

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46k40t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC18(L)F26K40	PIC18(L)F45K40	PIC18(L)F46K40				
Program Memory (Bytes)	65536	32768	65536				
Program Memory (Instructions)	32768	16384	32768				
Data Memory (Bytes)	3720	2048	3720				
Data EEPROM Memory (Bytes)	1024	256	1024				
I/O Ports	A,B,C,E ⁽¹⁾	A,B,C,D,E	A,B,C,D,E				
Capture/Compare/PWM Modules (CCP)	2	2	2				
10-Bit Pulse-Width Modulator (PWM)	2	2	2				
10-Bit Analog-to-Digital Module (ADC ²) with Computation Accelerator	4 internal 24 external	4 internal 35 external	4 internal 35 external				
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	40-pin PDIP 40-pin UQFN 44-pin QFN 44-pin TQFP	40-pin PDIP 40-pin UQFN 44-pin QFN 44-pin TQFP				
Interrupt Sources		36					
Timers (16-/8-bit)		4/3					
Serial Communications		2 MSSP, 2 EUSART					
Enhanced Complementary Waveform Generator (ECWG)	1						
Zero-Cross Detect (ZCD)		1					
Data Signal Modulator (DSM)		1					
Peripheral Pin Select (PPS)		Yes					
Peripheral Module Disable (PMD)		Yes					
16-bit CRC with NVMSCAN		Yes					
Programmable High/Low-Voltage Detect (HLVD)		Yes					
Programmable Brown-out Reset (BOR)		Yes					
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Overflow, Stack Underflow (PWRT, OST),						
Instruction Set	83 with	75 Instructions; Extended Instruction Se	t enabled				
Operating Frequency							

TABLE 1-1: DEVICE FEATURES

Note 1: PORTE contains the single RE3 read-only bit.

	-		-				
U-1	U-1	R/W-1	U-1	R/W-1	U-1	U-1	R/W-1
—	—	FCMEN	—	CSWEN	—	—	CLKOUTEN
bit 7				·	·		bit 0
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimple	mented bit, read	d as '1'	
-n = Value for b	lank device	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	างพท
bit 7-6	Unimplement	ed: Read as '1	,				
bit 5	FCMEN: Fail-S	Safe Clock Mor	itor Enable b	bit			
	1 = FSCM time	er enabled					
h:+ 4			,				
DIL 4	Unimplemente	ed: Read as 1					
bit 3	CSWEN: Clock	k Switch Enabl	e bit				
	1 = Writing to		IV is allowed	hongod by up	ar a offwara		
1.104			,	nangeu by use			
bit 2-1	Unimplemente	ed: Read as '1	,				
bit 0	CLKOUTEN: (Clock Out Enab	ole bit				
	If FEXTOSC =	HS, XT, LP, the	en this bit is i	<u>gnored</u>			
	Otherwise:				0000		
		function is disa	bled; I/O or o	scillator function	on on USC2		
	0 = CLKOUTI	unction is enal	Jieu, FUSC/4	Clock appears	s al 0502		

REGISTER 3-2: Configuration Word 1H (30 0001h): Oscillators

5.1 Clock Source

The input to the reference clock output can be selected using the CLKRCLK register.

5.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (EN) is set, the module is ensured to be glitch-free at start-up.

When the reference clock output is disabled, the output signal will be disabled immediately.

Clock dividers and clock duty cycles can be changed while the module is enabled, but glitches may occur on the output. To avoid possible glitches, clock dividers and clock duty cycles should be changed only when the CLKREN is clear.

5.2 Programmable Clock Divider

The module takes the clock input and divides it based on the value of the DIV<2:0> bits of the CLKRCON register (Register 5-1).

The following configurations can be made based on the DIV<2:0> bits:

- · Base Fosc value
- Fosc divided by 2
- Fosc divided by 4
- Fosc divided by 8
- Fosc divided by 16
- · Fosc divided by 32
- Fosc divided by 64
- Fosc divided by 128

The clock divider values can be changed while the module is enabled; however, in order to prevent glitches on the output, the DIV<2:0> bits should only be changed when the module is disabled (EN = 0).

5.3 Selectable Duty Cycle

The DC<1:0> bits of the CLKRCON register can be used to modify the duty cycle of the output clock. A duty cycle of 25%, 50%, or 75% can be selected for all clock rates, with the exception of the undivided base Fosc value.

The duty cycle can be changed while the module is enabled; however, in order to prevent glitches on the output, the DC<1:0> bits should only be changed when the module is disabled (EN = 0).

Note: The DC1 bit is reset to '1'. This makes the default duty cycle 50% and not 0%.

5.4 Operation in Sleep Mode

The reference clock output module clock is based on the system clock. When the device goes to Sleep, the module outputs will remain in their current state. This will have a direct effect on peripherals using the reference clock output as an input signal. No change should occur in the module from entering or exiting from Sleep.

R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1
OSCFIP	CSWIP					ADTIP	ADIP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	OSCFIP: Osc	illator Fail Inter	rupt Priority b	bit			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 6	CSWIP: Clock	k-Switch Interru	upt Priority bit				
	1 = High prio	rity					
	0 = Low prior	rity					
bit 5-2	Unimplemen	ted: Read as '	0'				
bit 1	ADTIP: ADC	Threshold Inter	rrupt Priority b	bit			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 0	ADIP: ADC Ir	nterrupt Priority	bit				
	1 = High prio	rity					
	0 = Low prior	rity					

REGISTER 14-19: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	RC2IP: FUSA	ART2 Receive	nterrupt Prior	ity bit			
	1 = High prio	ritv					
	0 = Low prior	rity					
bit 6	TX2IP: EUSA	RT2 Transmit	Interrupt Prior	ity bit			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 5	RC1IP: EUSA	ART1 Receive	nterrupt Prior	ity bit			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 4	TX1IP: EUSA		Interrupt Prior	ity bit			
	1 = High prio	rity					
hit 3		SP2 Bue Colliei	on Interrunt P	riority bit			
bit 0	1 = High prior	ritv	on interrupt i	nonty bit			
	0 = Low prior	rity					
bit 2	SSP2IP: Synd	chronous Seria	I Port 2 Interro	upt Priority bit			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 1	BCL1IP: MSS	SP1 Bus Collisi	on Interrupt P	riority bit			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 0	SSP1IP: Synd	chronous Seria	I Port 1 Interro	upt Priority bit			
	1 = High prio	rity					
	0 = Low prior	nty					

REGISTER 14-21: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 21-3:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

TABLE 21-4:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

21.5.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

21.5.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

21.5.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

24.3 Clock Source

The clock source is used to drive the dead-band timing circuits. The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC

When the HFINTOSC is selected, the HFINTOSC will be kept running during Sleep. Therefore, CWG modes requiring dead band can operate in Sleep, provided that the CWG data input is also active during Sleep. The clock sources are selected using the CS bit of the CWG1CLKCON register (Register 24-3). The system clock Fosc, is disabled in Sleep and thus dead-band control cannot be used.

24.4 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 24-1.

TABLE 24-1: SELECTABLE INPUT SOURCES

Source Peripheral	Signal Name	ISM<2:0>
CWG1PPS	Pin selected by CWG1PPS	000
CCP1	CCP1 Output	001
CCP2	CCP2 Output	010
PWM3	PWM3 Output	011
PWM4	PWM4 Output	100
CMP1	Comparator 1 Output	101
CMP2	Comparator 2 Output	110
DSM	Data signal modulator output	111

The input sources are selected using the ISM<2:0> bits in the CWG1ISM register (Register 24-4).

24.5 Output Control

24.5.1 CWG OUTPUTS

Each CWG output can be routed to a Peripheral Pin Select (PPS) output via the RxyPPS register (see **Section 17.0 "Peripheral Pin Select (PPS) Module"**).

24.5.2 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLy bits of the CWG1CON1. Auto-shutdown and steering options are unaffected by polarity.

24.6 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWG1DBR and CWG1DBF registers, respectively.

24.6.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 24-2.

24.6.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWG1CON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWG1A and CWG1C signals will change immediately upon the first rising input edge following a direction change, but the modulated signals (CWG1B or CWG1D, depending on the direction of the change) will experience a delay dictated by the dead-band counters.

26.5.5 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_		INT2EDG	INT1EDG	INT0EDG	170
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	182
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	174
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	190
RxyPPS	—	_	_			RxyPPS<4:0	>		218
SSPxBUF				BUF	<7:0>				336*
SSPxCLKPPS					SS	SPxCLKPPS<	4:0>		216
SSPxCON1	WCOL	SSPOV	SSPEN	CKP		SSPN	1<3:0>		338
SSPxCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	339
SSPxDATPPS	_	-	_		S	SPDATPPS<4	4:0>		216
SSPxSSPPS	_	_	_		SSPSSPPS<4:0>				
SSPxSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	353

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP in SPI mode. * Page provides register information.

FIGURE 27-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

648048-00 2022/2213 (C2895) 1886-1886	ander instru 2010-1000 2010-1000		NUUU VUUU	NACA NACANA NACANANA	andre nam			ANGURAUKU AURUAUA UNUNUNUAUAUA
		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			 · · · · · · · · · · · · · · · · · · ·			
	: : : :: :::::::::::::::::::::::::::::	: ////////////////////////////////////	: ////////////////////////////////////	: : ::::::::::::::::::::::::::::::::::	Stevenie Millinninnin Millinninnin	ise is gane ta IIIIIIIIIIIIIIIIIII	996 (S. Ş. 1111111111	ostoot aanaanaanaanaanaanaan
FIGURE 27-8:	AUT	O-WAKE	-UP BIT	(WUE) T		SLEEP		

© 2015-2017 Microchip Technology Inc.

FIGURE 27-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RXx/DTx pin TXx/CKx pin (SCKP = 0)	
TXx/CKx pin (SCKP = 1) Write to bit SREN	
SREN bit	·0'
RCxIF bit (Interrupt) ——— Read RCxREG ————	
Note: Timing dia	ngram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

TABLE 27-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0	204
ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0	204
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16		WUE	ABDEN	395
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	170
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	182
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	174
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	190
RCxREG			EUS	ARTx Receiv	e Data Regist	ter			399*
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	394
RxyPPS		_	_		F	RxyPPS<4:0>			218
RXxPPS	_	_	_		I	RXPPS<4:0>			216
SPxBRGH	EUSARTx Baud Rate Generator, High Byte								404*
SPxBRGL			EUSART	x Baud Rate	Generator, Lo	w Byte			404*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	393

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

27.6 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

27.6.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCxSTA and TXxSTA Control registers must be configured for Synchronous Slave Reception (see Section 27.5.2.4 "Synchronous Slave Reception Setup:").
- If interrupts are desired, set the RCxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- The RCxIF interrupt flag must be cleared by reading RCxREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RXx/DTx and TXx/CKx pins, respectively. When the data word has been completely clocked in by the external device, the RCxIF interrupt flag bit of the PIR3 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

27.6.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- The RCxSTA and TXxSTA Control registers must be configured for synchronous slave transmission (see Section 27.5.2.2 "Synchronous Slave Transmission Setup").
- The TXxIF interrupt flag must be cleared by writing the output data to the TXxREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXxIE bit of the PIE3 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXxIE of the PIE3 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TXx/CKx pin and transmit data on the RXx/DTx pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXxREG will transfer to the TSR and the TXxIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXxREG is available to accept another character for transmission, which will clear the TXxIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

29.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between consecutive conversions of the temperature indicator output.

TABLE 29-2:	SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR
-	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDFVR<1:0>		ADFV	R<1:0>	423

Legend: — = Unimplemented location, read as '0'. Shaded cells are unused by the temperature indicator module.

31.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting
- Conversion Trigger Selection
- ADC Acquisition Time
- ADC Precharge Time
- Additional Sample and Hold Capacitor
- Single/Double Sample Conversion
- Guard Ring Outputs

31.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 15.0 "I/O Ports"** for more information.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

31.1.2 CHANNEL SELECTION

There are several channel selections available:

- Eight PORTA pins (RA<7:0>)
- Eight PORTB pins (RB<7:0>)
- Eight PORTC pins (RC<7:0>)
- Eight PORTD pins (RD<7:0>), PIC18(L)F45/46K40 only)
- Three PORTE pins (RE<2:0>), PIC18(L)F45/46K40 only)
- Temperature Indicator
- DAC output
- Fixed Voltage Reference (FVR)
- AVss (ground)

The ADPCH register determines which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. 0

Refer to **Section 31.2 "ADC Operation**" for more information.

Note: It is recommended that when switching from an ADC channel of a higher voltage to a channel of a lower voltage, the software selects the Vss channel before switching. If the ADC does not have a dedicated Vss input channel, the Vss selection (DAC1R<4:0> = b'00000') through the DAC output channel can be used. If the DAC is in use, a free input channel can be connected to Vss, and can be used in place of the DAC.

31.4 Capacitive Voltage Divider (CVD) Features

The ADC module contains several features that allow the user to perform a relative capacitance measurement on any ADC channel using the internal ADC sample and hold capacitance as a reference. This relative capacitance measurement can be used to implement capacitive touch or proximity sensing applications. Figure 31-6 shows the basic block diagram of the CVD portion of the ADC module.

32.9 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 37-15 and Table 37-17 for more details.

32.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 32-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

 Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.

PIC18(L)F26/45/46K40

DEC	FSZ	Decremen	nt f, skip if 0)	DCF	SNZ	Decreme	nt f, skip if n	ot 0		
Syntax: DECFSZ f		{,d {,a}}		Synt	ax:	DCFSNZ f {,d {,a}}					
$\begin{array}{llllllllllllllllllllllllllllllllllll$				Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation: $(f) - 1 \rightarrow des$ skip if result		st, = 0		Oper	ation:	(f) – 1 \rightarrow d skip if resu	est, It ≠ 0				
Statu	is Affected:	None			Statu	s Affected:	None				
Enco	oding:	0010	11da ffi	ff ffff	Enco	ding:	0100	11da fff	f ffff		
Description: The conter decrement placed in V placed bac If the resul which is all and a NOP it a 2-cycle If 'a' is '0', If 'a' is '1', GPR bank If 'a' is '0' a set is enab in Indexed mode when tion 35.2.3 Oriented I		The content decremente placed in W placed back If the result which is alre and a NOP is it a 2-cycle i If 'a' is '0', th If 'a' is '0' ar set is enable in Indexed L mode when tion 35.2.3 Oriented In eral Offset	Is of register 'f' are id. If 'd' is '0', the result is '. If 'd' is '1', the result is c in register 'f' (default). is '0', the next instruction, eady fetched, is discarded s executed instead, making instruction. The Access Bank is selected. The BSR is used to select the nd the extended instruction ed, this instruction operates Literal Offset Addressing lever $f \le 95$ (5Fh). See Sec- "Byte-Oriented and Bit- testructions in Indexed Liter Mode" for details		Desc	Description: The decre place place If the instru- disce inste instru- If 'a' GPR If 'a' Set is in In- mode tion Orie		The contents of register 'f' are excremented. If 'd' is '0', the result is aced in W. If 'd' is '1', the result is aced back in register 'f' (default). the result is not '0', the next struction, which is already fetched, is scarded and a NOP is executed stead, making it a 2-cycle struction. 'a' is '0', the Access Bank is selected. 'a' is '0', the BSR is used to select the PR bank. 'a' is '0' and the extended instruction et is enabled, this instruction operates Indexed Literal Offset Addressing ode whenever $f \le 95$ (5Fh). See Sec- on 35.2.3 "Byte-Oriented and Bit-			
Word	ds:	1					eral Offset	t Mode" for de	tails.		
Cycle	es:	1(2)			Word	ls:	1				
,		Note: 3 cycles if skip and followed by a 2-word instruction.			Cycle	es:	1(2) Note: 3	1(2) Note: 3 cycles if skip and followed by a 2-word instruction			
QC	ycle Activity:			_	0.0	velo Activity:	Dy	a z-woru insti	uction.		
	Q1	Q2	Q3	Q4			02	03	04		
	Decode	Read register 'f'	Process Data	destination		Decode	Read	Process	Write to		
lf sk	ip:	register i	Data	destination		200000	register 'f'	Data	destination		
	Q1	02	Q3	Q4	lf sk	ip:			•		
	No	No	No	No		Q1	Q2	Q3	Q4		
	operation	operation	operation	operation		No	No	No	No		
lf sk	ip and followe	d by 2-word ins	struction:			operation		operation	operation		
	Q1	Q2	Q2 Q3 Q4			ip and followe	d by 2-word ir	struction:			
	No	No	No	No		Q1	Q2	Q3	Q4		
	operation	operation	operation	operation		No	No	No	No		
	NO	NO	NO	NO		No	No	No	No		
	operation	operation	operation	operation		operation	operation	operation	operation		
Example: Before Instruction PC		HERE CONTINUE	HERE DECFSZ CNT, 1, 1 GOTO LOOP CONTINUE		Exar	nple:	HERE ZERO NZERO	DCFSNZ TEM :	IP, 1, 0		
						Refore Instruc		tion			
		= Address	(HERE)			TEMP	=	?			
	CNT	= CNT - 1				After Instruction	on				
		= 0; = Address		·)				TEMP – 1, 0 [.]			
	If CNT	- ∩uuress ≠ 0;	(CONTINUE	.,		PC	=	Address (2	ZERO)		
	PC	= Address	6 (HERE + 2	2)		If TEMP PC	≠ =	0; Address (1	<pre></pre>		

PIC18(L)F26/45/46K40

RCA	LL	Relative C	Relative Call						
Synta	ax:	RCALL n	RCALL n						
Oper	ands:	-1024 ≤ n ≤	1023						
Oper	ation:	$(PC) + 2 \rightarrow (PC) + 2 + 2$	TOS, $2n \rightarrow PC$						
Statu	s Affected:	None							
Enco	ding:	1101	1nnn	nnnn	nnnn				
Desc	ription:	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.							
Cuele	15.	1 0							
	ycle Activity:	2							
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'n' PUSH PC to stack	Proce Data	ess W a	rite to PC				
	No	No	No		No				
	operation	operation	operat	ion o	peration				

Example: HERE RCALL Jump

Before Instruction

PC = Address (HERE) After Instruction

PC = TOS = Address (Jump) Address (HERE + 2)

RES	ET	Reset							
Synta	ax:	RESET	RESET						
Oper	ands:	None							
Oper	ation:	Reset all re affected by	Reset all registers and flags that are affected by a MCLR Reset.						
Statu	s Affected:	All							
Enco	ding:	0000	0000	0000 1111					
Description:		This instru execute a	This instruction provides a way to execute a MCLR Reset by software.						
Word	ls:	1	1						
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Start	Start No		No				
		Reset	opera	tion	operation				

Example:

After Instruction	
Desistant	

Reset Value Reset Value Registers = Flags* =

RESET

© 2015-2017 Microchip Technology Inc.

TABLE 37-14: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD20	Tad	ADC Clock Period	1		9	μS	Using Fosc as the ADC clock source ADOCS = 0
AD21				2		μS	Using FRC as the ADC clock source ADOCS = 1
AD22	TCNV	Conversion Time ⁽¹⁾	_	11 + Зтсү		Tad	Set of GO/DONE bit to Clear of GO/ DONE bit
AD23	TACQ	Acquisition Time	_	2	_	μS	
AD24	THCD	Sample and Hold Capacitor Disconnect Time				μS	Fosc-based clock source Frc-based clock source

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Does not apply for the ADCRC oscillator.

FIGURE 37-10: ADC CONVERSION TIMING (ADC CLOCK Fosc-BASED)

