

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

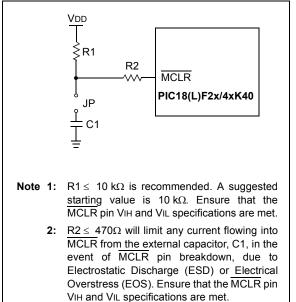
Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k40-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4 ICSP™ Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 36.0 "Development Support"**.

ILEGIO I EILO O	. comg		010011011				
U-1	U-1	U-1	U-1	U-1	U-1	R/W-1	R/W-1
—	_	_	_	_	—	CPD	CP
bit 7							bit 0
l egend.							

REGISTER 3-9: Configuration Word 5L (30 0008h): Code Protection

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '1'	
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-2	Unimplemented: Read as '1'
bit 1	CPD: Data NVM Memory Code Protection bit
	1 = Data NVM code protection disabled
	0 = Data NVM code protection enabled
bit 0	CP: User NVM Program Memory Code Protection bit
	 User NVM code protection disabled
	0 = User NVM code protection enabled

REGISTER 3-10: Configuration Word 6L (30 000Ah): Memory Read Protection

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EBTR7 | EBTR6 | EBTR5 | EBTR4 | EBTR3 | EBTR2 | EBTR1 | EBTR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '1'
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

EBTR<7:0>: Table Read Protection bits⁽¹⁾

1 = Corresponding Memory Block NOT protected from table reads executed in other blocks

0 = Corresponding Memory Block protected from table reads executed in other blocks

Note 1: Refer to Table 10-2 for details on implementation of the individual EBTR bits.

REGISTER 3-11: Configuration Word 6H (30 000Bh): Memory Read Protection

U-1	U-1	U-1	U-1	U-1	U-1	R/W-1	U-1
—	_	_	_	_	_	EBTRB	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '1'
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

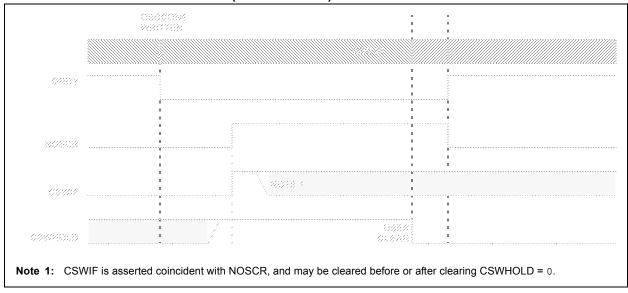
bit 7-2 Unimplemented: Read as '1'

bit 1 **EBTRB:** Table Read Protection bit

- 1 = Memory Boot Block NOT protected from table reads executed in other blocks
- 0 = Memory Boot Block protected from table reads executed in other blocks
- bit 0 Unimplemented: Read as '1'

4.4.2 CLOCK SWITCH AND SLEEP

If OSCCON1 is written with a new value and the device is put to Sleep before the switch completes, the switch will not take place and the device will enter Sleep mode.


When the device wakes from Sleep and the CSWHOLD bit is clear, the device will wake with the 'new' clock active, and the clock switch interrupt flag bit (CSWIF) will be set.

When the device wakes from Sleep and the CSWHOLD bit is set, the device will wake with the 'old' clock active and the new clock will be requested again.

FIGURE 4-7: CLOCK SWITCH (CSWHOLD = 1)

7.5 Register Definitions: Peripheral Module Disable

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD
7	•	•	•	•		•	
Legend: R = Readable	, hit	W = Writable	hit	II – Unimplor	nented bit, read		
u = Bit is uncl		x = Bit is unkn		•		R/Value at all o	thar Pasata
'1' = Bit is set	•	0' = Bit is clear					
			areu	q – value dep	ends on condi		
bit 7	See descript 1 = System	isable Periphera ion in Section 7 clock network di clock network e	.4 "System Cl sabled (Fosc)	k Network bit ⁽¹⁾ ock Disable".			
bit 6	1 = FVR mo	able Fixed Volta dule disabled dule enabled	ge Reference	bit			
bit 5	1 = HLVD m	isable Low-Volta nodule disabled nodule enabled	ige Detect bit				
bit 4	1 = CRC mc	able CRC Engir odule disabled odule enabled	ne bit				
bit 3	1 = NVM M	isable NVM Me emory Scan mo emory Scan mo	dule disabled	bit ⁽²⁾			
bit 2	1 = All Mem	M Module Disal ory reading and odule enabled		bled; NVMCON	registers canr	not be written	
bit 1	1 = CLKR m	isable Clock Re odule disabled odule enabled	ference bit				
bit 0	1 = IOC mod	able Interrupt-on dule(s) disabled dule(s) enabled	-Change bit, A	ll Ports			
	earing the SYS Fosc/4 are no	SCMD bit disable of affected.	es the system	clock (Fosc) to	peripherals, h	owever periphe	rals clocked

REGISTER 7-1: PMD0: PMD CONTROL REGISTER 0

- 2: Subject to SCANE bit in CONFIG4H.
- **3:** When enabling NVM, a delay of up to 1 µs may be required before accessing data.

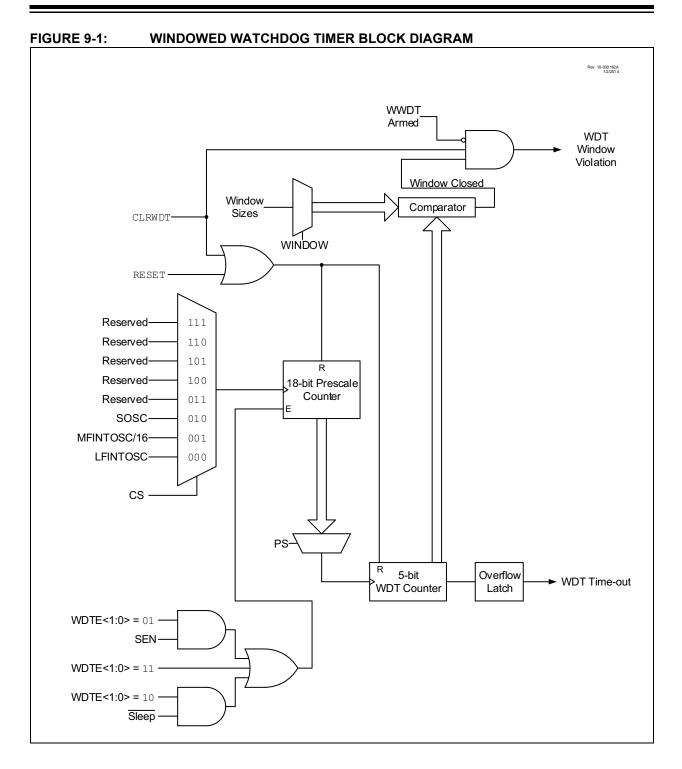
8.14 Power Control (PCON0) Register

The Power Control (PCON0) register contains flag bits to differentiate between a:

- Brown-out Reset (BOR)
- Power-on Reset (POR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Window Violation (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON0 register bits are shown in Register 8-2.

Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 8-3).


Software should reset the bit to the inactive state after restart (hardware will not reset the bit).

Software may also set any PCON0 bit to the active state, so that user code may be tested, but no Reset action will be generated.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN							BORRDY	75
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	76
STATUS	_	TO	PD	Ν	OV	Z	DC	С	118
WDTCON0	_	_		WDTPS<4:0>					85
WDTCON1		W	/DTCS<2:0>	DTCS<2:0> — WINDOW<2:0)>	86

TABLE 8-4: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
FFFh	TOSU		Top of Stack Upper byte (TOS<20:16>)							
FFEh	TOSH		I	Тс	op of Stack High	byte (TOS<15	:8>)			xxxxxxxx
FFDh	TOSL			Т	op of Stack Low	v byte (TOS<7:	0>)			xxxxxxxx
FFCh	STKPTR	_	—	—			STKPTR<4:0>			000000
FFBh	PCLATU	_	—	_		Holding	Register for PC	<20:16>		00000
FFAh	PCLATH				Holding Regist	er for PC<15:8	>			00000000
FF9h	PCL				PC Low byt	e (PC<7:0>)				00000000
FF8h	TBLPTRU	_	—		Program I	Memory Table	Pointer (TBLP1	R<21:16>)		000000
FF7h	TBLPTRH			Program	Memory Table	Pointer (TBLP	TR<15:8>)			00000000
FF6h	TBLPTRL			Program	n Memory Table	Pointer (TBLF	PTR<7:0>)			00000000
FF5h	TABLAT				TAE	BLAT				00000000
FF4h	PRODH				Product Regi	ster High byte				xxxxxxxx
FF3h	PRODL				Product Reg	ister Low byte				xxxxxxxx
FF2h	INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	000111
FF1h	-				Unimple	emented				—
FF0h	-				Unimple	emented				—
FEFh	INDF0	Uses contents	of FSR0 to ad	dress data me	emory – value of	f FSR0 not cha	inged (not a ph	ysical register)	
FEEh	POSTINC0	Uses contents	of FSR0 to ad	dress data me	emory – value of	f FSR0 post-in	cremented (not	a physical reg	jister)	
FEDh	POSTDEC0	Uses contents	of FSR0 to ad	dress data me	emory – value of	f FSR0 post-de	cremented (no	t a physical re	gister)	
FECh	PREINC0	Uses contents	of FSR0 to ad	dress data me	emory – value of	f FSR0 pre-inc	remented (not a	a physical regi	ster)	
FEBh	PLUSW0	Uses contents FSR0 offset by		dress data me	emory – value of	f FSR0 pre-inc	remented (not a	a physical regi	ster) – value of	
FEAh	FSR0H	-	—	—	—	Indirect	t Data Memory	Address Point	er 0 High	xxxx
FE9h	FSR0L			Indired	t Data Memory	Address Point	er 0 Low			xxxxxxx
FE8h	WREG				Working	Register				xxxxxxxx
FE7h	INDF1	Uses c	ontents of FSF	R0 to address	data memory –	value of FSR1	not changed (r	not a physical	register)	
FE6h	POSTINC1	Uses contents	of FSR0 to ad	dress data me	emory – value of	f FSR1 post-in	cremented (not	a physical reg	jister)	
FE5h	POSTDEC1	Uses contents	of FSR0 to ad	dress data me	emory – value of	f FSR1 post-de	cremented (no	t a physical re	gister)	
FE4h	PREINC1	Uses contents	of FSR0 to ad	dress data me	emory – value of	f FSR1 pre-inc	remented (not a	a physical regi	ster)	
FE3h	PLUSW1	Uses contents FSR0 offset by		dress data me	emory – value of	FSR1 pre-inc	remented (not a	a physical regi	ster) – value of	

REGISTER FILE SUMMARY FOR PIC18(L)F26/45/46K40 DEVICES **TABLE 10-5**:

Legend: ${\rm x}$ = unknown, ${\rm u}$ = unchanged, — = unimplemented, ${\rm q}$ = value depends on condition

Not available on LF devices. Note 1:

Not available on PIC18(L)F26K40 (28-pin variants).
 Not available on PIC18(L)F45K40 devices.

NEGISTER	14-II. FILI.I			TENADLE	REGISTER I					
R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0			
OSCFIE	CSWIE	—	_	_	—	ADTIE	ADIE			
bit 7				·			bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7	OSCFIE: Osc	cillator Fail Inter	rupt Enable b	it						
	1 = Enabled									
	0 = Disabled									
bit 6	CSWIE: Cloc	k-Switch Interru	upt Enable bit							
	1 = Enabled									
	0 = Disabled									
bit 5-2	Unimplemen	ted: Read as '	כ'							
bit 1	ADTIE: ADC	Threshold Inte	rrupt Enable b	oit						
	1 = Enabled	1 = Enabled								
	0 = Disabled									
bit 0	ADIE: ADC Ir	nterrupt Enable	bit							
	1 = Enabled									
	0 = Disabled									

REGISTER 14-11: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

Mada	MODE	<4:0>	Output	On creation	Timer Control			
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop	
		000		Software gate (Figure 20-4)	ON = 1	_	ON = 0	
		001	Period Pulse	Hardware gate, active-high (Figure 20-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0	
		010	Fuise	Hardware gate, active-low	ON = 1 and TMRx_ers = 0	_	ON = 0 or TMRx_ers = 1	
Free	0.0	011		Rising or falling edge Reset		TMRx_ers		
Running Period	00	100	Period	Rising edge Reset (Figure 20-6)		TMRx_ers ↑	ON = 0	
		101	Pulse	Falling edge Reset		TMRx_ers ↓		
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0	
		111	Reset	High level Reset (Figure 20-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1	
		000	One-shot	Software start (Figure 20-8)	ON = 1	_		
		001	Edge	Rising edge start (Figure 20-9)	ON = 1 and TMRx_ers ↑	_		
		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_		
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or	
One-shot	01	100	Edge	Rising edge start and Rising edge Reset (Figure 20-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	Next clock after TMRx = PRx	
		101	triggered start	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓	(Note 2)	
		110	and hardware Reset	Rising edge start and Low level Reset (Figure 20-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0		
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1		
		000		Rese	rved			
		001	Edge	Rising edge start (Figure 20-12)	ON = 1 and TMRx_ers ↑	—	ON = 0 or	
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	Next clock after	
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)	
Reserved	10	100		Rese	rved		•	
Reserved		101		Rese	rved			
One-shot		110	Level triggered	High level start and Low level Reset (Figure 20-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or	
	¹¹¹ ha	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)		
Reserved	11	xxx		Rese	rved			

TABLE 20-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

REGISTER 21-3: CCPxCAP: CAPTURE INPUT SELECTION MULTIPLEXER REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x
—	—	—	_	_		CTS<	<1:0>
bit 7							bit 0

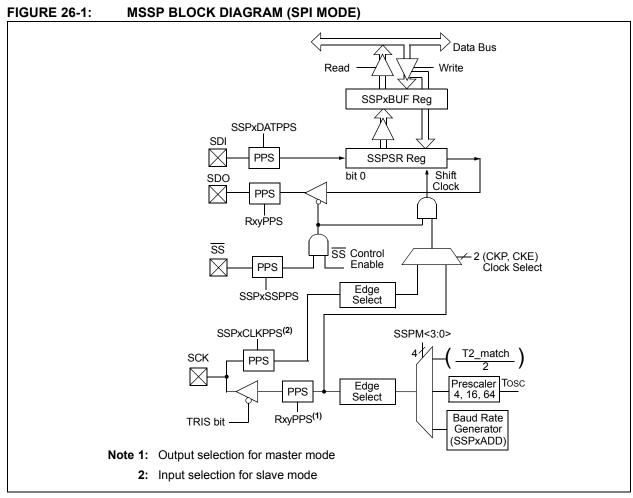
Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-2 Unimplemented: Read as '0'

bit 1-0 CTS<1:0>: Capture Trigger Input Selection bits

CTS<1:0>	Connection				
013<1.02	CCP1	CCP2			
11	IOC_Interrupt				
10		CMP2_output			
01	CMP1_output				
00	Pin selected by CCP1PPS	Pin selected by CCP2PPS			

REGISTER 21-4: CCPRxL: CCPx REGISTER LOW BYTE


R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x			
	CCPRx<7:0>									
bit 7 bit 0										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0	MODE = Capture Mode:
	CCPRxL<7:0>: LSB of captured TMR1 value
	MODE = Compare Mode:
	CCPRxL<7:0>: LSB compared to TMR1 value
	MODE = PWM Mode && FMT = 0:
	CCPRxL<7:0>: CCPW<7:0> - Pulse-Width LS 8 bits
	MODE = PWM Mode && FMT = 1:
	CCPRxL<7:6>: CCPW<1:0> - Pulse-Width LS 2 bits
	CCPRxL<5:0>: Not used

© 2015-2017 Microchip Technology Inc.

PIC18LF26/45/46K40

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 26-2 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

R/W-0	R/W/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾
bit 7							bit 0
Legend:							
R = Reada		W = Writable b	oit		eared by hardw	/are	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	In Master Tra 1 = A write t transmis 0 = No collis In Slave Tran 1 = The SSF software 0 = No collis	to the SSPxBUF sion to be starte ion <u>smit mode:</u> PxBUF register is)	⁼ register wa d (must be cl s written while	eared in softwar	re)		
bit 6	This is a "don SSPOV: Rec In Receive m 1 = A byte is software 0 = No overf In Transmit m	i't care" bit. eive Overflow In <u>ode:</u> received while t) low	dicator bit he SSPxBUF	register is still h	holding the prev	vious byte (mus	st be cleared in
bit 5		ter Synchronous					
bit o	1 = Enables t	he serial port ar serial port and c	nd configures	the SDAx and S		ne serial port pi	ns
bit 4	CKP: SCKx F	Release Control	bit				
	<u>In Slave mod</u> 1 = Releases 0 = Holds clo <u>In Master mo</u> Unused in thi	clock ck low (clock str <u>de:</u>	etch), used to	o ensure data se	etup time		
bit 3-0	SSPM<3:0>:	Master Synchro	nous Serial I	Port Mode Selec	ct bits ⁽²⁾		
	$1110 = I^{2}C S$ $1011 = I^{2}C F$ $1000 = I^{2}C M$ $0111 = I^{2}C S$	lave mode: 10-bi lave mode: 7-bit irmware Control laster mode: Clo lave mode: 10-bi lave mode: 7-bit	t address with led Master m ock = Fosc/(4 bit address ^{(3,4}	n Start and Stop ode (slave Idle) +* (SSPxADD +	bit interrupts e		
Note 1: 2:	When enabled, the Bit combinations		-	-	-	ed in SPI mode	e only.

REGISTER 26-7: SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C MASTER MODE)

© 2015-2017 Microchip Technology Inc.

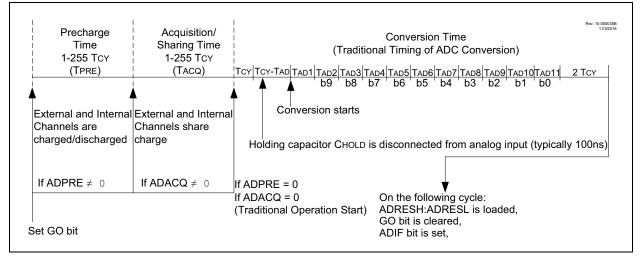
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN	395
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	-	—	INT2EDG	INT1EDG	INT0EDG	170
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	182
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	174
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	190
RCxREG			EL	JSARTx Rec	eive Registe	r			399*
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	394
RxyPPS	_	_	_			RxyPPS<4:0	>		218
RXxPPS	_	_	_			RXPPS<4:0>	>		216
SPxBRGH	EUSARTx Baud Rate Generator, High Byte						404*		
SPxBRGL	EUSARTx Baud Rate Generator, Low Byte					404*			
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	393

TABLE 27-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception. * Page provides register information.

ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES^(1,4) TABLE 31-1:

ADC C	lock Period (TAD)	Device Frequency (Fosc)						
ADC Clock Source	ADCS<5:0>	64 MHz	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000000	31.25 ns ⁽²⁾	62.5 ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	000001	62.5 ns ⁽²⁾	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/6	000010	125 ns ⁽²⁾	187.5 ns ⁽²⁾	300 ns ⁽²⁾	375 ns ⁽²⁾	750 ns ⁽²⁾	1.5 μs	6.0 μs
Fosc/8	000011	187.5 ns ⁽²⁾	250 ns ⁽²⁾	400 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	000100	250 ns ⁽²⁾	500 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾
Fosc/128	111111	2.0 μs	4.0 μs	6.4 μs	8.0 μs	16.0 μs ⁽³⁾	32.0 μs ⁽²⁾	128.0 μs ⁽²⁾
FRC	ADCS(ADCON0<4>) = 1	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs


Legend: Shaded cells are outside of recommended range. Note

1: See TAD parameter for FRC source typical TAD value.

These values violate the required TAD time. 2:

- 3: Outside the recommended TAD time.
- 4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock Fosc. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 31-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

31.4.2 PRECHARGE CONTROL

The Precharge stage is an optional period of time that brings the external channel and internal sample and hold capacitor to known voltage levels. Precharge is enabled by writing a non-zero value to the ADPRE register. This stage is initiated when an ADC conversion begins, either from setting the ADGO bit, a special event trigger, or a conversion restart from the computation functionality. If the ADPRE register is cleared when an ADC conversion begins, this stage is skipped.

During the precharge time, CHOLD is disconnected from the outer portion of the sample path that leads to the external capacitive sensor and is connected to either VDD or VSS, depending on the value of the ADPPOL bit of ADCON1. At the same time, the port pin logic of the selected analog channel is overridden to drive a digital high or low out, in order to precharge the outer portion of the ADC's sample path, which includes the external sensor. The output polarity of this override is also determined by the ADPPOL bit of ADCON1. The amount of time that this charging needs is controlled by the ADPRE register.

Note:	The external charging overrides the TRIS						
	setting of the respective I/O pin. If there is						
	a device attached to this pin, Precharge						
	should not be used.						

31.4.3 ACQUISITION CONTROL

The Acquisition stage is an optional time for the voltage on the internal sample and hold capacitor to charge or discharge from the selected analog channel. This acquisition time is controlled by the ADACQ register. If ADPRE = 0, acquisition starts at the beginning of conversion. When ADPRE = 1, the acquisition stage begins when precharge ends.

At the start of the acquisition stage, the port pin logic of the selected analog channel is overridden to turn off the digital high/low output drivers so they do not affect the final result of the charge averaging. Also, the selected ADC channel is connected to CHOLD. This allows charge averaging to proceed between the precharged channel and the CHOLD capacitor.

Note: When ADPRE! = 0, acquisition time cannot be '0'. In this case, setting ADACQ to '0' will set a maximum acquisition time (256 ADC clock cycles). When precharge is disabled, setting ADACQ to '0' will disable hardware acquisition time control.

31.4.4 GUARD RING OUTPUTS


Figure 31-8 shows a typical guard ring circuit. CGUARD represents the capacitance of the guard ring trace placed on the PCB board. The user selects values for RA and RB that will create a voltage profile on CGUARD, which will match the selected acquisition channel.

The purpose of the guard ring is to generate a signal in phase with the CVD sensing signal to minimize the effects of the parasitic capacitance on sensing electrodes. It also can be used as a mutual drive for mutual capacitive sensing. For more information about active guard and mutual drive, see Application Note AN1478, "*mTouchTM Sensing Solution Acquisition Methods Capacitive Voltage Divider*" (DS01478).

The ADC has two guard ring drive outputs, ADGRDA and ADGRDB. These outputs can be routed through PPS controls to I/O pins (see **Section 17.0 "Peripheral Pin Select (PPS) Module"** for details) and the polarity of these outputs are controlled by the ADGPOL and ADIPEN bits of ADCON1.

At the start of the first precharge stage, both outputs are set to match the ADGPOL bit of ADCON1. Once the acquisition stage begins, ADGRDA changes polarity, while ADGRDB remains unchanged. When performing a double sample conversion, setting the ADIPEN bit of ADCON1 causes both guard ring outputs to transition to the opposite polarity of ADGPOL at the start of the second precharge stage, and ADGRDA toggles again for the second acquisition. For more information on the timing of the guard ring output, refer to Figure 31-8 and Figure 31-9.

PIC18(L)F26/45/46K40

CPF	SGT	Compare	Compare f with W, skip if f > W					
Synta	ax:	CPFSGT	f {,a}					
Opera	ands:	0 ≤ f ≤ 255 a ∈ [0,1]						
Opera	ation:	(f) – (W), skip if (f) > (. ,					
Statu	s Affected:	(unsigned o None	comparison)					
Enco			010a fff	f ffff				
	ription:	0110010affffffffCompares the contents of data memory location 'f' to the contents of the W by performing an unsigned subtraction.If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.If 'a' is '0', the Access Bank is selected.If 'a' is '1', the BSR is used to select the GPR bank.If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing 						
Word	e.	eral Offset	Mode" for det	ails.				
Cycle		1(2) Note: 3 cy	cles if skip and 2-word instrue					
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read	Process	No				
lf sk	ip:	register 'f'	Data	operation				
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
lf sk		d by 2-word in						
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation No	operation No	operation No	operation No				
	operation	operation	operation	operation				
Example:		HERE NGREATER GREATER	CPFSGT RE : :	G, 0				
	Before Instruc	tion						
PC			dress (HERE))				
	W After Instructio	= ?						
	If REG	> W;						
	PC		dress (GREAT	TER)				
	If REG	≤ W;						
	PC	= Ad	dress (NGREA	ATER)				

CPFSLT		Compare	Compare f with W, skip if f < W					
Syntax:		CPFSLT	CPFSLT f {,a}					
Operands:		0 ≤ f ≤ 255 a ∈ [0,1]						
Operation:								
Statu	s Affected:	None	None					
Enco	ding:	0110	000a	ffff	ffff			
Desc	ription:	location 'f' i performing If the conte contents of instruction executed ir 2-cycle inst If 'a' is '0', t	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the					
Word	ls:	1						
Cycles:		1(2) Note: 3 c	1(2)					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read	Proces Data	-	No			
lf sk	ip:	register 'f'	Dala	0	peration			
	Q1	Q2	Q3		Q4			
	No	No	No		No			
	operation	operation			peration			
lf sk	ip and followed	•			<u>.</u>			
	Q1	Q2	Q3		Q4			
	No operation	No operation	No operatio	on or	No peration			
	No	No	No		No			
	operation	operation	operatio	on op	peration			
<u>Exan</u>	nple:	NLESS	NLESS :					
Before Instruction								
	PC W After Instructio	= Address (HERE) = ?						
	If REG	< W	;					
	PC	= Ac	dress (LI	ESS)				
	If REG PC	≥ W = Ac	; Idress (NI	LESS)				

PIC18(L)F26/45/46K40

IORLW		Inclusive	Inclusive OR literal with W						
Syntax:		IORLW k	IORLW k						
Operands:		$0 \le k \le 255$	$0 \le k \le 255$						
Operation:		(W) .OR. k	(W) .OR. $k \rightarrow W$						
Statu	is Affected:	N, Z	N, Z						
Encoding:		0000	1001	kkkk	kkkk				
Description:			The contents of W are ORed with the 8- bit literal 'k'. The result is placed in W.						
Word	ds:	1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Proce Dat		Write to W				
Example:		IORLW	35h						
Before Instruction		tion							
W = After Instruction		= 9Ah on							
	W	= BFh							

IORWF	Inclusive OR W with f					
Syntax:	IORWF f {,d {,a}}					
Operands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$					
Operation:	(W) .OR. (f) \rightarrow dest					
Status Affected:	N, Z					
Encoding:	0001 00da ffff ffff					
Description:	Inclusive OR W with register 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1 the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lite eral Offset Mode" for details.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2 Q3 Q4					
Decode	ReadProcessWrite toregister 'f'Datadestination					
Example:	IORWF RESULT, 0, 1					

 $\begin{array}{rrrr} \text{Before Instruction} & \\ \text{RESULT} &= & 13h \\ \text{W} &= & 91h \\ \text{After Instruction} & \\ \text{RESULT} &= & 13h \\ \text{W} &= & 93h \end{array}$

© 2015-2017 Microchip Technology Inc.

PIC18(L)F26/45/46K40

MOVFF	Move f to f		MOVLB	Move literal to low nibble in BSR			
Syntax:	MOVFF f _s ,f _d		Syntax:				
Operands:	$0 \le f_s \le 4095$		Operands:	$0 \leq k \leq 255$	$0 \leq k \leq 255$		
	$0 \le f_d \le 409$	15		Operation:	Operation: $k \rightarrow BSR$		
Operation: $(f_s) \rightarrow f_d$		Status Affected:	None	None			
Status Affected:	None			Encoding:	0000 0001 kkkk kkkk		
Encoding: 1st word (source) 2nd word (destin.) Description:	1100 1111	ffff fff ffff fff	f ffff _d	Description:	The 8-bit literal 'k' is loaded into the Bank Select Register (BSR). The value of BSR<7:4> always remains '0', regardless of the value of k ₇ :k ₄ .		
Description.	The contents of source register ' f_s ' are moved to destination register ' f_d '.		Words:	1			
	Location of	source 'f _s ' can	be anywhere	Cycles:	1		
	in the 4096-byte data space (000h to FFFh) and location of destination 'f _d ' can also be anywhere from 000h to FFFh. Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.			I			
			Q Cycle Activity: Q1	Q2	Q3	Q4	
			Decode	Read literal 'k'	Process Data	Write literal 'k' to BSR	
			<u>Example</u> : Before Instruc BSR Reg After Instructio BSR Reg	gister = 02h on			
Words:	2						
Cycles:	2 (3)						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f' (src)	Process Data	No operation				
Decode	No operation No dummy read	No operation	Write register 'f' (dest)				
Example: Before Instruct REG1 REG2 After Instructio REG1 REG2	tion = 33 = 111	h					

TABLE 37-13: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

Operating Conditions (unless otherwise stated) $VDD = 3.0V$, TA = 25°C, TAD = 1 μ s							
Param No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions
AD01	NR	Resolution	—		10	bit	
AD02	EIL	Integral Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V
AD03	Edl	Differential Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V
AD04	EOFF	Offset Error	—	0.5	±2.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V
AD05	Egn	Gain Error	—	±0.2	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8	_	Vdd	V	
AD07	VAIN	Full-Scale Range	ADREF-	_	ADREF+	V	
AD08	Zain	Recommended Impedance of Analog Voltage Source	—	10	—	kΩ	
AD09	RVREF	ADC Voltage Reference Ladder Impedance	—	50	—	kΩ	Note 3

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

3: This is the impedance seen by the VREF pads when the external reference pads are selected.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© -2017, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-1639-5