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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC18(L)F26/45/46K40
REGISTER 4-6: OSCTUNE: HFINTOSC TUNING REGISTER

U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— — HFTUN<5:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-6 Unimplemented: Read as ‘0’

bit 5-0 HFTUN<5:0>: HFINTOSC Frequency Tuning bits
01 1111 = Maximum frequency

•

•

•

00 0000 = Center frequency. Oscillator module is running at the calibrated frequency 
(default value).

•

•

•

10 0000 = Minimum frequency
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5.1 Clock Source

The input to the reference clock output can be selected
using the CLKRCLK register.

5.1.1 CLOCK SYNCHRONIZATION

Once the reference clock enable (EN) is set, the mod-
ule is ensured to be glitch-free at start-up.  

When the reference clock output is disabled, the output
signal will be disabled immediately. 

Clock dividers and clock duty cycles can be changed
while the module is enabled, but glitches may occur on
the output. To avoid possible glitches, clock dividers
and clock duty cycles should be changed only when the
CLKREN is clear.

5.2 Programmable Clock Divider

The module takes the clock input and divides it based
on the value of the DIV<2:0> bits of the CLKRCON reg-
ister (Register 5-1). 

The following configurations can be made based on the
DIV<2:0> bits:

• Base FOSC value
• FOSC divided by 2
• FOSC divided by 4
• FOSC divided by 8
• FOSC divided by 16
• FOSC divided by 32
• FOSC divided by 64
• FOSC divided by 128

The clock divider values can be changed while the
module is enabled; however, in order to prevent
glitches on the output, the DIV<2:0> bits should only be
changed when the module is disabled (EN = 0).

5.3 Selectable Duty Cycle

The DC<1:0> bits of the CLKRCON register can be
used to modify the duty cycle of the output clock. A duty
cycle of 25%, 50%, or 75% can be selected for all clock
rates, with the exception of the undivided base FOSC

value.

The duty cycle can be changed while the module is
enabled; however, in order to prevent glitches on the
output, the DC<1:0> bits should only be changed when
the module is disabled (EN = 0).

5.4 Operation in Sleep Mode

The reference clock output module clock is based on
the system clock. When the device goes to Sleep, the
module outputs will remain in their current state. This
will have a direct effect on peripherals using the
reference clock output as an input signal. No change
should occur in the module from entering or exiting
from Sleep.

Note: The DC1 bit is reset to ‘1’. This makes the
default duty cycle 50% and not 0%.
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6.2.3.2 Peripheral Usage in Sleep 

Some peripherals that can operate in Sleep mode will
not operate properly with the Low-Power Sleep mode
selected. The Low-Power Sleep mode is intended for
use with these peripherals:

• Brown-out Reset (BOR)
• Windowed Watchdog Timer (WWDT)
• External interrupt pin/Interrupt-On-Change pins
• Peripherals that run off external secondary clock 

source

It is the responsibility of the end user to determine what
is acceptable for their application when setting the
VREGPM settings in order to ensure operation in
Sleep.

6.2.4 IDLE MODE 

When IDLEN is set (IDLEN = 1), the SLEEP instruction
will put the device into Idle mode. In Idle mode, the
CPU and memory operations are halted, but the
peripheral clocks continue to run. This mode is similar
to Doze mode, except that in IDLE both the CPU and
PFM are shut off.

6.2.4.1 Idle and Interrupts

IDLE mode ends when an interrupt occurs (even if GIE
= 0), but IDLEN is not changed. The device can re-
enter IDLE by executing the SLEEP instruction.

If Recover-On-Interrupt is enabled (ROI = 1), the
interrupt that brings the device out of Idle also restores
full-speed CPU execution when doze is also enabled. 

6.2.4.2 Idle and WWDT

When in Idle, the WWDT Reset is blocked and will
instead wake the device. The WWDT wake-up is not an
interrupt, therefore ROI does not apply.

6.3 Peripheral Operation in Power 
Saving Modes

All selected clock sources and the peripherals running
off them are active in both IDLE and DOZE mode. Only
in Sleep mode, both the FOSC and FOSC/4 clocks are
unavailable. All the other clock sources are active, if
enabled manually or through peripheral clock selection
before the part enters Sleep.

Note: The PIC18LF2x/4xK40 devices do not
have a configurable Low-Power Sleep
mode. PIC18LF2x/4xK40 devices are
unregulated and are always in the lowest
power state when in Sleep, with no wake-
up time penalty. These devices have a
lower maximum VDD and I/O voltage than
the PIC18F2x/4xK40. See Section
37.0 “Electrical Specifications” for
more information.

Note: If CLKOUTEN is enabled (CLKOUTEN = 0,
Configuration Word 1H), the output will con-
tinue operating while in Idle.

Note: The WDT can bring the device out of Idle,
in the same way it brings the device out of
Sleep. The DOZEN bit is not affected.
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10.4 Data Memory Organization

The data memory in PIC18 devices is implemented as
static RAM. Each register in the data memory has a
12-bit address, allowing up to 4096 bytes of data
memory. The memory space is divided into as many as
16 banks that contain 256 bytes each. Figure 10-4
shows the data memory organization for the
PIC18(L)F2x/4xK40 devices.

The data memory contains Special Function Registers
(SFRs) and General Purpose Registers (GPRs). The
SFRs are used for control and status of the controller
and peripheral functions, while GPRs are used for data
storage and scratchpad operations in the user’s
application. Any read of an unimplemented location will
read as ‘0’s.

The instruction set and architecture allow operations
across all banks. The entire data memory may be
accessed by Direct, Indirect or Indexed Addressing
modes. Addressing modes are discussed later in this
subsection.

To ensure that commonly used registers (SFRs and
select GPRs) can be accessed in a single cycle, PIC18
devices implement an Access Bank. This is a 256-byte
memory space that provides fast access to SFRs and
the lower portion of GPR Bank 0 without using the Bank
Select Register (BSR). Section 10.4.2 “Access
Bank” provides a detailed description of the Access
RAM.

10.4.1 BANK SELECT REGISTER (BSR)

Large areas of data memory require an efficient
addressing scheme to make rapid access to any
address possible. Ideally, this means that an entire
address does not need to be provided for each read or
write operation. For PIC18 devices, this is accom-
plished with a RAM banking scheme. This divides the
memory space into 16 contiguous banks of 256 bytes.
Depending on the instruction, each location can be
addressed directly by its full 12-bit address, or an 8-bit
low-order address and a 4-bit Bank Pointer.

Most instructions in the PIC18 instruction set make use
of the Bank Pointer, known as the Bank Select Register
(BSR). This SFR holds the four Most Significant bits of
a location’s address; the instruction itself includes the
eight Least Significant bits. Only the four lower bits of
the BSR are implemented (BSR<3:0>). The upper four
bits are unused; they will always read ‘0’ and cannot be
written to. The BSR can be loaded directly by using the
MOVLB instruction.

The value of the BSR indicates the bank in data
memory; the eight bits in the instruction show the
location in the bank and can be thought of as an offset
from the bank’s lower boundary. The relationship
between the BSR’s value and the bank division in data
memory is shown in Figure 10-4.

Since up to 16 registers may share the same low-order
address, the user must always be careful to ensure that
the proper bank is selected before performing a data
read or write. For example, writing what should be
program data to an 8-bit address of F9h while the BSR
is 0Fh will end up resetting the program counter. 

While any bank can be selected, only those banks that
are actually implemented can be read or written to.
Writes to unimplemented banks are ignored, while
reads from unimplemented banks will return ‘0’s. Even
so, the STATUS register will still be affected as if the
operation was successful. The data memory maps in
Figure 10-4 indicate which banks are implemented.

In the core PIC18 instruction set, only the MOVFF
instruction fully specifies the 12-bit address of the
source and target registers. This instruction ignores the
BSR completely when it executes. All other instructions
include only the low-order address as an operand and
must use either the BSR or the Access Bank to locate
their target registers.

Note: The operation of some aspects of data
memory are changed when the PIC18
extended instruction set is enabled. See
Section 10.7 “Data Memory and the
Extended Instruction Set” for more
information.
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10.4.2  ACCESS BANK

While the use of the BSR with an embedded 8-bit
address allows users to address the entire range of
data memory, it also means that the user must always
ensure that the correct bank is selected. Otherwise,
data may be read from or written to the wrong location.
This can be disastrous if a GPR is the intended target
of an operation, but an SFR is written to instead.
Verifying and/or changing the BSR for each read or
write to data memory can become very inefficient.

To streamline access for the most commonly used data
memory locations, the data memory is configured with
an Access Bank, which allows users to access a
mapped block of memory without specifying a BSR.
The Access Bank consists of the first 96 bytes of mem-
ory (00h-5Fh) in Bank 0 and the last 160 bytes of mem-
ory (60h-FFh) in Block 15. The lower half is known as
the “Access RAM” and is composed of GPRs. This
upper half is also where the device’s SFRs are
mapped. These two areas are mapped contiguously in
the Access Bank and can be addressed in a linear
fashion by an 8-bit address (Figure 10-4).

The Access Bank is used by core PIC18 instructions
that include the Access RAM bit (the ‘a’ parameter in
the instruction). When ‘a’ is equal to ‘1’, the instruction
uses the BSR and the 8-bit address included in the
opcode for the data memory address. When ‘a’ is ‘0’,
however, the instruction is forced to use the Access
Bank address map; the current value of the BSR is
ignored entirely. 

Using this “forced” addressing allows the instruction to
operate on a data address in a single cycle, without
updating the BSR first. For 8-bit addresses of 60h and
above, this means that users can evaluate and operate
on SFRs more efficiently. The Access RAM below 60h
is a good place for data values that the user might need
to access rapidly, such as immediate computational
results or common program variables. Access RAM
also allows for faster and more code efficient context
saving and switching of variables.

The mapping of the Access Bank is slightly different
when the extended instruction set is enabled (XINST
Configuration bit = 1). This is discussed in more detail
in Section 10.7.3 “Mapping the Access Bank in
Indexed Literal Offset Mode”.

10.4.3 GENERAL PURPOSE REGISTER 
FILE

PIC18 devices may have banked memory in the GPR
area. This is data RAM, which is available for use by all
instructions. GPRs start at the bottom of Bank 0
(address 000h) and grow upwards towards the bottom of
the SFR area. GPRs are not initialized by a Power-on
Reset and are unchanged on all other Resets.

10.4.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers
used by the CPU and peripheral modules for controlling
the desired operation of the device. These registers are
implemented as static RAM. SFRs start at the top of
data memory (FFFh) and extend downward to occupy
the top portion of Bank 15 (F38h to FFFh). A list of
these registers is given in Table 10-3 and Table 10-4.

The SFRs can be classified into two sets: those
associated with the “core” device functionality (ALU,
Resets and interrupts) and those related to the
peripheral functions. The Reset and Interrupt registers
are described in their respective chapters, while the
ALU’s STATUS register is described later in this
section. Registers related to the operation of a
peripheral feature are described in the chapter for that
peripheral.

The SFRs are typically distributed among the
peripherals whose functions they control. Unused SFR
locations are unimplemented and read as ‘0’s.
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Operations on the FSRs with POSTDEC, POSTINC
and PREINC affect the entire register pair; that is, roll-
overs of the FSRnL register from FFh to 00h carry over
to the FSRnH register. On the other hand, results of
these operations do not change the value of any flags
in the STATUS register (e.g., Z, N, OV, etc.). 

The PLUSW register can be used to implement a form
of indexed addressing in the data memory space. By
manipulating the value in the W register, users can
reach addresses that are fixed offsets from pointer
addresses. In some applications, this can be used to
implement some powerful program control structure,
such as software stacks, inside of data memory.

10.6.3.3 Operations by FSRs on FSRs

Indirect addressing operations that target other FSRs
or virtual registers represent special cases. For
example, using an FSR to point to one of the virtual
registers will not result in successful operations. As a
specific case, assume that FSR0H:FSR0L contains
FE7h, the address of INDF1. Attempts to read the
value of the INDF1 using INDF0 as an operand will
return 00h. Attempts to write to INDF1 using INDF0 as
the operand will result in a NOP. 

On the other hand, using the virtual registers to write to
an FSR pair may not occur as planned. In these cases,
the value will be written to the FSR pair but without any
incrementing or decrementing. Thus, writing to either
the INDF2 or POSTDEC2 register will write the same
value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the
SFR space, they can be manipulated through all direct
operations. Users should proceed cautiously when
working on these registers, particularly if their code
uses indirect addressing. 

Similarly, operations by indirect addressing are generally
permitted on all other SFRs. Users should exercise the
appropriate caution that they do not inadvertently change
settings that might affect the operation of the device.

10.7 Data Memory and the Extended 
Instruction Set

Enabling the PIC18 extended instruction set (XINST
Configuration bit = 1) significantly changes certain
aspects of data memory and its addressing. Specifi-
cally, the use of the Access Bank for many of the core
PIC18 instructions is different; this is due to the intro-
duction of a new addressing mode for the data memory
space.

What does not change is just as important. The size of
the data memory space is unchanged, as well as its
linear addressing. The SFR map remains the same.
Core PIC18 instructions can still operate in both Direct
and Indirect Addressing mode; inherent and literal
instructions do not change at all. Indirect addressing
with FSR0 and FSR1 also remain unchanged.

10.7.1 INDEXED ADDRESSING WITH 
LITERAL OFFSET 

Enabling the PIC18 extended instruction set changes
the behavior of indirect addressing using the FSR2
register pair within Access RAM. Under the proper
conditions, instructions that use the Access Bank – that
is, most bit-oriented and byte-oriented instructions –
can invoke a form of indexed addressing using an
offset specified in the instruction. This special
addressing mode is known as Indexed Addressing with
Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this
addressing mode requires the following:

• The use of the Access Bank is forced (‘a’ = 0) and

• The file address argument is less than or equal to 
5Fh.

Under these conditions, the file address of the
instruction is not interpreted as the lower byte of an
address (used with the BSR in direct addressing), or as
an 8-bit address in the Access Bank. Instead, the value
is interpreted as an offset value to an Address Pointer,
specified by FSR2. The offset and the contents of
FSR2 are added to obtain the target address of the
operation. 

10.7.2 INSTRUCTIONS AFFECTED BY 
INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct
addressing are potentially affected by the Indexed
Literal Offset Addressing mode. This includes all
byte-oriented and bit-oriented instructions, or almost
one-half of the standard PIC18 instruction set.
Instructions that only use Inherent or Literal Addressing
modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions
are not affected if they do not use the Access Bank
(Access RAM bit is ‘1’), or include a file address of 60h
or above. Instructions meeting these criteria will
continue to execute as before. A comparison of the
different possible addressing modes when the
extended instruction set is enabled is shown in
Figure 10-7.

Those who desire to use byte-oriented or bit-oriented
instructions in the Indexed Literal Offset mode should
note the changes to assembler syntax for this mode.
This is described in more detail in Section
35.2.1 “Extended Instruction Syntax”.
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REGISTER 14-10: PIE0: PERIPHERAL INTERRUPT ENABLE REGISTER 0

U-0 U-0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0 R/W-0/0

— — TMR0IE(1) IOCIE(1) — INT2IE(1) INT1IE(1) INT0IE(1)

bit 7 bit 0

Legend: IE

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as ‘0’

bit 5 TMR0IE: Timer0 Interrupt Enable bit(1)

1 = Enabled
0 = Disabled

bit 4 IOCIE: Interrupt-on-Change Enable bit(1)

1 = Enabled
0 = Disabled

bit 3 Unimplemented: Read as ‘0’

bit 2 INT2IE: External Interrupt 2 Enable bit(1)

1 = Enabled
0 = Disabled

bit 1 INT1IE: External Interrupt 1 Enable bit(1)

1 = Enabled
0 = Disabled

bit 0 INT0IE: External Interrupt 0 Enable bit(1)

1 = Enabled
0 = Disabled

Note 1: PIR0 interrupts are not disabled by the PEIE bit in the INTCON register. are not disabled by the PEIE bit
in the INTCON register.
 2015-2017 Microchip Technology Inc. Preliminary DS40001816D-page 179



PIC18F26/45/46K40
17.0 PERIPHERAL PIN SELECT 
(PPS) MODULE

The Peripheral Pin Select (PPS) module connects
peripheral inputs and outputs to the device I/O pins. Only
digital signals are included in the selections. All analog
inputs and outputs remain fixed to their assigned pins.
Input and output selections are independent as shown in
the simplified block diagram Figure 17-1.

The peripheral input is selected with the peripheral
xxxPPS register (Register 17-1), and the peripheral
output is selected with the PORT RxyPPS register
(Register 17-2). For example, to select PORTC<7> as
the EUSART RX input, set RXxPPS to 5’b1 0111,
and to select PORTC<6> as the EUSART TX output
set RC6PPS to 5'b0 1001.

17.1 PPS Inputs

Each peripheral has a PPS register with which the
inputs to the peripheral are selected. Inputs include the
device pins.

Multiple peripherals can operate from the same source
simultaneously. Port reads always return the pin level
regardless of peripheral PPS selection. If a pin also has
analog functions associated, the ANSEL bit for that pin
must be cleared to enable the digital input buffer.

Although every peripheral has its own PPS input selec-
tion register, the selections are identical for every
peripheral as shown in Register 17-1.

17.2 PPS Outputs

Each I/O pin has a PPS register with which the pin
output source is selected. With few exceptions, the port
TRIS control associated with that pin retains control
over the pin output driver. Peripherals that control the
pin output driver as part of the peripheral operation will
override the TRIS control as needed. These
peripherals include:

• EUSART (synchronous operation)

• MSSP (I2C)

Although every pin has its own PPS peripheral
selection register, the selections are identical for every
pin as shown in Register 17-2. 

Note: The notation “xxx” in the register name is
a place holder for the peripheral identifier.
For example, INT0PPS.

Note: The notation “Rxy” is a place holder for the
pin identifier. For example, RA0PPS.
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17.8 Register Definitions: PPS Input Selection

REGISTER 17-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION

U-0 U-0 U-0 R/W-m/u(1) R/W-m/u(1) R/W-m/u(1) R/W-m/u(1) R/W-m/u(1)

— — — xxxPPS<4:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit -n/n = Value at POR and BOR/Value at all other Resets

u = Bit is unchanged x = Bit is unknown q = value depends on peripheral

‘1’ = Bit is set U = Unimplemented bit, 
read as ‘0’

m = value depends on default location for that input

‘0’ = Bit is cleared

bit 7-5 Unimplemented: Read as ‘0’

bit 4-3 xxxPPS<4:3>: Peripheral xxx Input PORTx Pin Selection bits

See Table 17-1 for the list of available ports and default pin locations.
11 = PORTD (PIC18(L)F4xK40 only)
10 = PORTC
01 = PORTB
00 = PORTA

bit 2-0 xxxPPS<2:0>: Peripheral xxx Input PORTx Pin Selection bits

111 = Peripheral input is from PORTx Pin 7 (Rx7)
110 = Peripheral input is from PORTx Pin 6 (Rx6)
101 = Peripheral input is from PORTx Pin 5 (Rx5)
100 = Peripheral input is from PORTx Pin 4 (Rx4)
011 = Peripheral input is from PORTx Pin 3 (Rx3)
010 = Peripheral input is from PORTx Pin 2 (Rx2)
001 = Peripheral input is from PORTx Pin 1 (Rx1)
000 = Peripheral input is from PORTx Pin 0 (Rx0)

Note 1: The Reset value ‘m’ of this register is determined by device default locations for that input.
 2015-2017 Microchip Technology Inc. Preliminary DS40001816D-page 216



PIC18(L)F26/45/46K40
19.0 TIMER1/3/5 MODULE WITH 
GATE CONTROL

Timer1/3/5 module is a 16-bit timer/counter with the
following features:

• 16-bit timer/counter register pair (TMRxH:TMRxL)

• Programmable internal or external clock source

• 2-bit prescaler

• Dedicated Secondary 32 kHz oscillator circuit

• Optionally synchronized comparator out

• Multiple Timer1/3/5 gate (count enable) sources

• Interrupt on overflow

• Wake-up on overflow (external clock, Asynchronous 
mode only)

• 16-Bit Read/Write Operation

• Time base for the Capture/Compare function with 
the CCP modules

• Special Event Trigger (with CCP)

• Selectable Gate Source Polarity

• Gate Toggle mode

• Gate Single-pulse mode

• Gate Value Status

• Gate Event Interrupt

Figure 19-1 is a block diagram of the Timer1/3/5
module.
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19.1 Register Definitions: Timer1/3/5

Long bit name prefixes for the Timer1/3/5 are shown in
Table 20-1. Refer to Section 1.4.2.2 “Long Bit
Names” for more information.

TABLE 19-1:

Peripheral Bit Name Prefix

Timer1 T1

Timer3 T3

Timer5 T5

REGISTER 19-1: TxCON: TIMERx CONTROL REGISTER

U-0 U-0 R/W-0/u R/W-0/u U-0 R/W-0/u R/W-0/0 R/W-0/u

— — CKPS<1:0> — SYNC RD16 ON

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared u = unchanged

bit 7-6 Unimplemented: Read as ‘0’

bit 5-4 CKPS<1:0>: Timerx Input Clock Prescale Select bits

11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value

bit 3 Unimplemented: Read as ‘0’

bit 2 SYNC: Timerx External Clock Input Synchronization Control bit

TMRxCLK = FOSC/4 or FOSC:

This bit is ignored. Timer1 uses the incoming clock as is.
Else:

1 = Do not synchronize external clock input
0 = Synchronize external clock input with system clock

bit 1 RD16: 16-Bit Read/Write Mode Enable bit
1 = Enables register read/write of Timer in one 16-bit operation
0 = Enables register read/write of Timer in two 8-bit operations

bit 0 ON: Timerx On bit

1 = Enables Timerx
0 = Disables Timerx
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FIGURE 26-4: SPI MODE WAVEFORM (MASTER MODE)        

26.5.2 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as
external clock pulses appear on SCK. When the last
bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock
line must match the proper Idle state. The clock line can
be observed by reading the SCK pin. The Idle state is
determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by
the external clock source on the SCK pin. This external
clock must meet the minimum high and low times as
specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive
data. The shift register is clocked from the SCK pin
input and when a byte is received, the device will
generate an interrupt. If enabled, the device will
wake-up from Sleep.

26.5.3 DAISY-CHAIN CONFIGURATION

The SPI bus can sometimes be connected in a
daisy-chain configuration. The first slave output is
connected to the second slave input, the second slave
output is connected to the third slave input, and so on.
The final slave output is connected to the master input.
Each slave sends out, during a second group of clock
pulses, an exact copy of what was received during the
first group of clock pulses. The whole chain acts as
one large communication shift register. The
daisy-chain feature only requires a single Slave Select
line from the master device.

Figure 26-5 shows the block diagram of a typical
daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent
byte on the bus is required by the slave. Setting the
BOEN bit of the SSPxCON3 register will enable writes
to the SSPxBUF register, even if the previous byte has
not been read. This allows the software to ignore data
that may not apply to it.

SCK
(CKP = 0

SCK
(CKP = 1

SCK
(CKP = 0

SCK
(CKP = 1

4 Clock
Modes

Input
Sample

Input
Sample

SDI

bit 7 bit 0

SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

bit 7

SDI

SSPxIF

(SMP = 1)

(SMP = 0)

(SMP = 1)

CKE = 1)

CKE = 0)

CKE = 1)

CKE = 0)

(SMP = 0)

Write to
SSPxBUF

SSPSR to
SSPxBUF

SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

(CKE = 0)

(CKE = 1)

bit 0
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After the write to the SSPxBUF, each bit of the address
will be shifted out on the falling edge of SCL until all
seven address bits and the R/W bit are completed. On
the falling edge of the eighth clock, the master will
release the SDA pin, allowing the slave to respond with
an Acknowledge. On the falling edge of the ninth clock,
the master will sample the SDA pin to see if the address
was recognized by a slave. The status of the ACK bit is
loaded into the ACKSTAT Status bit of the SSPxCON2
register. Following the falling edge of the ninth clock
transmission of the address, the SSPxIF is set, the BF
flag is cleared and the Baud Rate Generator is turned
off until another write to the SSPxBUF takes place,
holding SCL low and allowing SDA to float.

26.10.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register
is set when the CPU writes to SSPxBUF and is cleared
when all eight bits are shifted out.

26.10.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is
already in progress (i.e., SSPSR is still shifting out a
data byte), the WCOL bit is set and the contents of the
buffer are unchanged (the write does not occur). 

The WCOL bit must be cleared by software before the
next transmission.

26.10.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2
register is cleared when the slave has sent an Acknowl-
edge (ACK = 0) and is set when the slave does not
Acknowledge (ACK = 1). A slave sends an Acknowl-
edge when it has recognized its address (including a
general call), or when the slave has properly received
its data.

26.10.6.4 Typical transmit sequence:

1. The user generates a Start condition by setting
the SEN bit of the SSPxCON2 register.

2. SSPxIF is set by hardware on completion of the
Start. 

3. SSPxIF is cleared by software.

4. The MSSP module will wait the required start
time before any other operation takes place.

5. The user loads the SSPxBUF with the slave
address to transmit.

6. Address is shifted out the SDA pin until all eight
bits are transmitted. Transmission begins as
soon as SSPxBUF is written to.

7. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit of the SSPxCON2 register.

8. The MSSP module generates an interrupt at the
end of the ninth clock cycle by setting the
SSPxIF bit.

9. The user loads the SSPxBUF with eight bits of
data. 

10. Data is shifted out the SDA pin until all eight bits
are transmitted.

11. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit of the SSPxCON2 register.

12. Steps 8-11 are repeated for all transmitted data
bytes.

13. The user generates a Stop or Restart condition
by setting the PEN or RSEN bits of the
SSPxCON2 register. Interrupt is generated once
the Stop/Restart condition is complete.
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TABLE 26-4: SUMMARY OF REGISTERS ASSOCIATED WITH I2C OPERATION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset 
Values 

on Page

INTCON GIE/GIEH PEIE/GIEL IPEN — — INT2EDG INT1EDG INT0EDG 170

PIE3 RC2IE TX2IE RC1IE TX1IE BCL2IE SSP2IE BCL1IE SSP1IE 182

PIR3 RC2IF TX2IF RC1IF TX1IF BCL2IF SSP2IF BCL1IF SSP1IF 174

IPR3 RC2IP TX2IP RC1IP TX1IP BCL2IP SSP2IP BCL1IP SSP1IP 190

RxyPPS — — — RxyPPS<4:0> 218

SSPxADD ADD<7:0> 340

SSPxBUF BUF<7:0> 336*

SSPxCLKPPS — — — SSPCLKPPS<4:0> 216

SSPxCON1 WCOL SSPOV SSPEN CKP SSPM<3:0> 338

SSPxCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 355

SSPxCON3 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN 339

SSPxDATPPS — — — SSPDATPPS<4:0> 216

SSPxMSK MSK<7:0> 357

SSPxSTAT SMP CKE D/A P S R/W UA BF 337

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by the MSSP module in I2C mode.
* Page provides register information.
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27.2 EUSART Asynchronous Mode

The EUSART transmits and receives data using the
standard non-return-to-zero (NRZ) format. NRZ is
implemented with two levels: a VOH Mark state which
represents a ‘1’ data bit, and a VOL Space state which
represents a ‘0’ data bit. NRZ refers to the fact that
consecutively transmitted data bits of the same value
stay at the output level of that bit without returning to a
neutral level between each bit transmission. An NRZ
transmission port idles in the Mark state. Each character
transmission consists of one Start bit followed by eight
or nine data bits and is always terminated by one or
more Stop bits. The Start bit is always a space and the
Stop bits are always marks. The most common data
format is eight bits. Each transmitted bit persists for a
period of 1/(Baud Rate). An on-chip dedicated
8-bit/16-bit Baud Rate Generator is used to derive
standard baud rate frequencies from the system
oscillator. See Table 27-5 for examples of baud rate
configurations.

The EUSART transmits and receives the LSb first. The
EUSART’s transmitter and receiver are functionally
independent, but share the same data format and baud
rate. Parity is not supported by the hardware, but can
be implemented in software and stored as the ninth
data bit.

27.2.1 EUSART ASYNCHRONOUS 
TRANSMITTER

The EUSART transmitter block diagram is shown in
Figure 27-1. The heart of the transmitter is the serial
Transmit Shift Register (TSR), which is not directly
accessible by software. The TSR obtains its data from
the transmit buffer, which is the TXxREG register.

27.2.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous
operations by configuring the following three control
bits:

• TXEN = 1

• SYNC = 0

• SPEN = 1

All other EUSART control bits are assumed to be in
their default state.

Setting the TXEN bit of the TXxSTA register enables the
transmitter circuitry of the EUSART. Clearing the SYNC
bit of the TXxSTA register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RCxSTA register enables the EUSART and
automatically configures the TXx/CKx I/O pin as an
output. If the TXx/CKx pin is shared with an analog
peripheral, the analog I/O function must be disabled by
clearing the corresponding ANSEL bit. 

27.2.1.2 Transmitting Data

A transmission is initiated by writing a character to the
TXxREG register. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXxREG is immediately
transferred to the TSR register. If the TSR still contains
all or part of a previous character, the new character
data is held in the TXxREG until the Stop bit of the
previous character has been transmitted. The pending
character in the TXxREG is then transferred to the TSR
in one TCY immediately following the Stop bit
transmission. The transmission of the Start bit, data bits
and Stop bit sequence commences immediately
following the transfer of the data to the TSR from the
TXxREG.

27.2.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with
the SCKP bit of the BAUDxCON register. The default
state of this bit is ‘0’ which selects high true transmit idle
and data bits. Setting the SCKP bit to ‘1’ will invert the
transmit data resulting in low true idle and data bits. The
SCKP bit controls transmit data polarity in
Asynchronous mode only. In Synchronous mode, the
SCKP bit has a different function. See Section
27.5.1.2 “Clock Polarity”.

27.2.1.4 Transmit Interrupt Flag

The TXxIF interrupt flag bit of the PIR3 register is set
whenever the EUSART transmitter is enabled and no
character is being held for transmission in the TXxREG.
In other words, the TXxIF bit is only clear when the TSR
is busy with a character and a new character has been
queued for transmission in the TXxREG. The TXxIF flag
bit is not cleared immediately upon writing TXxREG.
TXxIF becomes valid in the second instruction cycle
following the write execution. Polling TXxIF immediately
following the TXxREG write will return invalid results.
The TXxIF bit is read-only, it cannot be set or cleared by
software.

The TXxIF interrupt can be enabled by setting the
TXxIE interrupt enable bit of the PIE3 register.
However, the TXxIF flag bit will be set whenever the
TXxREG is empty, regardless of the state of TXxIE
enable bit.

To use interrupts when transmitting data, set the TXxIE
bit only when there is more data to send. Clear the
TXxIE interrupt enable bit upon writing the last charac-
ter of the transmission to the TXxREG.

Note: The TXxIF Transmitter Interrupt flag is set
when the TXEN enable bit is set.
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BAUD
RATE

SYNC = 0, BRGH = 1, BRG16 = 0

FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

300 — — — — — — — — — 300 0.16 207

1200 — — — 1202 0.16 207 1200 0.00 191 1202 0.16 51

2400 2404 0.16 207 2404 0.16 103 2400 0.00 95 2404 0.16 25

9600 9615 0.16 51 9615 0.16 25 9600 0.00 23 — — —

10417 10417 0.00 47 10417 0.00 23 10473 0.53 21 10417 0.00 5

19.2k 19231 0.16 25 19.23k 0.16 12 19.2k 0.00 11 — — —

57.6k 55556 -3.55 8 — — — 57.60k 0.00 3 — — —

115.2k — — — — — — 115.2k 0.00 1 — — —

BAUD
RATE

SYNC = 0, BRGH = 0, BRG16 = 1

FOSC = 32.000 MHz FOSC = 20.000 MHz FOSC = 18.432 MHz FOSC = 11.0592 MHz

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

300 300.0 0.00 6666 300.0 -0.01 4166 300.0 0.00 3839 300.0 0.00 2303

1200 1200 -0.02 3332 1200 -0.03 1041 1200 0.00 959 1200 0.00 575

2400 2401 -0.04 832 2399 -0.03 520 2400 0.00 479 2400 0.00 287

9600 9615 0.16 207 9615 0.16 129 9600 0.00 119 9600 0.00 71

10417 10417 0.00 191 10417 0.00 119 10378 -0.37 110 10473 0.53 65

19.2k 19.23k 0.16 103 19.23k 0.16 64 19.20k 0.00 59 19.20k 0.00 35

57.6k 57.14k -0.79 34 56.818 -1.36 21 57.60k 0.00 19 57.60k 0.00 11

115.2k 117.6k 2.12 16 113.636 -1.36 10 115.2k 0.00 9 115.2k 0.00 5

BAUD
RATE

SYNC = 0, BRGH = 0, BRG16 = 1

FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

Actual
Rate

%
Error

SPBRG
value

(decimal)

300 299.9 -0.02 1666 300.1 0.04 832 300.0 0.00 767 300.5 0.16 207

1200 1199 -0.08 416 1202 0.16 207 1200 0.00 191 1202 0.16 51

2400 2404 0.16 207 2404 0.16 103 2400 0.00 95 2404 0.16 25

9600 9615 0.16 51 9615 0.16 25 9600 0.00 23 — — —

10417 10417 0.00 47 10417 0.00 23 10473 0.53 21 10417 0.00 5

19.2k 19.23k 0.16 25 19.23k 0.16 12 19.20k 0.00 11 — — —

57.6k 55556 -3.55 8 — — — 57.60k 0.00 3 — — —

115.2k — — — — — — 115.2k 0.00 1 — — —

TABLE 27-5: SAMPLE BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)
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FIGURE 27-10: SYNCHRONOUS TRANSMISSION       

FIGURE 27-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)       

 bit 0  bit 1  bit 7

Word 1

 bit 2  bit 0  bit 1  bit 7
RXx/DTx

Write to
TXxREG Reg

TXxIF bit
(Interrupt Flag)

TXEN bit
‘1’ ‘1’

 Word 2

TRMT bit

Write Word 1 Write Word 2

Note: Sync Master mode, SPxBRGL = 0, continuous transmission of two 8-bit words.

pin

TXx/CKx pin

TXx/CKx pin

(SCKP = 0)

(SCKP = 1)

RXx/DTx pin

TXx/CKx pin

Write to
TXxREG reg

TXxIF bit

TRMT bit

bit 0 bit 1 bit 2 bit 6 bit 7

TXEN bit
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BTG Bit Toggle f

Syntax: BTG f, b {,a}

Operands: 0  f  255
0  b < 7
a [0,1]

Operation: (f<b>)  f<b>

Status Affected: None

Encoding: 0111 bbba ffff ffff

Description: Bit ‘b’ in data memory location ‘f’ is 
inverted.
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See Sec-
tion 35.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write
register ‘f’

Example: BTG PORTC, 4, 0

Before Instruction:
PORTC = 0111 0101 [75h]

After Instruction:
PORTC = 0110 0101 [65h]

BOV Branch if Overflow

Syntax: BOV    n

Operands: -128  n  127

Operation: if OVERFLOW bit is ‘1’
(PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1110 0100 nnnn nnnn

Description: If the OVERFLOW bit is ‘1’, then the 
program will branch.
The 2’s complement number ‘2n’ is 
added to the PC. Since the PC will have 
incremented to fetch the next 
instruction, the new address will be 
PC + 2 + 2n. This instruction is then a 
2-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
If Jump:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

Write to PC

No 
operation

No 
operation

No 
operation

No 
operation

If No Jump:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

No 
operation

Example: HERE BOV Jump

Before Instruction
PC = address (HERE)

After Instruction
If OVERFLOW = 1;

PC = address (Jump)
If OVERFLOW = 0;

PC = address (HERE + 2)
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CLRF Clear f

Syntax: CLRF    f {,a}

Operands: 0  f  255
a [0,1]

Operation: 000h  f
1  Z

Status Affected: Z

Encoding: 0110 101a ffff ffff

Description: Clears the contents of the specified 
register. 
If ‘a’ is ‘0’, the Access Bank is selected. 
If ‘a’ is ‘1’, the BSR is used to select the 
GPR bank.
If ‘a’ is ‘0’ and the extended instruction 
set is enabled, this instruction operates 
in Indexed Literal Offset Addressing 
mode whenever f 95 (5Fh). See Sec-
tion 35.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write
register ‘f’ 

Example: CLRF FLAG_REG, 1

Before Instruction
FLAG_REG = 5Ah

After Instruction
FLAG_REG = 00h

CLRWDT Clear Watchdog Timer

Syntax: CLRWDT

Operands: None

Operation: 000h  WDT,
000h  WDT postscaler,
1  TO,
1  PD

Status Affected: TO, PD

Encoding: 0000 0000 0000 0100

Description: CLRWDT instruction resets the 
Watchdog Timer. It also resets the post-
scaler of the WDT. Status bits, TO and 
PD, are set.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No
operation

Process 
Data

No 
operation

Example: CLRWDT

Before Instruction
WDT Counter = ?

After Instruction
WDT Counter = 00h
WDT Postscaler = 0
TO = 1
PD = 1
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Package Marking Information (Continued)

40-Lead UQFN (5x5x0.5 mm) Example

PIN 1 PIN 1

PIC18

/MV
1526017

3e

F45K40

44-Lead QFN (8x8x0.9 mm) Example

XXXXXXXXXXX
XXXXXXXXXXX

YYWWNNN
XXXXXXXXXXX

PIN 1 PIN 1

18F45K40
/ML

1526017
3e

44-Lead TQFP (10x10x1 mm) Example

XXXXXXXXXX

YYWWNNN
XXXXXXXXXX
XXXXXXXXXX 18F45K40

/PT

1526017

3e

Legend: XX...X Customer-specific information or Microchip part number
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
  Pb-free JEDEC® designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (      )

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.

3e

3e
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