral Offset	ed, this instruct Literal Offset A lever $f \le 95$ (50 "Byte-Orient instructions in Mode" for de	ction operates Addressing Fh). See Sec ed and Bit- Indexed Lite tails.
	set is enablin Indexed mode when tion 35.2.3 Oriented In eral Offset	ed, this instruct Literal Offset A lever $f \le 95$ (50 "Byte-Orient instructions in Mode" for de	ction operates Addressing Fh). See Sec ed and Bit- Indexed Lite tails.
Cycles: Q Cycle Activity:	set is enabl in Indexed mode wher tion 35.2.3 Oriented Ir eral Offset 1	ed, this instru Literal Offset A lever f ≤ 95 (51 "Byte-Orient instructions in Mode" for de registe	ction operates Addressing Fh). See Sec ed and Bit- Indexed Lit- tails.
Cycles: Q Cycle Activity: Q1	set is enabl in Indexed mode wher tion 35.2.3 Oriented Ir eral Offset 1 1 2	ed, this instru Literal Offset A ever f ≤ 95 (51 "Byte-Orient instructions in Mode" for de registe	Ction operates Addressing Fh). See Sec ed and Bit- Indexed Lit- tails. rf
Cycles: Q Cycle Activity: Q1 Decode	set is enabl in Indexed mode wher tion 35.2.3 Oriented Ir eral Offset 1 1 1 2 Q2 Read register 'f'	ed, this instruu Literal Offset A leever f ≤ 95 (5) "Byte-Orient instructions in Mode " for de registe Q3 Process Data	Q4 Q4 Write to destination
Cycles: Q Cycle Activity: Q1 Decode	set is enabl in Indexed mode wher tion 35.2.3 Oriented Ir eral Offset C 1 1 2 2 Read	ed, this instru Literal Offset A ever f ≤ 95 (51 "Byte-Orient instructions in Mode" for de registe Q3 Process	Q4 Q4 Write to destination
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct	set is enabl in Indexed mode wher tion 35.2.3 Oriented Ir eral Offset I 1 1 2 Q2 Read register 'f' RRCF tion	ed, this instruc Literal Offset A ever f ≤ 95 (51 "Byte-Orient astructions in Mode" for de registe Q3 Process Data REG, 0, 1	Q4 Q4 Write to destination
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruc REG	set is enablin Indexed mode wher tion 35.2.3 Oriented Ir eral Offset I 1 1 2 Read register 'f' RRCF tion = 1110 0	ed, this instruc Literal Offset A ever f ≤ 95 (51 "Byte-Orient astructions in Mode" for de registe Q3 Process Data REG, 0, 1	Q4 Q4 Write to destination
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct	set is enablin Indexed mode wher tion 35.2.3 Oriented Ir eral Offset T 1 1 1 2 Q2 Read register 'f' RRCF tion = 1110 C = 0	ed, this instruc Literal Offset A ever f ≤ 95 (51 "Byte-Orient astructions in Mode" for de registe Q3 Process Data REG, 0, 1	Q4 Q4 Write to destination
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C	set is enablin Indexed mode wher tion 35.2.3 Oriented Ir eral Offset T 1 1 1 2 Q2 Read register 'f' RRCF tion = 1110 C = 0	ed, this instruc Literal Offset A lever f ≤ 95 (5) "Byte-Orient istructions in Mode " for de registe Q3 Process Data REG, 0, 0	Q4 Q4 Write to destination
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction	set is enablin Indexed mode wher tion 35.2.3 Oriented Ir eral Offset I 1 1 1 Q2 Read register 'f' RRCF tion = 1110 C = 0	ed, this instruc Literal Offset A lever f ≤ 95 (5) "Byte-Orient istructions in Mode " for de registe Q3 Process Data REG, 0, 0	Q4 Q4 Write to destination

SLEEP	Enter Sle	ep mode							
Syntax:	SLEEP								
Operands:	None								
Operation:									
Status Affected:	TO, PD	TO, PD							
Encoding:	0000	0000 0000 0000 0011							
Description:	cleared. Th is set. Wat caler are c The proces	The Power-down Status bit (PD) is cleared. The Time-out Status bit (TO) is set. Watchdog Timer and its posts- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.							
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	No operation	Process Data	Go to Sleep						
$\begin{array}{rcl} \underline{Example}: \\ & & \\ & & \\ & & \\ \hline TO & = \\ & & \\ \hline PD & = \\ & \\ & \\ & \\ \hline TO & = \\ & \\ \hline PD & = \\ \end{array}$? ?								
† If WDT causes v	wake-up, this t	bit is cleared.							

SUBFWB	Subtract	f from W wi	th borrow			
Syntax:	SUBFWB	f {,d {,a}}				
Operands:	$0 \le f \le 255$	5				
	d ∈ [0,1]					
Orientiere	a ∈ [0,1]	$\overline{(0)}$ dent				
Operation:		$\overline{(C)} \rightarrow \text{dest}$				
Status Affected:	N, OV, C,					
Encoding:		0101 01da ffff ffff				
Description:	(borrow) fr method). I in W. If 'd' register 'f' If 'a' is '0', selected. I to select th If 'a' is '0' a set is enat operates in Addressin $f \le 95$ (5Fh 35.2.3 "By ented Inst	the Access Ba f 'a' is '1', the B ne GPR bank. and the extended oled, this instru- n Indexed Liter g mode whene n). See Section rte-Oriented an gructions in Index	nplement esult is stored it is stored in ank is 3SR is used ed instruction iction ral Offset ever 1 n Bit-Ori-			
Words:	Offset Mo	de" for details.				
Cycles:	1					
Q Cycle Activity:	I					
Q Cycle Activity. Q1	Q2	Q3	Q4			
Decode	Read	Process	Write to			
	register 'f'	Data	destination			
Example 1:	SUBFWB	REG, 1, 0				
Before Instruct						
REG W	= 3 = 2					
C After Instructio	= 1					
After Instructio REG	= FF					
W C	= 2					
ž	= 0					
	= 0 = 0					
Ν	= 0 = 1 ; re	sult is negative)			
N <u>Example 2</u> :	= 0 = 1 ; re SUBFWB		9			
N Example 2: Before Instruct REG	= 0 = 1 ; re _{SUBFWB} tion = 2		9			
N Example 2: Before Instruct	= 0 = 1 ; re SUBFWB		3			
N <u>Example 2</u> : Before Instruct REG W C After Instructio	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n		2			
N Example 2: Before Instruct REG W C	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1		2			
N Example 2: Before Instruct W C After Instructio REG W C	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1		2			
N Example 2: Before Instruct REG W C After Instructio REG W	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0		2			
N Example 2: Before Instruct REG W C After Instructio REG W C	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0	REG, 0, 0	3			
N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3: Before Instruct	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0 = 0 ; re SUBFWB tion	REG, 0, 0	2			
N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3:	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0 = 0 ; re SUBFWB	REG, 0, 0	2			
N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3: Before Instruct REG W C	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0 = 0 ; re SUBFWB tion = 1 = 2 = 0	REG, 0, 0	3			
N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3: Before Instruct REG W	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0 = 0 ; re SUBFWB tion = 1 = 2 = 0	REG, 0, 0	3			
N Example 2: Before Instruct REG W C After Instructio REG W Example 3: Before Instruct REG W C After Instructio REG W C	= 0 = 1; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0; re SUBFWB tion = 1 = 2 = 0 n = 2 = 1 n = 0; re	REG, 0, 0	2			
N Example 2: Before Instructo REG W C After Instructio REG W Example 3: Before Instruct REG W C After Instructio REG	= 0 = 1 ; re SUBFWB tion = 2 = 5 = 1 n = 2 = 3 = 1 = 0 ; re SUBFWB tion = 2 = 0; re SUBFWB tion = 2 = 0 = 1 = 1 = 1 = 2 = 3 = 1 = 0 = 0 = 1 = 1 = 1 = 1 = 1 = 2 = 1 = 1 = 1 = 1 = 1 = 1 = 0 = 1 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 0 = 1 = 0 = 0 = 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	REG, 0, 0	2			

Syntax:	CALLW Subroutine Call Using WREG						
- ,	CALLW						
Operands:	None						
Operation:	(W) → PCL (PCLATH) -	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$					
Status Affected:	None	None					
Encoding:	0000	0000 000	1 0100				
Description	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while th new next instruction is fetched. Unlike CALL, there is no option to update W, Status or BSR.						
Words:	1						
Cycles:	2						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read	PUSH PC to	No				
	WREG	stack	operation				
	No operation	No operation	No operation				
No operation		operation	operation				

мол	/SF	Move Indexed to f						
Synta	ax:	MOVSF [z _s], f _d						
Oper	ands:		$0 \le z_s \le 127$ $0 \le f_d \le 4095$					
Oper	ation:	((FSR2) + :	$z_s) \rightarrow f_d$					
Statu	s Affected:	None						
Encoding: 1st word (source) 2nd word (destin.)		1110 1111		Ozzz ffff	zzzz _s ffff _d			
Description: The contents of the source register moved to destination register 'f _d '. T actual address of the source register determined by adding the 7-bit liter offset ' z_s ' in the first word to the valu FSR2. The address of the destinati register is specified by the 12-bit liter 'f _d ' in the second word. Both address can be anywhere in the 4096-byte of space (000h to FFFh). The MOVSF instruction cannot use the destination register. If the resultant source address poin an indirect addressing register, the value returned will be 00h.				f _d '. The register is it literal e value of stination -bit literal addresses byte data c use the as the s points to				
Word	ls:	2						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Determine source addr	Determin source ad		Read ource reg			
	Decode	No operation No dummy read	Write gister 'f' (dest)					
<u>Exan</u>	<u>nple</u> :	MOVSF	[05h], RH	EG2				
	Before Instruc FSR2 Contents of 85h REG2	= 80 = 33 = 11	h					
	After Instructic FSR2 Contents of 85h REG2	on = 80 = 33 = 33	h					

мол	/SS	Move Ind	Move Indexed to Indexed					
Synta	ax:	MOVSS [z	MOVSS [z _s], [z _d]					
Oper	ands:	$0 \le z_s \le 127$	$0 \le z_s \le 127$					
		$0 \le z_d \le 12$	7					
Oper	ation:	((FSR2) + z	$((FSR2) + z_s) \rightarrow ((FSR2) + z_d)$					
Statu	s Affected:	None						
	ding: ord (source) vord (dest.)	1110 1111	s					
Desc	ription	moved to th addresses of registers an 7-bit literal of respectively registers ca the 4096-by (000h to FF The MOVSS PCL, TOSL destination If the result an indirect a value return resultant de	1111xxxxxzzzzzzz_dThe contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets 'zs' or 'zd', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh).The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.If the resultant source address points to an indirect addressing register, the value returned will be 00h. If the resultant destination address points to an indirect addressing register, the					
Word	ls:	2						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Determine	Determ	ine	Read			
		source addr	source a	addr so	ource reg			
	Decode	Determine dest addr	Determ dest ac		Write dest reg			

Example:	MOVSS	[05h],	[06h]
Before Instruction FSR2 Contents	on =	80h	
of 85h Contents	=	33h	
of 86h	=	11h	
After Instruction FSR2 Contents	=	80h	
of 85h Contents	=	33h	
of 86h	=	33h	

PUS	HL	Store Lite	ral a	t FSR	2, Decr	eme	ent FSR2
Synta	IX:	PUSHL k					
Opera	ands:	$0 \leq k \leq 255$					
Opera	ation:	$k \rightarrow (FSR2),$ FSR2 – 1 \rightarrow FSR2					
Status	Affected:	None					
Enco	ding:	1111	10	010	kkkk		kkkk
2000	ription:	The 8-bit literal 'k' is written to the data memory address specified by FSR2. FSR is decremented by 1 after the operation. This instruction allows users to push valu onto a software stack.				2. FSR2 ation.	
Word	s:	1					
Cycle	S:	1					
QCy	cle Activity	r:					
Q1		Q2		Q3			Q4
	Decode	Read '	k'	Process data		-	Vrite to stination
Exam		PUSHL	081	ı			
		ruction H:FSR2L ry (01ECh)			01ECh 00h		
		ction H:FSR2L ry (01ECh)		= =	01EBh 08h		

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					•
		I/O PORT:					
D300		with TTL buffer	_		0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D301			—	_	0.15 VDD	V	$1.8V \le V\text{DD} \le 4.5V$
D302		with Schmitt Trigger buffer	—	_	0.2 Vdd	V	$2.0V \le V\text{DD} \le 5.5V$
D303		with I ² C levels		_	0.3 VDD	V	
D304		with SMBus levels	—	_	0.8	V	$2.7V \le V\text{DD} \le 5.5V$
D305		MCLR	—	_	0.2 VDD	V	
	VIH	Input High Voltage			•		
		I/O PORT:					
D320		with TTL buffer	2.0			V	$4.5V \leq V\text{DD} \leq 5.5V$
D321			0.25 VDD + 0.8	_	—	V	$1.8V \le V\text{DD} \le 4.5V$
D322		with Schmitt Trigger buffer	0.8 Vdd	_	_	V	$2.0V \le VDD \le 5.5V$
D323		with I ² C levels	0.7 Vdd	_	_	V	
D324		with SMBus levels	2.1	_	_	V	$2.7V \le VDD \le 5.5V$
D325		MCLR	0.7 Vdd	_	_	V	
	lı∟	Input Leakage Current ⁽¹⁾					
D340		I/O Ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C
D341			—	± 5	± 1000	nA	VSS \leq VPIN \leq VDD, Pin at high-impedance, 125°C
D342		MCLR ⁽²⁾	—	± 50	± 200	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C
	IPUR	Weak Pull-up Current					
D350			25	120	200	μA	VDD = 3.0V, VPIN = VSS
	Vol	Output Low Voltage					
D360		I/O ports	_	_	0.6	V	IOL = 10.0mA, VDD = 3.0V
	Voн	Output High Voltage	1		•	•	1
D370		I/O ports	Vdd - 0.7	_		V	ЮН = 6.0 mA, VDD = 3.0V
D380	Сю	All I/O pins	_	5	50	pF	

TABLE 37-4: I/O PORTS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined <u>as current</u> sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.