

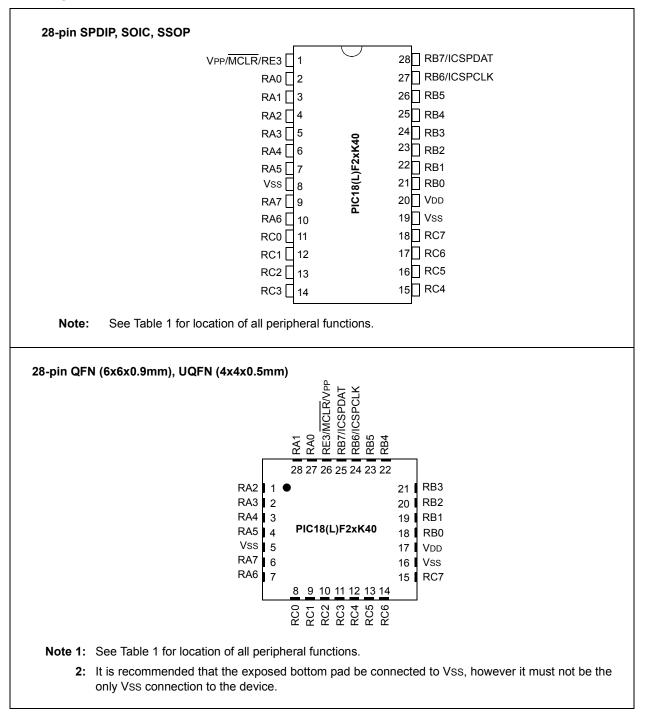
Welcome to E-XFL.COM

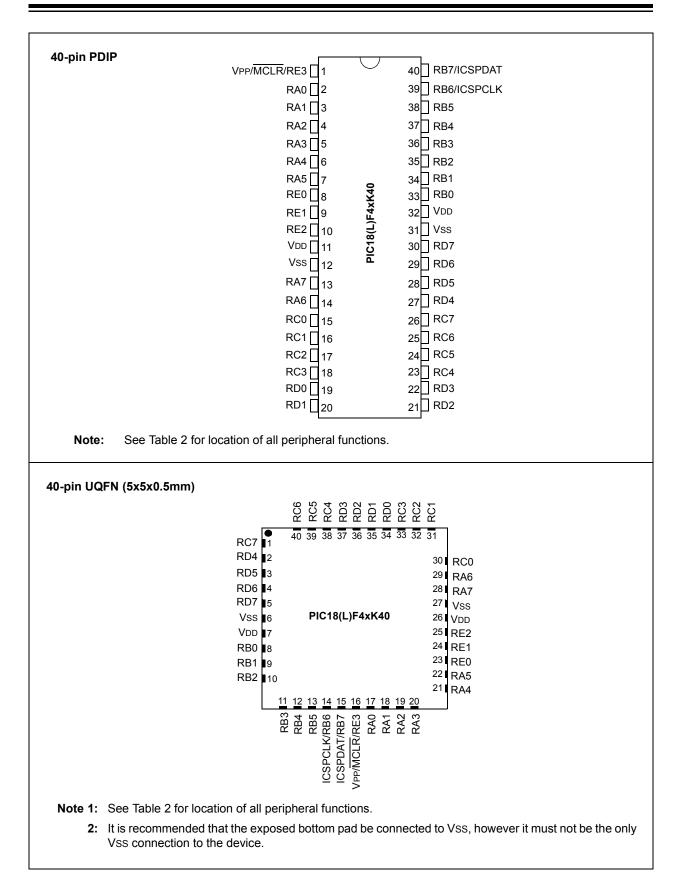
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k40-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLI	E 2:	40/	44-PIN /	ALLO	CATION	N TABLE (PI	C18(L)F	-45/46K4	40)								
I/O ⁽²⁾	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	A/D	Reference	Comparator	Timers	ССР	CWG	ZCD	Interrupt	EUSART	WSQ	ASSM	Pull-up	Basic
RA0	2	17	19	19	ANA0	_	C1INO- C2IN0-	_	—	—	_	IOCA0	—	_	_	Y	—
RA1	3	18	20	20	ANA1	—	C1IN1- C2IN1-	-	—	—	_	IOCA1	-	—	_	Y	—
RA2	4	19	21	21	ANA2	DAC1OUT1 VREF- (DAC5) VREF- (ADC)	C1IN0+ C2IN0+	-	-	_	_	IOCA2	-	—	_	Y	_
RA3	5	20	22	22	ANA3	VREF+ (DAC5) VREF+ (ADC)	C1IN1+	-	_	_		IOCA3	—	MDCIN1 ⁽¹⁾	_	Y	_
RA4	6	21	23	23	ANA4	_	_	T0CKI ⁽¹⁾	_	_	_	IOCA4	_	MDCIN2 ⁽¹⁾	_	Y	_
RA5	7	22	24	24	ANA5	_	_	_	_	_	_	IOCA5	_	MDMIN ⁽¹⁾	SS1 ⁽¹⁾	Y	_
RA6	14	29	33	31	ANA6	—	—	_	—	—	_	IOCA6	_	—	_	Y	CLKOUT OSC2
RA7	13	28	32	30	ANA7	—	_	-	—	_		IOCA7	-	-	_	Y	OSC1 CLKIN
RB0	33	8	9	8	ANB0	_	C2IN1+	-	_	CWG1 ⁽¹⁾	ZCDIN	IOCB0 INT0 ⁽¹⁾	—	_	SS2 ⁽¹⁾	Y	_
RB1	34	9	10	9	ANB1	—	C1IN3- C2IN3-	-	—	—		IOCB1 INT1 ⁽¹⁾	-	-	SCK2 ⁽¹⁾ SCL2 ^(3,4)	Y	-
RB2	35	10	11	10	ANB2	—	-	-	_	_		IOCB2 INT2 ⁽¹⁾	-	-	SDI2 ⁽¹⁾ SDA2 ^(3,4)	Y	—
RB3	36	11	12	11	ANB3	—	C1IN2- C2IN2-	-	—	—	-	IOCB3	-	—	_	Y	_
RB4	37	12	14	14	ANB4	—	_	T5G ⁽¹⁾	_	_	_	IOCB4	_	_	_	Y	_
RB5	38	13	15	15	ANB5	_	_	T1G ⁽¹⁾	—	_	_	IOCB5	_	_	_	Y	_
RB6	39	14	16	16	ANB6	_	_	—	_	_	_	IOCB6	CK2 ⁽¹⁾	_	_	Y	ICSPCLK
RB7	40	15	17	17	ANB7	DAC1OUT2	_	T6AIN ⁽¹⁾	—	_	_	IOCB7	RX2/DT2 ⁽¹⁾	_	_	Y	ICSPDAT
RC0	15	30	34	32	ANC0	_	-	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾	-	-	Ι	IOCC0	-		_	Y	SOSCO
RC1	16	31	35	35	ANC1	—	_	—	CCP2 ⁽¹⁾	—	_	IOCC1	_	_		Y	SOSCIN SOSCI

TABLE 2: 40/44-PIN ALLOCATION TABLE (PIC18(L)F45/46K40)

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers (Register 17-1).

2: All pin outputs default to PORT latch data. Any pin can be selected as a peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for I2C logic levels; The SCLx/SDAx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I2C specific or SMBus input buffer thresholds.

	• • ••g										
U-1	U-1	R/W-1	U-1	R/W-1	U-1	U-1	R/W-1				
_	_	FCMEN	_	CSWEN		_	CLKOUTEN				
bit 7	·				·		bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '1'											
-n = Value fo	= Value for blank device $(1)^2$ = Bit is set $(0)^2$ = Bit is cleared x = Bit is unknown										
bit 7-6	5 Unimplemented: Read as '1'										
bit 5		Safe Clock Mor	nitor Enable b	it							
	1 = FSCM tin 0 = FSCM tin										
bit 4	Unimplemen	ted: Read as '1	,								
bit 3	CSWEN: Cloo	ck Switch Enabl	e bit								
		NOSC and ND									
h #0.4		C and NDIV bit		nanged by use	er soπware						
bit 2-1	Unimplemen	ted: Read as '1									
bit 0	CLKOUTEN: Clock Out Enable bit If FEXTOSC = HS, XT, LP, then this bit is ignored										
	<u>Otherwise:</u>										
	1 = CLKOUT function is disabled; I/O or oscillator function on OSC2										
	0 = CLKOUT	function is enal	bled; FOSC/4	clock appears	s at OSC2						

REGISTER 3-2: Configuration Word 1H (30 0001h): Oscillators

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	76
STATUS	_	_	_	TO	PD	Z	DC	С	118
WDTCON0	_	_			WDTPS<4:	0>		SEN	85
WDTCON1	_	V	/DTCS<2:0	>	_	WI	NDOW<2:0	>	86
WDTPSL				PSC	NT<7:0>				87
WDTPSH				PSCNT<15:8>					
WDTTMR		WDTTMR<4:0> STATE PSCNT<17:16>							

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH WINDOWED WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Windowed Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WINDOWED WATCHDOG TIMER

Name Bits Bit -/7 Bit -/6 Bit 13/5	Bit 12/4 Bit 11/3	Bit 10/2 Bit 9/1		egister n Page
------------------------------------	-------------------	------------------	--	-------------------

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Windowed Watchdog Timer.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
F9Bh	SP1BRGL	EUSART1 Ba	ud Rate Genera	ator, Low Byte	1					00000000
F9Ah	TX1REG	EUSART1 Tra	nsmit Register							00000000
F99h	RC1REG	EUSART1 Red	ceive Register							00000000
F98h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	00000000
F97h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	00000000
F96h	SSP1CON1	WCOL	SSPOV	SSPEN	СКР		SSPN	1<3:0>		00000000
F95h	SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	00000000
F94h	SSP1MSK			I	MSł	<7:0>				11111111
F93h	SSP1ADD				ADE)<7:0>				00000000
F92h	SSP1BUF				BUF	<7:0>				xxxxxxx
F91h	PORTE	_	_	—	—	RE0	RE2 ⁽²⁾	RE1 ⁽²⁾	RE1 ⁽²⁾	xxxx
F90h	PORTD ⁽²⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxxxxx
F8Fh	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxxxxx
F8Eh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxxxxx
F8Dh	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxxxxx
F8Ch	TRISE	_	_	_	_	_	TRISE2 ⁽²⁾	TRISE1 ⁽²⁾	TRISE0	111
F8Bh	TRISD ⁽²⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	11111111
F8Ah	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11111111
F89h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	11111111
F88h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11111111
F87h	LATE	_	_	_	_	_	LATE2 ⁽²⁾	LATE1 ⁽²⁾	LATE0	xxx
F86h	LATD ⁽²⁾	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxxxxx
F85h	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxxxxx
F84h	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxxxxx
F83h	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxxxxx
F82h	NVMCON2				NVMC	DN2<7:0>				00000000
F81h	NVMCON1	NVMRE	G<1:0>	_	FREE	WRERR	WREN	WR	RD	00-0x000
F80h	NVMDAT				NVMD	AT<7:0>				00000000
F7Fh	NVMADRH ⁽³⁾	_	_	—	—	—	-	NVMA	DR<9:8>	xx
F7Eh	NVMADRL				NVMA	DR<7:0>				xxxxxxx
F7Dh	CRCCON1		DLEN	<3:0>			PLEN	I<3:0>		00000000
F7Ch	CRCCON0	EN	GO	BUSY	ACCM		_	SHIFTM	FULL	000000
F7Bh	CRCXORH				Х<	15:8>				xxxxxxx
F7Ah	CRCXORL				X<7:1>				_	xxxxxxx0
F79h	CRCSHIFTH				SHIF	۲<15:8>				00000000
F78h	CRCSHIFTL				SHIF	T<7:0>				00000000
F77h	CRCACCH				ACC	<15:8>				00000000
F76h	CRCACCL				ACC	<7:0>				00000000
F75h	CRCDATH				DATA	<15:8>				xxxxxxx

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F26/45/46K40 DEVICES (CONTINUED)

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F26K40 (28-pin variants).

3: Not available on PIC18(L)F45K40 devices.

10.5 Register Definitions: Status

REGISTER '	10-2: STATL	JS: STATUS					
U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
_	TO	PD	Ν	OV	Z	DC	С
oit 7							bit
Legend:							
R = Readable		W = Writable		•	nented bit, read		
-n = Value at	POR	'1' = Bit is se	l	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	Unimplomor	ited: Read as	0'				
bit 6	TO: Time-Ou		U				
			execution of CI	LRWDT OF SLEE	P instruction		
		ime-out occurr					
bit 5	PD: Power-D	own bit					
				LRWDT instructi	on		
	•	xecution of the					
bit 4	ALU MSb = 1		ned arithmetic	(2's compleme	ent); indicates if	the result is ne	egative,
	1 = The resu						
	0 = The resu						
bit 3						an overflow of	the 7-bit
	-			7) to change st			
	1 = Overflow 0 = No overflow 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =		urrent signed	arithmetic oper	ration		
bit 2	Z: Zero bit						
	1 = The resu	It of an arithme	etic or logic op	eration is zero			
			•	eration is not z			
bit 1	•	•			rF instructions) ⁽	1)	
		out from the 4th -out from the 4		of the result of	ccurred		
bit 0	-			JW, SUBWF instr	(1,2)		
	•	•		bit of the result	,		
				nt bit of the resu			
	Borrow, the pola	arity is reversed	d. A subtractio	n is executed b	by adding the tw	vo's complemer	nt of the
	ond operand.	<i>.</i>					•
2: For	Rotate (RRF, RL	F) Instructions,	this bit is load	ded with either	the high or low-	-order bit of the	Source

REGISTER 10-2: STATUS: STATUS REGISTER

2: For Rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the Source register.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			LADR<2	21:16> (1,2)		
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 13-12: SCANLADRU: SCAN LOW ADDRESS UPPER BYTE REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 LADR<21:16>: Scan Start/Current Address bits^(1,2) Upper bits of the current address to be fetched from, value increments on each fetch of memory.

2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 13-13: SCANLADRH: SCAN LOW ADDRESS HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
			LADR<1	5:8> ^(1, 2)					
bit 7									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LADR<15:8>: Scan Start/Current Address bits^(1, 2) Most Significant bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

Note 1: Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).

14.4 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable and priority bits.

14.5 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are eight Peripheral Interrupt Request Flag registers (PIR0, PIR1, PIR2, PIR3, PIR4, PIR5, PIR6 and PIR7).

14.6 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are eight Peripheral Interrupt Enable registers (PIE0, PIE1, PIE2, PIE3, PIE4, PIE5, PIE6 and PIE7). When IPEN = 0, the PEIE/GIEL bit must be set to enable any of these peripheral interrupts.

14.7 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are eight Peripheral Interrupt Priority registers (IPR0, IPR1, IPR2, IPR3, IPR4 and IPR5, IPR6 and IPR7). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

R/W-0/0	R/W-0/0	R/W-0/0	R-/W0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE
bit 7							bit (
<u> </u>							
Legend:							
R = Readable		W = Writable		•	nented bit, read		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
h:+ 7			laters at Each	le hit			
bit 7	1 = Enabled	ART2 Receive	interrupt Enac	bie bit			
	1 = Enabled 0 = Disabled	I					
bit 6	TX2IE: EUSA	ART2 Transmit	Interrupt Enat	ole bit			
	1 = Enabled		-				
	0 = Disabled	I					
bit 5	RC1IE: EUS/	ART1 Receive	Interrupt Enab	ole bit			
	1 = Enabled						
	0 = Disabled						
bit 4		ART1 Transmit	Interrupt Enat	ble bit			
	1 = Enabled 0 = Disabled	ı					
bit 3		' SP2 Bus Collisi	on Interrunt F	nable bit			
bit 0	1 = Enabled						
	0 = Disabled	l					
bit 2	SSP2IE: Syn	chronous Seria	I Port 2 Interr	upt Enable bit			
	1 = Enabled						
	0 = Disabled	l					
bit 1		SP1 Bus Collis	on Interrupt E	nable bit			
	1 = Enabled						
	0 = Disabled						
bit 0	•	chronous Seria	I Port 1 Interr	upt Enable bit			
	1 = Enabled 0 = Disabled	I					
		1					

REGISTER 14-13: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

	PPS Input	Default Pin	Register Reset	Inpu	t Avai	lable f	rom S	elect	ed PC	RTx
Peripheral	Register	Selection at POR	Value at POR	PIC18	B(L)F2	6K40	PIC	18(L)F	45/46	K40
Interrupt 0	INT0PPS	RB0	5'b0 1000	Α	В	_	А	В		_
Interrupt 1	INT1PPS	RB1	5'b0 1001	А	В	_	А	В	_	_
Interrupt 2	INT2PPS	RB2	5'b0 1010	А	В		А	В	_	_
Timer0 Clock	TOCKIPPS	RA4	5'b0 0100	А	В		А	В	_	_
Timer1 Clock	T1CKIPPS	RC0	5'bl 0000	А	_	С	А	_	С	_
Timer1 Gate	T1GPPS	RB5	5'b0 1101	_	В	С	_	В	С	_
Timer3 Clock	T3CKIPPS	RC0	5'b1 0000	_	В	С	_	В	С	_
Timer3 Gate	T3GPPS	RC0	5'b1 0000	А	_	С	А	_	С	
Timer5 Clock	T5CKIPPS	RC2	5'b1 0010	А	_	С	А	_	С	
Timer5 Gate	T5GPPS	RB4	5'b0 1100	_	В	С	_	В	_	D
Timer2 Clock	T2INPPS	RC3	5'b1 0011	А	_	С	А	_	С	_
Timer4 Clock	T4INPPS	RC5	5'b1 0101	_	В	С	_	В	С	
Timer6 Clock	T6INPPS	RB7	5'b0 1111	_	В	С	_	В	_	D
CCP1	CCP1PPS	RC2	5'b1 0010	_	В	С		В	С	_
CCP2	CCP2PPS	RC1	5'b1 0001	_	В	С	_	В	С	
CWG	CWG1PPS	RB0	5'b0 1000	_	В	С	_	В	_	D
DSM Carrier Low	MDCARLPPS	RA3	5'b0 0011	А	_	С	А	_	_	D
DSM Carrier High	MDCARHPPS	RA4	5'b0 0100	А	_	С	А	_	_	D
DSM Source	MDSRCPPS	RA5	5'b0 0101	А		С	А	_	_	D
ADC Conversion Trigger	ADACTPPS	RB4	5'b0 1100	_	В	С	_	В	_	D
MSSP1 Clock	SSP1CLKPPS	RC3	5'bl 0011	_	В	С	_	В	С	_
MSSP1 Data	SSP1DATPPS	RC4	5'bl 0100	—	В	С	_	В	С	_
MSSP1 Slave Select	SSP1SSPPS	RA5	5'b0 0101	А	_	С	А	_	_	D
MSSP2 Clock	SSP2CLKPPS	RB1	5'b0 1001	_	В	С	_	В	_	D
MSSP2 Data	SSP2DATPPS	RB2	5'b0 1010	_	В	С	_	В	_	D
MSSP2 Slave Select	SSP2SSPPS	RB0	5'b0 1000	_	В	С	_	В	_	D
EUSART1 Receive	RX1PPS	RC7	5'bl 0111	_	В	С	_	В	С	_
EUSART1 Transmit	TX1PPS	RC6	5'b1 0110	_	В	С		В	С	_
EUSART2 Receive	RX2PPS	RB7	5'b0 1111	_	В	С	_	В	_	D
EUSART2 Transmit	TX2PPS	RB6	5'b0 1110	_	В	С	_	В	_	D

TABLE 17-1:PPS INPUT REGISTER DETAILS

REGISTER 20-4:	TxRST: TIMER2 EXTERNAL RESET SIGNAL SELECTION REGISTER
----------------	--

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	—		—		RSEL	<3:0>	
bit 7			•				bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 RSEL<3:0>: Timer2 External Reset Signal Source Selection bits

RSEL<3:0>	TMR2	TMR4	TMR6
RSEL<3.02	Reset Source	Reset Source	Reset Source
1011-1111	Reserved	Reserved	Reserved
1010	ZCD_OUT	ZCD_OUT	ZCD_OUT
1001	CMP2OUT	CMP2OUT	CMP2OUT
1000	CMP1OUT	CMP1OUT	CMP1OUT
0111	PWM4OUT	PWM4OUT	PWM4OUT
0110	PWM3OUT	PWM3OUT	PWM3OUT
0101	CCP2OUT	CCP2OUT	CCP2OUT
0100	CCP1OUT	CCP10UT	CCP1OUT
0011	TMR6 post-scaled	TMR6 post-scaled	Reserved
0010	TMR4 post-scaled	Reserved	TMR4 post-scaled
0001	Reserved	TMR2 post-scaled	TMR2 post-scaled
0000	Pin selected by T2INPPS	Pin selected by T4INPPS	Pin selected by T6INPPS

21.3 Capture Mode

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the capture source, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMRxH:TMRxL register pair, respectively. An event is defined as one of the following and is configured by the MODE<3:0> bits of the CCPxCON register:

- · Every falling edge of CCPx input
- Every rising edge of CCPx input
- Every 4th rising edge of CCPx input
- · Every 16th rising edge of CCPx input
- Every edge of CCPx input (rising or falling)

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIR6 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH:CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Note: If an event occurs during a 2-byte read, the high and low-byte data will be from different events. It is recommended while reading the CCPRxH:CCPRxL register pair to either disable the module or read the register pair twice for data integrity.

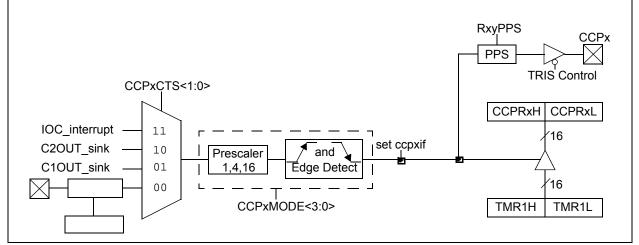
Figure 21-1 shows a simplified diagram of the capture operation.

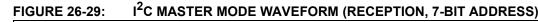
21.3.1 CAPTURE SOURCES

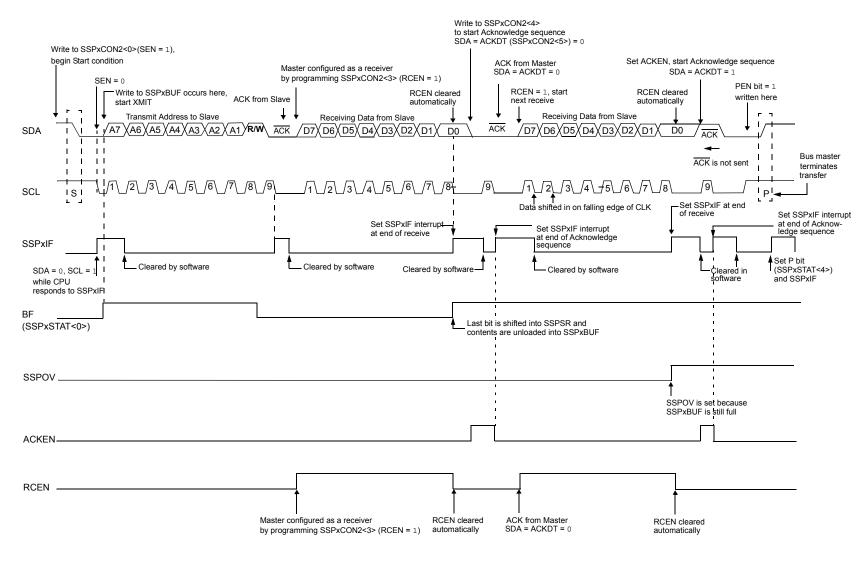
In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

The capture source is selected by configuring the CTS<1:0> bits of the CCPxCAP register. The following sources can be selected:


- · Pin selected by CCPxPPS
- C1_output
- C2_output
- IOC_interrupt


21.3.2 TIMER1 MODE RESOURCE


Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

• See Section 19.0 "Timer1/3/5 Module with Gate Control" for more information on configuring Timer1.

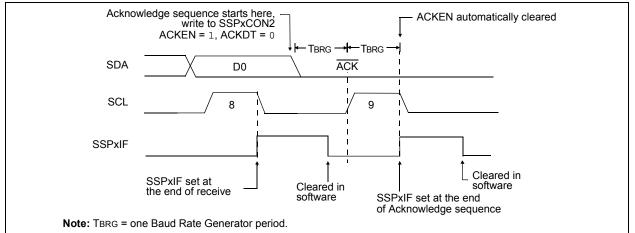
PIC18(L)F26/45/46K4(

26.10.8 ACKNOWLEDGE SEQUENCE TIMING

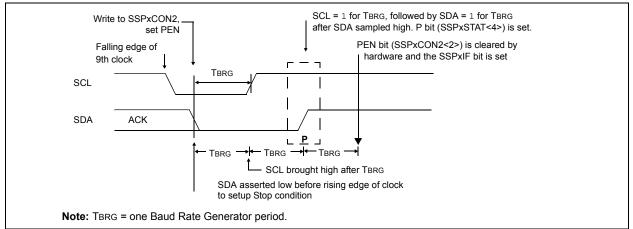
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPxCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 26-30).

26.10.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).


26.10.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPxCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 26-31).


26.10.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 26-30: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 26-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

27.2.2.8 Asynchronous Reception Setup:

- Initialize the SPxBRGH:SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 27.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RXx pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCxIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCxIE interrupt enable bit was also set.
- 8. Read the RCxSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

ASYNCHRONOUS RECEPTION

27.2.2.9 9-Bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPxBRGH:SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 27.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RXx pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RCxIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCxIE interrupt enable bit was also set.
- 9. Read the RCxSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

RXx/DTx pin	Start bit 0 / bit 1 / 5 / bit 7/8 / Stop bit / bit 0 / 5 / bit 7/8 / Stop bit / bit / bit 0 / 5 / bit 7/8 / Stop bit / 5 / bit 7/8 / Stop bit
Rcv Shift Reg → Rcv Buffer Reg. RCIDL	Word 1 Word 2 Word 2 KCXREG
Read Rcv Buffer Reg. RCxREG	
RCxIF (Interrupt Flag)	
OERR bit CREN	
	timing diagram shows three words appearing on the RXx input. The RCxREG (receive buffer) is read after the third word, sing the OERR (overrun) bit to be set.

FIGURE 27-5:

		Bit Clear Conditions Value after Trigger completion		ger completion	Threshold Operations			Value at ADTIF interrupt		
Mode	ADMD	ADACC and ADCNT	ADACC	ADCNT	Retrigger	Threshold Test	Interrupt	ADAOV	ADFLTR	ADCNT
Basic	0	ADACLR = 1	Unchanged	Unchanged	No	Every Sample	If thresh- old=true	N/A	N/A	count
Accumulate	1	ADACLR = 1	S + ADACC or (S2-S1) + ADACC	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	Every Sample	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count
Average	2	ADACLR = 1 or ADCNT>=ADRPT at ADGO or retrigger	S + ADACC or (S2-S1) + ADACC	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count
Burst Average	3	ADACLR = 1 or ADGO set or retrigger	Each repetition: same as Average End with sum of all samples	Each repetition: same as Average End with ADCNT=ADRPT	Repeat while ADCNT <adrpt< td=""><td>lf ADCNT>= ADRPT</td><td>If thresh- old=true</td><td>ADACC Overflow</td><td>ADACC/2^{ADCRS}</td><td>ADRPT</td></adrpt<>	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	ADRPT
Low-pass Filter	4	ADACLR = 1	S+ADACC-ADACC/ 2 ^{ADCRS} or (S2-S1)+ADACC-ADACC/ 2 ^{ADCRS}	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	Filtered Value	count

Note: S1 and S2 are abbreviations for Sample 1 and Sample 2, respectively. When ADDSEN = 0, S1 = ADRES; When ADDSEN = 1, S1 = ADREV and S2 = ADRES.

REGISTER 31-4: ADCON3: ADC CONTROL REGISTER 3

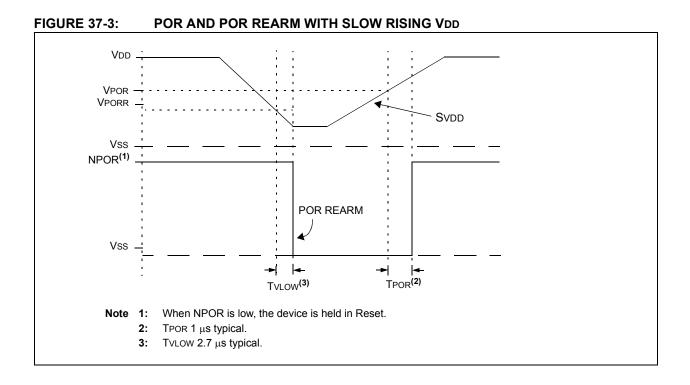
U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0
_		ADCALC<2:0>		ADSOI		ADTMD<2:0>	
bit 7							bit 0
Legend.							

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7 Unimplemented: Read as '0'

bit 6-4 ADCALC<2:0>: ADC Error Calculation Mode Select bits

	Action During	Action During 1st Precharge Stage				
ADCALC	ADDSEN = 0 Single-Sample Mode	ADDSEN = 1 CVD Double-Sample Mode ⁽¹⁾	Application			
111	Reserved	Reserved	Reserved			
110	Reserved	Reserved	Reserved			
101	ADLFTR-ADSTPT	ADFLTR-ADSTPT	Average/filtered value vs. setpoint			
100	ADPREV-ADFLTR	ADPREV-ADFLTR	First derivative of filtered value ⁽³⁾ (negative)			
011	Reserved	Reserved	Reserved			
010	ADRES-ADFLTR	(ADRES-ADPREV)-ADFLTR	Actual result vs. averaged/filtered value			
001	ADRES-ADSTPT	(ADRES-ADPREV)-ADSTPT	Actual result vs.setpoint			
000	ADRES-ADPREV	ADRES-ADPREV	First derivative of single measurement ⁽²⁾			
			Actual CVD result in CVD mode ⁽²⁾			


bit 3 ADSOI: ADC Stop-on-Interrupt bit

If ADCONT = 1:

- 1 = ADGO is cleared when the threshold conditions are met, otherwise the conversion is retriggered
- 0 = ADGO is not cleared by hardware, must be cleared by software to stop retriggers

bit 2-0 ADTMD<2:0>: Threshold Interrupt Mode Select bits

- 111 = Interrupt regardless of threshold test results
- 110 = Interrupt if ADERR>ADUTH
- 101 = Interrupt if ADERR≤ADUTH
- 100 = Interrupt if ADERR<ADLTH or ADERR>ADUTH
- 011 = Interrupt if ADERR>ADLTH and ADERR<ADUTH
- 010 = Interrupt if ADERR≥ADLTH
- 001 = Interrupt if ADERR<ADLTH
- 000 = Never interrupt
- Note 1: When ADPSIS = 0, the value of ADRES-ADPREV) is the value of (S2-S1) from Table 31-3.
 - 2: When ADPSIS = 0
 - 3: When ADPSIS = 1.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

TABLE B-1: DEVICE DIFFERENCES

Features ⁽¹⁾	PIC18(L)F26K40	PIC18(L)F45K40	PIC18(L)F46K40
Program Memory (Bytes)	65536	32768	65536
SRAM (Bytes)	3720	2048	3720
EEPROM (Bytes)	1024	256	1024
Interrupt Sources	36	36	36
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Capture/Compare/PWM Modules (CCP)	2	2	2
10-bit Analog-to-Digital Module	4 internal 24 external	4 internal 35 external	4 internal 35 external
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN

Note 1: PIC18F2x/4xK40: operating voltage, 2.3V-5.5V. PIC18LF2x/4xK40: operating voltage, 1.8V-3.6V.