

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k40-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.2.3.2 Peripheral Usage in Sleep

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-out Reset (BOR)
- Windowed Watchdog Timer (WWDT)
- External interrupt pin/Interrupt-On-Change pins
- Peripherals that run off external secondary clock source

It is the responsibility of the end user to determine what is acceptable for their application when setting the VREGPM settings in order to ensure operation in Sleep.

The PIC18LF2x/4xK40 devices do not
have a configurable Low-Power Sleep
mode. PIC18LF2x/4xK40 devices are
unregulated and are always in the lowest
power state when in Sleep, with no wake-
up time penalty. These devices have a
lower maximum VDD and I/O voltage than
the PIC18F2x/4xK40. See Section
37.0 "Electrical Specifications" for
more information.

6.2.4 IDLE MODE

When IDLEN is set (IDLEN = 1), the SLEEP instruction will put the device into Idle mode. In Idle mode, the CPU and memory operations are halted, but the peripheral clocks continue to run. This mode is similar to Doze mode, except that in IDLE both the CPU and PFM are shut off.

Note: If CLKOUTEN is enabled (CLKOUTEN = 0, Configuration Word 1H), the output will continue operating while in Idle.

6.2.4.1 Idle and Interrupts

IDLE mode ends when an interrupt occurs (even if GIE = 0), but IDLEN is not changed. The device can reenter IDLE by executing the SLEEP instruction.

If Recover-On-Interrupt is enabled (ROI = 1), the interrupt that brings the device out of Idle also restores full-speed CPU execution when doze is also enabled.

6.2.4.2 Idle and WWDT

When in Idle, the WWDT Reset is blocked and will instead wake the device. The WWDT wake-up is not an interrupt, therefore ROI does not apply.

Note: The WDT can bring the device out of Idle, in the same way it brings the device out of Sleep. The DOZEN bit is not affected.

6.3 Peripheral Operation in Power Saving Modes

All selected clock sources and the peripherals running off them are active in both IDLE and DOZE mode. Only in Sleep mode, both the Fosc and Fosc/4 clocks are unavailable. All the other clock sources are active, if enabled manually or through peripheral clock selection before the part enters Sleep.

7.5 Register Definitions: Peripheral Module Disable

R/W-0/0	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SYSCM	D FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD
7						······································	0
Legend:							
R = Read	able bit	W = Writable I	oit	U = Unimplen	nented bit, read	1 as '0'	
u = Bit is u	unchanged	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is	set	'0' = Bit is clea	ared	q = Value dep	ends on condi	tion	
bit 7	SYSCMD: D See descript 1 = System 0 = System	isable Periphera ion in Section 7 clock network di clock network ei	Il System Cloo .4 "System C sabled (Fosc nabled	ck Network bit ⁽¹⁾ Clock Disable".)			
bit 6	FVRMD: Dis 1 = FVR mo 0 = FVR mo	able Fixed Volta dule disabled dule enabled	ge Reference	e bit			
bit 5	HLVDMD:D 1 = HLVD n 0 = HLVD n	isable Low-Volta nodule disabled nodule enabled	ge Detect bit				
bit 4	CRCMD: Dis 1 = CRC mo 0 = CRC mo	able CRC Engir odule disabled odule enabled	ne bit				
bit 3	bit 3 SCANMD: Disable NVM Memory Scanner bit ⁽²⁾ 1 = NVM Memory Scan module disabled 0 = NVM Memory Scan module enabled						
bit 2	bit 2 NVMMD: NVM Module Disable bit ⁽³⁾ 1 = All Memory reading and writing is disabled; NVMCON registers cannot be written 0 = NVM module enabled						
bit 1	CLKRMD: D 1 = CLKR m 0 = CLKR m	isable Clock Re nodule disabled nodule enabled	ference bit				
bit 0	IOCMD: Disa 1 = IOC mod 0 = IOC mod	able Interrupt-on dule(s) disabled dule(s) enabled	-Change bit, <i>i</i>	All Ports			
Note 1:	Clearing the SYS	SCMD bit disable ot affected.	es the system	ı clock (Fosc) to	peripherals, h	owever periphe	rals clocked

REGISTER 7-1: PMD0: PMD CONTROL REGISTER 0

- 2: Subject to SCANE bit in CONFIG4H.
- **3:** When enabling NVM, a delay of up to 1 µs may be required before accessing data.

10.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 10-1) contains the Stack Pointer value. The STKOVF (Stack Overflow) Status bit and the STKUNF (Stack Underflow) Status bit can be accessed using the PCON0 register. The value of the Stack Pointer can be 0 through 31. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for stack maintenance. After the PC is pushed onto the stack 32 times (without popping any values off the stack), the STKOVF bit is set. The STKOVF bit is cleared by software or by a POR. The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to Section 3.1 "Configuration Words" for a description of the device Configuration bits.)

If STVREN is set (default), a Reset will be generated and a Stack Overflow will be indicated by the STKOVF bit when the 32nd push is initiated. This includes CALL and CALLW instructions, as well as stacking the return address during an interrupt response. The STKOVF bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKOVF bit will be set on the 32nd push and the Stack Pointer will remain at 31 but no Reset will occur. Any additional pushes will overwrite the 31st push but the STKPTR will remain at 31.

Setting STKOVF = 1 in software will change the bit, but will not generate a Reset.

The STKUNF bit is set when a stack pop returns a value of zero. The STKUNF bit is cleared by software or by POR. The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 3.1 "Configuration Words"** for a description of the device Configuration bits.)

If STVREN is set (default) and the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC, it will set the STKUNF bit and a Reset will be generated. This condition can be generated by the RETURN, RETLW and RETFIE instructions. If STVREN is cleared, the STKUNF bit will be set, but no Reset will occur.

When STVREN = 0, STKUNF will be set but no Reset will occur.

Note: Returning a value of zero to the PC on an underflow has the effect of vectoring the program to the Reset vector, where the stack conditions can be verified and appropriate actions can be taken. This is not the same as a Reset, as the contents of the SFRs are not affected.

10.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack without disturbing normal program execution is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

10.3.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of two and the LSb will always read '0' (see Section 10.1.1 "Program Counter").

Figure 10-3 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 10-3 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 35.0 "Instruction Set Summary" provides further details of the instruction set.

10.3.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LFSR. In all cases, the second word of the instruction always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 10-4 shows how this works.

Note: See Section 10.8 "PIC18 Instruction Execution and the Extended Instruction Set" for information on two-word instructions in the extended instruction set.

FIGURE 10-3: INSTRUCTIONS IN PROGRAM MEMORY

			LSB = 1	LSB = 0	Word Address \downarrow
	Program M	lemory			000000h
	Byte Locations \rightarrow				000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

EXAMPLE 10-4: TWO-WORD INSTRUCTIONS

CASE 1:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, REG2	; No, skip this word
1111 0100 0101 0110		; Execute this word as a NOP
0010 0100 0000 0000	ADDWF REG3	; continue code
CASE 2:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, REG2	; Yes, execute this word
1111 0100 0101 0110		; 2nd word of instruction
0010 0100 0000 0000	ADDWF REG3	; continue code

© 2015-2017 Microchip Technology Inc.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			LADR<2	21:16> (1,2)		
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 13-12: SCANLADRU: SCAN LOW ADDRESS UPPER BYTE REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 LADR<21:16>: Scan Start/Current Address bits^(1,2) Upper bits of the current address to be fetched from, value increments on each fetch of memory.

2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

REGISTER 13-13: SCANLADRH: SCAN LOW ADDRESS HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			LADR<1	5:8> ^(1, 2)			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LADR<15:8>: Scan Start/Current Address bits^(1, 2) Most Significant bits of the current address to be fetched from, value increments on each fetch of memory.

- **Note 1:** Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).
 - 2: While SCANGO = 1 (SCANCON0 register), writing to this register is ignored.

Note 1: Registers SCANLADRU/H/L form a 22-bit value, but are not guarded for atomic or asynchronous access; registers should only be read or written while SCANGO = 0 (SCANCON0 register).

14.0 INTERRUPTS

The PIC18(L)F2x/4xK40 devices have multiple interrupt sources and an interrupt priority feature that allows most interrupt sources to be assigned a high or low priority level. The high priority interrupt vector is at 0008h and the low priority interrupt vector is at 0018h. A high priority interrupt event will interrupt a low priority interrupt that may be in progress.

The registers for controlling interrupt operation are:

- INTCON
- PIR1, PIR2, PIR3, PIR4, PIR5, PIR6, PIR7
- PIE1, PIE2, PIE3, PIE4, PIE5, PIE6, PIE7
- IPR1, IPR2, IPR3, IPR4, IPR5, IPR6, IPR7

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register.

In general, interrupt sources have three bits to control their operation. They are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- **Priority bit** to select high priority or low priority

14.1 Mid-Range Compatibility

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] microcontroller mid-range devices. In Compatibility mode, the interrupt priority bits of the IPRx registers have no effect. The PEIE/GIEL bit of the INTCON register is the global interrupt enable for the peripherals. The PEIE/GIEL bit disables only the peripheral interrupt sources and enables the peripheral interrupt sources when the GIE/GIEH bit is also set. The GIE/GIEH bit of the INTCON register is the global interrupt enable which enables all non-peripheral interrupt sources and disables all interrupt sources, including the peripherals. All interrupts branch to address 0008h in Compatibility mode.

14.2 Interrupt Priority

The interrupt priority feature is enabled by setting the IPEN bit of the INTCON register. When interrupt priority is enabled the GIE/GIEH and PEIE/GIEL Global Interrupt Enable bits of Compatibility mode are replaced by the GIEH high priority, and GIEL low priority, global interrupt enables. When the IPEN bit is set, the GEIH bit of the INTCON register enables all interrupts which have their associated bit in the IPRx register set. When the GEIH bit is cleared, then all interrupt sources including those selected as low priority in the IPRx register are disabled.

When both GIEH and GIEL bits are set, all interrupts selected as low priority sources are enabled.

A high priority interrupt will vector immediately to address 00 0008h and a low priority interrupt will vector to address 00 0018h.

14.3 Interrupt Response

When an interrupt is responded to, the Global Interrupt Enable bit is cleared to disable further interrupts. The GIE/GIEH bit is the Global Interrupt Enable when the IPEN bit is cleared. When the IPEN bit is set, enabling interrupt priority levels, the GIEH bit is the high priority Global Interrupt Enable and the GIEL bit is the low priority Global Interrupt Enable. High priority interrupt sources can interrupt a low priority interrupt. Low priority interrupts are not processed while high priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (0008h or 0018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits in the INTCONx and PIRx registers. The interrupt flag bits must be cleared by software before re-enabling interrupts to avoid repeating the same interrupt.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE/GIEH bit (GIEH or GIEL if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or the Interrupt-on-change pins, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one-cycle or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bits or the Global Interrupt Enable bit.

Note: Do not use the MOVFF instruction to modify any of the interrupt control registers while **any** interrupt is enabled. Doing so may cause erratic microcontroller behavior.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1
	_	_			—	CCP2IP	CCP1IP
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			own
bit 7-2	Unimplement	ted: Read as '	0'				
bit 1	CCP2IP: ECC 1 = High prior 0 = Low prior	CP2 Interrupt P rity ity	riority bit				
bit 0	CCP1IP: ECC 1 = High prior 0 = Low prior	CP1 Interrupt P rity ity	riority bit				

REGISTER 14-24: IPR6: PERIPHERAL INTERRUPT PRIORITY REGISTER 6

14.9 INTn Pin Interrupts

PIC18(L)F2x/4xK40 devices have three external interrupt sources which can be assigned to any pin on PORTA and PORTB using PPS. The external interrupt sources are edge-triggered. If the corresponding INTxEDG bit in the INTCON0 register is set (= 1), the interrupt is triggered by a rising edge. It the bit is clear, the trigger is on the falling edge.

All external interrupts (INT0, INT1 and INT2) can wakeup the processor from Idle or Sleep modes if bit INTxE was set prior to going into those modes. If the Global Interrupt Enable bit, GIE/GIEH, is set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority is determined by the value contained in the interrupt priority bits, INT0IP, INT1IP and INT2IP of the IPR0 register.

14.10 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh \rightarrow 00h) will set flag bit, TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L register pair (FFFFh \rightarrow 0000h) will set TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit, TMR0IE of the PIE0 register. Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit, TMR0IP of the IPR0 register. See **Section 18.0 "Timer0 Module"** for further details on the Timer0 module.

14.11 Interrupt-on-Change

An input change on any port pins that support IOC sets Flag bit, IOCIF of the PIR0 register. The interrupt can be enabled/disabled by setting/clearing the enable bit, IOCIE of the PIE0 register. Pins must also be individually enabled in the IOCxP and IOCxN register. IOCIF is a read-only bit and the flag can be cleared by clearing the corresponding IOCxF registers. For more information refer to **Section 16.0 "Interrupt-on-Change"**.

14.12 Context Saving During Interrupts

During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see **Section 10.2.2 "Fast Register Stack"**), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine. Depending on the user's application, other registers may also need to be saved. Example 14-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

EAAIVIFLE 14-1.	SAVING STATUS, WREG	AND BSR REGISTERS IN RAW
MOVWF W_TEMP	;	W_TEMP is in virtual bank
MOVEF STATUS,	STATUS_TEMP ;	STATUS_TEMP located anywhere
MOVFF BSR, BSI	R_TEMP ;	BSR_TEMP located anywhere
;		
; USER ISR CODE		
;		
MOVFF BSR_TEM	P, BSR ;	Restore BSR
MOVF W_TEMP,	W ;	Restore WREG
MOVFF STATUS_	TEMP, STATUS ;	Restore STATUS

EXAMPLE 14-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM

21.5.5 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the CCPRxH:CCPRxL register pair. The alignment of the 10-bit value is determined by the FMT bit of the CCPxCON register (see Figure 21-5). The CCPRxH:CCPRxL register pair can be written to at any time; however the duty cycle value is not latched into the 10-bit buffer until after a match between PR2 and TMR2.

Equation 21-2 is used to calculate the PWM pulse width.

Equation 21-3 is used to calculate the PWM duty cycle ratio.

FIGURE 21-5: PWM 10-BIT ALIGNMENT

EQUATION 21-2: PULSE WIDTH

Pulse Width = (CCPRxH	H:CCPRxL register pair) •
Tosc	• (TMR2 Prescale Value)

EQUATION 21-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPRxH:CCPRxL register pair)}{4(PR2 + 1)}$$

CCPRxH:CCPRxL register pair are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH:CCPRxL register pair, then the CCPx pin is cleared (see Figure 21-4).

21.5.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 21-4.

EQUATION 21-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse-width value is greater than the period the assigned PWM pin(s) will remain unchanged.

24.2.3 FULL-BRIDGE MODES

In Forward and Reverse Full-Bridge modes, three outputs drive static values while the fourth is modulated by the input data signal. The mode selection may be toggled between forward and reverse by toggling the MODE<0> bit of the CWG1CON0 while keeping MODE<2:1> static, without disabling the CWG module. When connected as shown in Figure 24-5, the outputs are appropriate for a full-bridge motor driver. Each CWG output signal has independent polarity control, so the circuit can be adapted to high-active and low-active drivers. A simplified block diagram for the Full-Bridge modes is shown in Figure 24-6.

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register. Additionally, the SSPxSTAT register indicates the various Status conditions.

FIGURE 26-3: SPI MASTER/SLAVE CONNECTION

27.2.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCxSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCxREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCxSTA register which resets the EUSART. Clearing the CREN bit of the RCxSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note:	If all receive characters in the receive
	FIFO have framing errors, repeated reads
	of the RCxREG will not clear the FERR bit.

27.2.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCxSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCxSTA register or by resetting the EUSART by clearing the SPEN bit of the RCxSTA register.

27.2.2.6 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCxREG.

27.2.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCxSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCxIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

TABLE 27-7:	SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
	TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	395
INTCON	GIE/GIEH	PEIE/GIEL	IPEN		_	INT2EDG	INT1EDG	INT0EDG	170
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	182
PIR3	RC2IF	TX2IF	RC1IF	TX1IF BCL2IF SSP2IF BCL1IF SSP1IF				174	
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	TX1IP BCL2IP SSP2IP BCL1IP SSP1IF				190
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	394
RxyPPS		—				RxyPPS<4:0	>		218
TXxPPS		—				TXPPS<4:0>	•		216
SPxBRGH			EUSARTx	Baud Rate	Generator, H	igh Byte			404*
SPxBRGL	EUSARTx Baud Rate Generator, Low Byte								404*
TXxREG	EUSARTx Transmit Data Register								396*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	393

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master transmission.

* Page provides register information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	170	
PIE1	OSCFIE	CSWIE	_	_	—	—	ADTIE	ADIE	180	
PIR1	OSCFIF	CSWIF	_	_	—	—	ADTIF	ADIF	172	
ADCON0	ADON	ADCON	-	ADCS	-	ADFM	—	ADGO	448	
ADCON1	ADPPOL	ADIPEN	ADGPOL		—	—	—	ADDSEN	449	
ADCON2	ADPSIS	PSIS ADCRS<2:0> ADACLR ADMD<2:0>								
ADCON3	-	A	DCALC<2:0	>	ADSOI	A	DTMD<2:0	>	451	
ADACT	—	—	—	—		ADAC	T<4:0>		450	
ADRESH				ADRES	SH<7:0>				458, 458	
ADRESL				ADRES	SL<7:0>				458, 459	
ADPREVH				ADPRE	V<15:8>				459	
ADPREVL				ADPRE	V<7:0>				460	
ADACCH				ADACO	C<15:8>				460	
ADACCL				ADAC	C<7:0>				460	
ADSTPTH				ADSTP	T<15:8>				461	
ADSTPT	ADSTPT<7:0>									
ADERRL	ADERR<7:0>									
ADLTHH				ADLTH	l<15:8>				462	
ADLTHL				ADLTH	H<7:0>				462	
ADUTHH				ADUTH	 <15:8>				463	
ADUTHL				ADUT	H<7:0>				463	
ADSTAT	ADAOV	ADUTHR	ADLTHR	ADMATH		ADSTA	T<3:0>		452	
ADCLK	—	—			ADCS	S<5:0>			453	
ADREF	—	—		ADNREF	—	—	ADPRE	F<1:0>	453	
ADPCH	—	—			ADPCI	H<5:0>			454	
ADPRE				ADPR	E<7:0>				455	
ADACQ				ADAC	Q<7:0>				455	
ADCAP	—		_		F = 0	ADCAP<4:0	>		456	
				ADRP	1<7:0>				456	
					1<7:U>				457	
ADFLTRI				ADELT	R<7:0>				457	
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	423	
DAC1CON1	_	_	_			DAC1R<4:0>	•		429	
OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	39	

TABLE 31-5:	SUMMARY OF REGISTERS ASSOCIATED WITH ADC
-------------	--

Legend: - = unimplemented read as '0'. Shaded cells are not used for the ADC module.

GO	го	Uncondit	ional Br	anch		INC	F	Incremer	Increment f		
Synta	ax:	GOTO k				Syn	tax:	INCF f{,	INCF f {,d {,a}}		
Oper	ands:	$0 \le k \le 104$	8575			Ope	erands:	$0 \le f \le 255$			
Oper	ation:	$k \rightarrow PC<20$):1>					d ∈ [0,1]			
Statu	is Affected:	None	ne		0		a ∈ [0,1]	$a \in [0, 1]$			
Enco	oding:					Оре		$(1) + 1 \rightarrow 0$			
1st w	/ord (k<7:0>)	1110	1111	k ₇ kk	k kkkk ₀	Star	us Affected:	C, DC, N,	0V, Z		
2nd \	word(k<19:8>)	1111	k ₁₉ kkk	kkk}	k kkkk ₈	End	oding:	0010	10da	fff	f ffff
	anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction.				incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the						
Word	ds:	2						GPR bank. If 'a' is '0' and the extended instruction			
Cycle	es:	2						set is enab	led, this i	nstruct	ion operates
QC	ycle Activity:							in Indexed Literal Offset Addressing			
	Q1	Q2	Q3		Q4			tion 35 2 3	nevert≤ S" Bvte-C	95 (5⊢) riente	n). See Sec- d and Bit-
	Decode	Read literal 'k'<7:0>,	No operat	ion	Read literal 'k'<19:8>, Write to PC		Oriented Instructions in Index eral Offset Mode" for details.				
	No	No	No		No	Wo	rds:	1			
	operation	operation	operat	tion	operation	Сус	les:	1			
						Q	Cycle Activity:				
Exar	nple:	GOTO THE	RE				Q1	Q2	Q3	3	Q4
	After Instruction PC = Address (THERE)			Decode	Read register 'f'	Proce Dat	ess a	Write to destination			
						Exa	imple:	INCF	CNT,	1, 0	
				Before Instruction							

CNT Z DC

After Instruction

CNT Z C DC FFh 0 ? ?

= = =

= = =

RRN	ICF	CF Rotate Right f (No Carry)								
Synta	ax:	RF	RNCF	f {	,d {,	a}}				_
Oper	ands:	0 : d - a -	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Operation: $(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow dest < 7 >$										
Statu	is Affected:	N,	Z							
Enco	oding:		0100		00d	a	fff	f	ffff	:
Desc	pription:	Th on is pla If ' se va se if ' se in mo tic Or er	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected (default), overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.						d ult s e es c- it-	
Word	ds:	1								
Cycle	es:	1								
QC	ycle Activity:									
	Q1		Q2			Q3			Q4	
	Decode	l reç	Read gister 'f'		Pi	roce Data	SS 1	V de	Vrite to stinatio	n
<u>Exan</u>	nple 1:	RF	NCF	R	EG,	1,	0			
	Before Instruc REG After Instructio REG	tion = on =	1101 1110	01	.11)11					
Exan	nple <u>2</u> :	RF	NCF	R	EG,	Ο,	0			
	Before Instruc	tion								
	W REG After Instructio	= = 0n	? 1101	01	.11					
	พ REG	=	1110 1101	10 01)11 .11					

_									
SET	F	Set f							
Synta	ax:	SETF f{	,a}						
Oper	ands:	$0 \le f \le 255$	5						
		a ∈ [0,1]							
Oper	ation:	$FFh\tof$							
Statu	is Affected:	None							
Enco	oding:	0110	100a	ffff	ffff				
Desc	ription:	The conter are set to I If 'a' is '0', If 'a' is '1', GPR bank If 'a' is '0' a set is enab in Indexed mode whe tion 35.2.3 Oriented I eral Offse	The contents of the specified register are set to FFh. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-						
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3	5	Q4				
	Decode	Read	Write						
		register 'f'	Dat	a re	gister 'f'				
<u>Exar</u>	nple: Before Instruc	SETF	REG	8, 1					
			1 h						

REG	=	5Ah
After Instruction		
REG	=	FFh

SUE	BLW	S	Subtract W from literal						
Synta	ax:	S	UBLW F	(
Oper	ands:	0	$0 \le k \le 255$						
Oper	ation:	k	$k-(W)\toW$						
Status Affected:			, OV, C,	DC, Z					
Enco	oding:		0000	1000	kkk	k	kkkk		
Desc	cription	V. lit	/ is subtra eral 'k'. T	acted froi he resulf	m the t is pla	8-bi aced	it Lin W.		
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1		Q2	Q3			Q4		
	Decode	F lite	Read eral 'k'	Proce Data	ess a	W	rite to W		
Exan	nple 1:	S	UBLW (2h					
	Before Instruc W C After Instructio W C Z N	tion = on = = = =	01h ? 01h 1 ; re 0 0	esult is po	ositive	ł			
Exan	nple <u>2</u> :	S	UBLW (2h					
Example 2: SUBLW 02h Before Instruction W = 02h C = ? After Instruction W = 00h C = 1; result is zero Z = 1									
<u>Exan</u>	nple 3:	S	UBLW (2h					
	Before Instruc W C After Instructic W C Z N	tion = = on = = =	03h ? FFh ; (; 0 ; r 0 1	2's comp esult is no	lemer egativ	nt) ′e			

SUBWF	Subtract	Subtract W from f							
Syntax:	SUBWF	f {,d {,a}}							
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ d \; \in \; [0,1] \\ a \; \in \; [0,1] \end{array}$							
Operation:	(f) – (W) –	$(f)-(W) \rightarrow dest$							
Status Affected:	N, OV, C,	DC, Z							
Encoding:	0101	11da ffi	ff ffff						
Complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.If 'a' is '0' and the extended instruction set is enabled, this instruction 									
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	Read register 'f'	Process Data	Write to destination						
Example 1:	SUBWF	REG, 1, 0							
Before Instruc REG W C After Instructic REG W C Z N	tion = 3 = 2 = ? on = 1 = 2 = 1 ; r = 0 = 0	esult is positive	9						
Example 2:	SUBWF	REG, 0, 0							
Before Instruc REG W C After Instructic REG W C 7	tion = 2 = 2 = ? on = 2 = 0 = 1 ; n	esult is zero							
Ň	= 0								
Example 3:	SUBWF	REG, 1, 0							
Before Instruc REG W C	tion = 1 = 2 = ?								
After Instructic REG W C Z N	on = FFh;(2 = 2 = 0;ro = 0 = 1	's complement	t) re						

TABLE 37-24: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param No.	Symbol	Charact	teristic	Min.	Тур	Max.	Units	Conditions	
SP90*	TSU:STA	Start condition	100 kHz mode	4700	_	_	ns	Only relevant for Repeated Start	
		Setup time	400 kHz mode	600	-	_		condition	
SP91*	THD:STA	Start condition	100 kHz mode	4000		_	ns	After this period, the first clock	
		Hold time	400 kHz mode	600		-		pulse is generated	
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700		_	ns		
		Setup time	400 kHz mode	600		_			
SP93	THD:STO	Stop condition	100 kHz mode	4000		_	ns		
		Hold time	400 kHz mode	600		_			

* These parameters are characterized but not tested.

FIGURE 37-21: I²C BUS DATA TIMING

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

TABLE B-1: DEVICE DIFFERENCES

Features ⁽¹⁾	PIC18(L)F26K40	PIC18(L)F45K40	PIC18(L)F46K40	
Program Memory (Bytes)	65536	32768	65536	
SRAM (Bytes)	3720	2048	3720	
EEPROM (Bytes)	1024	256	1024	
Interrupt Sources	36	36	36	
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E	
Capture/Compare/PWM Modules (CCP)	2	2	2	
10-bit Analog-to-Digital Module	4 internal 24 external	4 internal 35 external	4 internal 35 external	
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN	

Note 1: PIC18F2x/4xK40: operating voltage, 2.3V-5.5V. PIC18LF2x/4xK40: operating voltage, 1.8V-3.6V.