

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k40t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1: 28-PIN ALLOCATION TABLE (PIC18(L)F26K40) (CONTINUED)

				· ·	. ,	,	•	,							
1/O ⁽²⁾	28-Pin SPDIP, SOIC, SSOP	28-Pin (U)QFN	A/D	Reference	Comparator	Timers	ССР	CWG	ZCD	Interrupt	EUSART	NSU	MSSP	Pull-up	Basic
RC0	11	8	ANC0	_	_	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾	-	_	-	IOCC0	_		—	Y	SOSCO
RC1	12	9	ANC1	—	_	—	CCP2 ⁽¹⁾	—	_	IOCC1	—	_	—	Y	SOSCIN SOSCI
RC2	13	10	ANC2	_	_	T5CKI ⁽¹⁾	CCP1 ⁽¹⁾	_	_	IOCC2	_	_	_	Y	_
RC3	14	11	ANC3	—	_	T2AIN ⁽¹⁾	-	—	—	IOCC3	—	_	SCK1 ⁽¹⁾ SCL1 ^(3,4)	Y	_
RC4	15	12	ANC4	—	_	—	-	—	—	IOCC4	—	—	SDI1 ⁽¹⁾ SDA1 ^(3,4)	Y	—
RC5	16	13	ANC5	_	_	T4AIN ⁽¹⁾	_	—	_	IOCC5	_	_	_	Y	_
RC6	17	14	ANC6	_	_	_	_	_	_	IOCC6	CK1 ⁽¹⁾	_	_	Y	_
RC7	18	15	ANC7	—	_	_	_	_	_	IOCC7	RX1/DT1 ⁽¹⁾	_	—	Y	
RE3	1	26	_	—	_	—	_	_	_	IOCE3	_		_	Y	VPP/MCLR
Vss	19	16	—	—	—	—	—	—	_	—	—	_	—	—	Vss
Vdd	20	17	_	—	_	—	—	—			—	—	—	_	Vdd
Vss	8	5	—	—	_	—	_	—	_		—		—	_	Vss
OUT ⁽²⁾	_	_	ADGRDA ADGRDB	_	C1OUT C2OUT	TMR0	CCP1 CCP2 PWM3 PWM4	CWG1A CWG1B CWG1C CWG1D	_	_	TX1/CK1 ⁽³⁾ DT1 ⁽³⁾ TX2/CK2 ⁽³⁾ DT2 ⁽³⁾	DSM	SDO1 SCK1 SDO2 SCK2	_	_

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers (Register 17-1).

2: All pin outputs default to PORT latch data. Any pin can be selected as a peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for I²C logic levels; The SCL/SDAx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

U-0	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q		
—	COSC<2:0> CDIV								
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			own	-n/n = Value at POR and BOR/Value at all other Resets					
(1' = Bit is set (0' = Bit is cleared q = Reset value is determined by ha						ed by hardware	9		

REGISTER 4-2:	OSCCON2: OSCILLATOR CONTROL REGISTER 2
---------------	---

bit 6-4	COSC<2:0>: Current Oscillator Source Select bits (read-only) ^(1,2)							
	Indicates the current source oscillator and PLL combination per Table 4-2.							
	(1.2)							

bit 3-0 **CDIV<3:0>:** Current Divider Select bits (read-only)^(1,2) Indicates the current postscaler division ratio per Table 4-2.

2: The Reset value (q/q) is the same as the NOSC/NDIV bits.

TABLE 4-2: NOSC/COSC AND NDIV/CDIV BIT SETTINGS

NOSC<2:0> COSC<2:0>	Clock Source
111	EXTOSC ⁽¹⁾
110	HFINTOSC ⁽²⁾
101	LFINTOSC
100	SOSC
011	Reserved
010	EXTOSC + 4x PLL ⁽³⁾
001	Reserved
000	Reserved

NDIV<3:0> CDIV<3:0>	Clock Divider
1111-1010	Reserved
1001	512
1000	256
0111	128
0110	64
0101	32
0100	16
0011	8
0010	4
0001	2
0000	1

Note 1: EXTOSC configured by the FEXTOSC bits of Configuration Word 1 (Register 3-1).

2: HFINTOSC frequency is set with the HFFRQ bits of the OSCFRQ register (Register 4-5).

3: EXTOSC must meet the PLL specifications (Table 37-9).

Note 1: The POR value is the value present when user code execution begins.

10.1.1 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits; it is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCH register. Updates to the PCU register are performed through the PCLATH register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes PCL. Similarly, the upper two bytes of the program counter are transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 10.2.3.1 "Computed GOTO"**).

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of PCL is fixed to a value of '0'. The PC increments by two to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

10.1.2 RETURN ADDRESS STACK

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC is pushed onto the stack when a CALL or RCALL instruction is executed or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer, or as a 35-word by 21-bit RAM with a 6-bit Stack Pointer in ICD mode. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the Top-of-Stack (TOS) Special File registers. Data can also be pushed to, or popped from the stack, using these registers.

A CALL type instruction causes a push onto the stack; the Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack; the contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.

The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits in the PCON0 register indicate if the stack is full or has overflowed or has underflowed.

10.1.2.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, hold the contents of the stack location pointed to by the STKPTR register (Figure 10-1). This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the Global Interrupt Enable (GIE) bits while accessing the stack to prevent inadvertent stack corruption.

<table-container>AddesNameBit 7Bit 7<th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<></table-container>												
EDBN OSCCON1 In In NOTO<10 ⁻¹ NOT/×30 ⁻¹ Sequence ED7N OFUDOZE IDLEN IDLEN RCI IDLEN IDLEN <th>Address</th> <th>Name</th> <th>Bit 7</th> <th>Bit 6</th> <th>Bit 5</th> <th>Bit 4</th> <th>Bit 3</th> <th>Bit 2</th> <th>Bit 1</th> <th>Bit 0</th> <th><u>Value on</u> POR, BOR</th>	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR	
epon pon dod pon pon pon pon pon pon pon Ben WDTM Image I	ED8h	OSCCON1	—		NOSC<2:0>		NDIV<3:0>					
EOR WOTMR WOTMR+40* STATE PSCN*** Second DBM WOTSM	ED7h	CPUDOZE	IDLEN	DOZEN	ROI	DOE	—		DOZE<2:0>		0000-000	
FORWOTRAHUUSIII	ED6h	WDTTMR		V	VDTTMR<4:0	>		STATE	PSCN	T<17:16>	xxxxx000	
EDAM WOTESL Image: Sector Sec	ED5h	WDTPSH				PSC	NT<7:0>				00000000	
EGN WOTCONIN Image <	ED4h	WDTPSL				PSCN	T<15:8>				00000000	
EQ2WITCON0IIIUUUUSENII <th< td=""><td>ED3h</td><td>WDTCON1</td><td>—</td><td></td><td>WDTCS<2:0></td><td>></td><td>—</td><td></td><td>WINDOW<2:0</td><td>></td><td>-ddd-ddd</td></th<>	ED3h	WDTCON1	—		WDTCS<2:0>	>	—		WINDOW<2:0	>	-ddd-ddd	
End IRAC SCANIF ORAIF IVAMF I <thi< th=""> <thi< th=""></thi<></thi<>	ED2h	WDTCON0	—	—			WDTPS<4:0>			SEN	ddddd0	
EON PIRA I <th< td=""><td>ED1h</td><td>PIR7</td><td>SCANIF</td><td>CRCIF</td><td>NVMIF</td><td>_</td><td>—</td><td>_</td><td>_</td><td>CWG1IF</td><td>0000</td></th<>	ED1h	PIR7	SCANIF	CRCIF	NVMIF	_	—	_	_	CWG1IF	0000	
Ech PIRS I <th< td=""><td>ED0h</td><td>PIR6</td><td>—</td><td>—</td><td>—</td><td>_</td><td>—</td><td>—</td><td>CCP2IF</td><td>CCP1IF</td><td>00</td></th<>	ED0h	PIR6	—	—	—	_	—	—	CCP2IF	CCP1IF	00	
Picke Picke <	ECFh	PIR5	_	_	_		_	TMR5GIF	TMR3GIF	TMR1GIF	000	
ECDPRCMRCMPRC	ECEh	PIR4	_	_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	000000	
ECC PR2 HUVIP ZCDF GA I	ECDh	PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	00000000	
Edd Ind Ind <thind< th=""> <thind< th=""> <thind< th=""></thind<></thind<></thind<>	ECCh	PIR2	HLVDIF	ZCDIF	_	_	-	—	C2IF	C1IF	0000	
EAM INRO INRO INRO INCIP INTOP INTOP INTOP INTOP INTOP INTOP EGM ISCAM SCAME ICRC NAME I-n I-	ECBh	PIR1	OSCFIF	CSWIF	—	_	—	—	ADTIF	ADIF	0000	
EG9PIE7SCANIECRCIENVMIEIIIIICWG1E0000EC8PIE6III<	ECAh	PIR0	—	—	TMR0IF	IOCIF	-	INT2IF	INT1IF	INT0IF	00-000	
EC8PIE6ImageIma	EC9h	PIE7	SCANIE	CRCIE	NVMIE	—	—	—	—	CWG1IE	0000	
EC7PIE5I—I—I—I—IMRSGEIMR3GEIMRGEIMGEIMGEIMGEIMGEIMGEIMGEIMGEIMGEIMGEIMGEIMGEIMGEIMGEIMGEIMGEIMGEIMGEIMGEIMG	EC8h	PIE6	—	—	—	_	—	—	CCP2IE	CCP1IE	00	
EC6hPIE4ImageImageTMR8IE	EC7h	PIE5	—	—	—	_	—	TMR5GIE	TMR3GIE	TMR1GIE	000	
EC5hPIE3RC2IETX2IERC1IETX1IEBCL2IESSP2IEBCL1IESSP1IESSP1IE0000000EC4hPIE2HLVDIEZCDIEC2IEC1IE0000EC3hPIE1OSCFIECSWIEGADIEADIE0000EC4hPIE0TMR0IEIOCIEINT2EINT1EINT0E-00-000EC1hIPR7SCANIPCRCIPNVMIPCCP2IPCCP1IP111EC0hIPR6CCP2IPCCP1IP11EBFhIPR611EBFhIPR4TMR3IPTMR3IPTMR1GP111EBFhIPR4EBFhIPR4TMR3IPTMR3IPTMR1GP111EBFhIPR4EBFhIPR4TMR3IPTMR3IPTMR3IPTMR1GP	EC6h	PIE4	—	—	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	000000	
ECAMPIE2HLVDIEZCDIEIIIIIICZIECIEIEOnEC3MPIE1OSCFIECSWIEIII <t< td=""><td>EC5h</td><td>PIE3</td><td>RC2IE</td><td>TX2IE</td><td>RC1IE</td><td>TX1IE</td><td>BCL2IE</td><td>SSP2IE</td><td>BCL1IE</td><td>SSP1IE</td><td>00000000</td></t<>	EC5h	PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	00000000	
EC3MPIE1OSCFIECSWIEIIIIIADTEADTEADTEOEC2MPIE0III	EC4h	PIE2	HLVDIE	ZCDIE	_	_	-	_	C2IE	C1IE	0000	
EC2hPIEOIITMROIEIOCIEIINT2IEINT1IEINT0IE <td>EC3h</td> <td>PIE1</td> <td>OSCFIE</td> <td>CSWIE</td> <td>—</td> <td>_</td> <td>—</td> <td>—</td> <td>ADTIE</td> <td>ADIE</td> <td>0000</td>	EC3h	PIE1	OSCFIE	CSWIE	—	_	—	—	ADTIE	ADIE	0000	
EC1hPR7SCANIPCRCIPNVMPIII </td <td>EC2h</td> <td>PIE0</td> <td>—</td> <td>—</td> <td>TMR0IE</td> <td>IOCIE</td> <td>—</td> <td>INT2IE</td> <td>INT1IE</td> <td>INTOIE</td> <td>00-000</td>	EC2h	PIE0	—	—	TMR0IE	IOCIE	—	INT2IE	INT1IE	INTOIE	00-000	
ECohIPR6III <td>EC1h</td> <td>IPR7</td> <td>SCANIP</td> <td>CRCIP</td> <td>NVMIP</td> <td>—</td> <td>—</td> <td>—</td> <td>—</td> <td>CWG1IP</td> <td>1111</td>	EC1h	IPR7	SCANIP	CRCIP	NVMIP	—	—	—	—	CWG1IP	1111	
EBFhIPR5III <td>EC0h</td> <td>IPR6</td> <td>—</td> <td>—</td> <td>—</td> <td>_</td> <td>—</td> <td>—</td> <td>CCP2IP</td> <td>CCP1IP</td> <td>11</td>	EC0h	IPR6	—	—	—	_	—	—	CCP2IP	CCP1IP	11	
EBEhIPR4III <td>EBFh</td> <td>IPR5</td> <td>—</td> <td>—</td> <td>—</td> <td>_</td> <td>—</td> <td>TMR5GIP</td> <td>TMR3GIP</td> <td>TMR1GIP</td> <td>111</td>	EBFh	IPR5	—	—	—	_	—	TMR5GIP	TMR3GIP	TMR1GIP	111	
EBDhIPR3RC2IPTX2IPRC1IPTX1IPBCL2PSSP2PBCL1PSSP1P111111EBChIPR2HLVDIPZCDIPII </td <td>EBEh</td> <td>IPR4</td> <td>—</td> <td>—</td> <td>TMR6IP</td> <td>TMR5IP</td> <td>TMR4IP</td> <td>TMR3IP</td> <td>TMR2IP</td> <td>TMR1IP</td> <td>111111</td>	EBEh	IPR4	—	—	TMR6IP	TMR5IP	TMR4IP	TMR3IP	TMR2IP	TMR1IP	111111	
EBChIPR2HLVDIPZCDIPIIIIIIC2IPC1IPI111EBBhIPR1OSCFIPCSWIPIIINCIPINT2IPINT1IPINT0IPI111EBAhIPR0IIIINCIPINT0IPINT0IPINT0IPII11EB9hSSP1SSPSIIIIIIIIIIIIIIIIIEB9hSSP1DATPSIIIIIIIIIIIIIIIIIIIIIIIEB9hSSP1CLKPSIII	EBDh	IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	11111111	
EBBhIPR1OSCFIPCSWIPII <td>EBCh</td> <td>IPR2</td> <td>HLVDIP</td> <td>ZCDIP</td> <td>_</td> <td> </td> <td>—</td> <td>—</td> <td>C2IP</td> <td>C1IP</td> <td>1111</td>	EBCh	IPR2	HLVDIP	ZCDIP	_		—	—	C2IP	C1IP	1111	
EBAhIPR0IITINT0PINT1PINT0PInt0P <th< td=""><td>EBBh</td><td>IPR1</td><td>OSCFIP</td><td>CSWIP</td><td>_</td><td> </td><td>_</td><td>_</td><td>ADTIP</td><td>ADIP</td><td>1111</td></th<>	EBBh	IPR1	OSCFIP	CSWIP	_		_	_	ADTIP	ADIP	1111	
EB9hSSP1SSPPSIIISSP1SSPPS<4:0>IEB8hSSP1DATPPSIIISSPDATPPS<4:0>IEB7hSSP1CLKPPSIIISSPCLKPPS<4:0>IEB6hTX1PPSIIISSPCLKPPS<4:0>IEB5hRX1PPSIIIIIEB4hMDSRCPPSIIIIIEB3hMDCARHPPSIIIIIEB2hMDCARLPPSIIIIIEB2hMDCARLPPSIIIIIEB2hMDCARLPPSIIIIIEB2hMDCARLPPSIIIIIEB2hMDCARLPPSIIIIIEB2hMDCARLPPSIIIIIEB2hMDCARLPPSIIIIIEB2hMDCARLPPSIIIIIEB2hMDCARLPPSIIIIIEB2hMDCARLPPSIIIIIEB2hMDCARLPPSIIIIIEB2hMDCARLPPSIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	EBAh	IPR0	—	—	TMR0IP	IOCIP	_	INT2IP	INT1IP	INT0IP	11-111	
EB8h SSP1DATPPS SSP1DATPPS	EB9h	SSP1SSPPS	—	—	—		SSPSSPPS<4:0>				00101	
EB7h SSP1CLKPPS SSPCLKPPS<4:0> 10011 EB6h TX1PPS TXPPS<4:0> 1010 EB5h RX1PPS 1010 1010 EB5h RX1PPS RXPPS<4:0> 1011 EB4h MDSRCPPS MDSRCPPS<	EB8h	SSP1DATPPS	—	—	_		SSPDATPPS<4:0>					
EB6h TX1PPS TXPPS<4:0> 1010 EB5h RX1PPS RXPPS<4:0> 10110 EB5h MDSRCPPS MDSRCPPS<4:0> 10110 EB3h MDCARHPPS MDCARHPPS<4:0> 00100 EB2h MDCARLPPS MDCARLPPS<	EB7h	SSP1CLKPPS	—	—	—		10011					
EB5h RX1PPS RXPPS<4:0> 111 EB4h MDSRCPPS MDSRCPPS<4:0> 0101 EB3h MDCARHPPS MDCARHPPS<4:0> 00100 EB2h MDCARLPPS MDCARLPPS<4:0> 00101	EB6h	TX1PPS	—	_	—			TXPPS<4:0>			10110	
EB4h MDSRCPPS MDSRCPPS<4:0> 00101 EB3h MDCARHPPS MDCARHPPS<4:0> 00100 EB2h MDCARLPPS MDCARLPPS<4:0> 00101	EB5h	RX1PPS	_	_	—			RXPPS<4:0>			10111	
EB3h MDCARHPPS MDCARHPPS<4:0> 00100 EB2h MDCARLPPS MDCARLPPS<4:0> 00111	EB4h	MDSRCPPS	_	_	—		Ν	IDSRCPPS<4:)>		00101	
EB2h MDCARLPPS — — — MDCARLPPS<4:0> 00011	EB3h	MDCARHPPS	—				М	DCARHPPS<4	0>		00100	
	EB2h	MDCARLPPS	_	—	—		Μ	DCARLPPS<4:	0>		00011	

TABLE 10-5:	REGISTER FILE SUMMARY FOR PIC18(L)F26/45/46K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

Not available on PIC18(L)F26K40 (28-pin variants).

3: Not available on PIC18(L)F45K40 devices.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1				
SLRx7	SLRx6	SLRx5	SLRx4	SLRx3	SLRx2	SLRx1	SLRx0				
bit 7											
Legend:	Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'							
'1' = Bit is set '0' = Bit is cleared				x = Bit is unknown							

REGISTER 15-7: SLRCONX: SLEW RATE CONTROL REGISTER

bit 7-0

- SLRx<7:0>: Slew Rate Control on Pins Rx<7:0>, respectively
 - 1 = Port pin slew rate is limited
 - 0 = Port pin slews at maximum rate

	Device									
Name	28 Pins	40/44 Pins	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SLRCONA	Х	Х	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0
SLRCONB	Х	Х	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0
SLRCONC	Х	Х	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0
SLRCOND	Х				_	_	—	_	_	_
		Х	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0
SLRCONE	Х				_	_	—	_	_	_
		Х	_	_	_	_	_	SLRE2	SLRE1	SLRE0

TABLE 15-8: SLEW RATE CONTROL REGISTERS

-n/n = Value at POR and BOR/Value at all other Resets

19.7 Timer1/3/5 16-Bit Read/Write Mode

Timer1/3/5 can be configured to read and write all 16 bits of data, to and from, the 8-bit TMRxL and TMRxH registers, simultaneously. The 16-bit read and write operations are enabled by setting the RD16 bit of the TxCON register.

To accomplish this function, the TMRxH register value is mapped to a buffer register called the TMRxH buffer register. While in 16-Bit mode, the TMRxH register is not directly readable or writable and all read and write operations take place through the use of this TMRxH buffer register.

When a read from the TMRxL register is requested, the value of the TMRxH register is simultaneously loaded into the TMRxH buffer register. When a read from the TMRxH register is requested, the value is provided from the TMRxH buffer register instead. This provides the user with the ability to accurately read all 16 bits of the Timer1/3/5 value from a single instance in time. Reference the block diagram in Figure 19-2 for more details.

In contrast, when not in 16-Bit mode, the user must read each register separately and determine if the values have become invalid due to a rollover that may have occurred between the read operations.

When a write request of the TMRxL register is requested, the TMRxH buffer register is simultaneously updated with the contents of the TMRxH register. The value of TMRxH must be preloaded into the TMRxH buffer register prior to the write request for the TMRxL register. This provides the user with the ability to write all 16 bits to the TMRxL:TMRxH register pair at the same time.

Any requests to write to the TMRxH directly does not clear the Timer1/3/5 prescaler value. The prescaler value is only cleared through write requests to the TMRxL register.

FIGURE 19-2:

TIMER1/3/5 16-BIT READ/WRITE MODE BLOCK DIAGRAM

19.8 Timer1/3/5 Gate

Timer1/3/5 can be configured to count freely or the count can be enabled and disabled using Timer1/3/5 gate circuitry. This is also referred to as Timer1/3/5 gate enable.

Timer1/3/5 gate can also be driven by multiple selectable sources.

19.8.1 TIMER1/3/5 GATE ENABLE

The Timer1/3/5 Gate Enable mode is enabled by setting the TMRxGE bit of the TxGCON register. The polarity of the Timer1/3/5 Gate Enable mode is configured using the TxGPOL bit of the TxGCON register.

When Timer1/3/5 Gate Enable mode is enabled, Timer1/3/5 will increment on the rising edge of the Timer1/3/5 clock source. When Timer1/3/5 Gate signal is inactive, the timer will not increment and hold the current count. Enable mode is disabled, no incrementing will occur and Timer1/3/5 will hold the current count. See Figure 19-4 for timing details.

TABLE 19-3:	TIMER1/3/5 GATE ENABLE
	SELECTIONS

TMRxCLK	TxGPOL	TxG	Timer1/3/5 Operation
\uparrow	1	1	Counts
\uparrow	1	0	Holds Count
\uparrow	0	1	Holds Count
\uparrow	0	0	Counts

19.8.2 TIMER1/3/5 GATE SOURCE SELECTION

The gate source for Timer1/3/5 can be selected using the GSS<3:0> bits of the TMRxGATE register (Register 19-4). The polarity selection for the gate source is controlled by the TxGPOL bit of the TxGCON register (Register 19-2).

Any of the above mentioned signals can be used to trigger the gate. The output of the CMPx can be synchronized to the Timer1/3/5 clock or left asynchronous. For more information see **Section 32.5.1** "Comparator Output Synchronization".

19.8.3 TIMER1/3/5 GATE TOGGLE MODE

When Timer1/3/5 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1/3/5 gate signal, as opposed to the duration of a single level pulse.

The Timer1/3/5 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 19-5 for timing details.

Timer1/3/5 Gate Toggle mode is enabled by setting the GTM bit of the TxGCON register. When the GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note: Enabling Toggle mode at the same time as changing the gate polarity may result in indeterminate operation.

19.8.4 TIMER1/3/5 GATE SINGLE-PULSE MODE

When Timer1/3/5 Gate Single-Pulse mode is enabled, it is possible to capture a single-pulse gate event. Timer1/3/5 Gate Single-Pulse mode is first enabled by setting the GSPM bit in the TxGCON register. Next, the GGO/DONE bit in the TxGCON register must be set. The Timer1/3/5 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1/3/5 until the GGO/DONE bit is once again set in software.

Clearing the TxGSPM bit of the TxGCON register will also clear the GGO/DONE bit. See Figure 19-6 for timing details.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1/3/5 gate source to be measured. See Figure 19-7 for timing details.

19.8.5 TIMER1/3/5 GATE VALUE STATUS

When Timer1/3/5 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the GVAL bit in the TxGCON register. The GVAL bit is valid even when the Timer1/3/5 gate is not enabled (GE bit is cleared).

19.8.6 TIMER1/3/5 GATE EVENT INTERRUPT

When Timer1/3/5 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of GVAL occurs, the TMRxGIF flag bit in the PIR5 register will be set. If the TMRxGIE bit in the PIE5 register is set, then an interrupt will be recognized.

The TMRxGIF flag bit operates even when the Timer1/3/5 gate is not enabled (GE bit is cleared).

For more information on selecting high or low priority status for the Timer1/3/5 Gate Event Interrupt see **Section 14.0 "Interrupts"**.

21.3 Capture Mode

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the capture source, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMRxH:TMRxL register pair, respectively. An event is defined as one of the following and is configured by the MODE<3:0> bits of the CCPxCON register:

- · Every falling edge of CCPx input
- Every rising edge of CCPx input
- Every 4th rising edge of CCPx input
- · Every 16th rising edge of CCPx input
- Every edge of CCPx input (rising or falling)

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIR6 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH:CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Note: If an event occurs during a 2-byte read, the high and low-byte data will be from different events. It is recommended while reading the CCPRxH:CCPRxL register pair to either disable the module or read the register pair twice for data integrity.

Figure 21-1 shows a simplified diagram of the capture operation.

21.3.1 CAPTURE SOURCES

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

The capture source is selected by configuring the CTS<1:0> bits of the CCPxCAP register. The following sources can be selected:

- · Pin selected by CCPxPPS
- C1_output
- C2_output
- IOC_interrupt

21.3.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

• See Section 19.0 "Timer1/3/5 Module with Gate Control" for more information on configuring Timer1.

23.6 Handling VPEAK Variations

If the peak amplitude of the external voltage is expected to vary, the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of $\pm 600 \ \mu$ A and above a reasonable minimum range. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed $\pm 600 \ \mu$ A and the minimum is at least $\pm 100 \ \mu$ A, compute the series resistance as shown in Equation 23-5. The compensating pull-up for this series resistance can be determined with Equation 23-4 because the pull-up value is independent from the peak voltage.

EQUATION 23-5: SERIES R FOR V RANGE

$$R_{SERIES} = \frac{V_{MAXPEAK} + V_{MINPEAK}}{7 \times 10^{-4}}$$

23.7 Operation During Sleep

The ZCD current sources and interrupts are unaffected by Sleep.

23.8 Effects of a Reset

The ZCD circuit can be configured to default to the active or inactive state on Power-on-Reset (POR). When the \overline{ZCD} Configuration bit is cleared, the ZCD circuit will be active at POR. When the \overline{ZCD} Configuration bit is set, the ZCDSEN bit of the ZCDCON register must be set to enable the ZCD module.

23.9 Disabling the ZCD Module

The ZCD module can be disabled in two ways:

- Configuration Word 2H has the ZCD bit which disables the ZCD module when set, but it can be enabled using the ZCDSEN bit of the ZCDCON register (Register 23-1). If the ZCD bit is clear, the ZCD is always enabled.
- 2. The ZCD can also be disabled using the ZCDMD bit of the PMD2 register (Register 7-3). This is subject to the status of the ZCD bit.

24.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. The auto-shutdown circuit is illustrated in Figure 24-14.

24.10.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

24.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWG1AS0 register will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will clear automatically and resume operation on the next rising edge event. The SHUTDOWN bit indicates when a shutdown condition exists. The bit may be set or cleared in software or by hardware.

24.10.1.2 External Input Source

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. The override levels are selected by the LSBD<1:0> and LSAC<1:0> bits of the CWG1AS0 register (Register 24-6). Several input sources can be selected to cause a shutdown condition. All input sources are active-low. The sources are:

- Pin selected by CWG1PPS
- Timer2 post-scaled output
- Timer4 post-scaled output
- Timer6 post-scaled output
- · Comparator 1 output
- · Comparator 2 output

Shutdown input sources are individually enabled by the ASxE bits of the CWG1AS1 register (Register 24-7).

Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.

24.10.1.3 Pin Override Levels

The levels driven to the CWG outputs during an autoshutdown event are controlled by the LSBD<1:0> and LSAC<1:0> bits of the CWG1AS0 register (Register 24-6). The LSBD<1:0> bits control CWG1B/ D output levels, while the LSAC<1:0> bits control the CWG1A/C output levels.

24.10.1.4 Auto-Shutdown Interrupts

When an auto-shutdown event occurs, either by software or hardware setting SHUTDOWN, the CWG1IF flag bit of the PIR7 register is set (Register 14-5).

24.11 Auto-Shutdown Restart

After an auto-shutdown event has occurred, there are two ways to resume operation:

- · Software controlled
- Auto-restart

In either case, the shut-down source must be cleared before the restart can take place. That is, either the shutdown condition must be removed, or the corresponding ASxE bit must be cleared.

24.11.1 SOFTWARE-CONTROLLED RESTART

If the REN bit of the CWG1AS0 register is clear (REN = 0), the CWG module must be restarted after an auto-shutdown event through software.

Once all auto-shutdown sources are removed, the software must clear SHUTDOWN. Once SHUTDOWN is cleared, the CWG module will resume operation upon the first rising edge of the CWG data input.

Note: The SHUTDOWN bit cannot be cleared in software if the auto-shutdown condition is still present.

24.11.2 AUTO-RESTART

If the REN bit of the CWG1AS0 register is set (REN = 1), the CWG module will restart from the shutdown state automatically.

Once all auto-shutdown conditions are removed, the hardware will automatically clear SHUTDOWN. Once SHUTDOWN is cleared, the CWG module will resume operation upon the first rising edge of the CWG data input.

Note: The SHUTDOWN bit cannot be cleared in software if the auto-shutdown condition is still present.

-				•	-	,	
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	P ⁽¹⁾	S ⁽¹⁾	R/W ^(2,3)	UA	BF
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 7	SMP: Slew I	Rate Control bit					
	In Master or	<u>Slave mode:</u>	oled for Stand	ard Speed mor	10 (100 kHz an	d 1 MHz)	
	1 = Slew ra 0 = Slew ra	te control is enab	led for High-	Speed mode (4	00 kHz)	u i wii iz <i>)</i>	
bit 6	CKE: SMBu	s Select bit	0		,		
	In Master or	Slave mode:					
	1 = Enables	SMBus-specific i	inputs				
6:4 <i>6</i>	0 = Disables	ddrees hit	inputs				
DIL D	In Master m	ode.					
	Reserved.	<u>ouc.</u>					
	In Slave mo	<u>de:</u>					
	1 = Indicates	s that the last byte	e received or	transmitted wa	s data		
hit 1	0 = Indicates	s that the last byte	e received or	transmitted wa	is address		
DIL 4	\mathbf{P} : Stop bit \mathbf{I}	, s that a Ston hit h	as heen dete	cted last			
	0 = Stop bit	was not detected	last				
bit 3	S: Start bit ⁽¹)					
	1 = Indicates 0 = Start bit	s that a Start bit h	as been dete last	cted last			
bit 2	R/W: Read	Write Information	bit ^(2,3)				
2.1 -	In Slave mo	de:					
	1 = Read						
	0 = Write						
	<u>in Master me</u> 1 = Transmit	<u>oae:</u> t is in proaress					
	0 = Transmit	t is not in progres	S				
bit 1	UA: Update	Address bit (10-E	Bit Slave mod	e only)			
	1 = Indicates 0 = Address	s that the user ne does not need to	eds to update	e the address ir	the SSPxADE) register	
bit 0	BF: Buffer F	ull Status bit					
	<u>In Transmit r</u>	mode:					
	1 = SSPxBL	JF is full IF is omntv					
	In Receive n	node [.]					
	1 = SSPxBL	JF is full (does no	t include the	ACK and Stop	bits)		
	0 = SSPxBL	JF is empty (does	not include t	he ACK and St	op bits)		
Note 1:	This bit is cleare	ed on Reset and v	vhen SSPEN	is cleared.			
2:	This bit holds the	e R/ W bit informa	tion following	the last addres	ss match. This	bit is only valid f	rom the
	address match t	o the next Start b	it, Stop bit or	not ACK bit.		-	

REGISTER 26-6: SSPxSTAT: MSSPx STATUS REGISTER (I²C MASTER MODE)

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

R/W-0	R/W/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾
bit 7	L				L	•	bit 0
Legend:							
R = Read	able bit	W = Writable b	bit	HC = Bit is cle	eared by hardw	are	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	WCOL: Write	Collision Detec	t bit				
	In Master Trai	nsmit mode:	,				
	1 = A write to	o the SSPxBU	 register was d (must be classified) 	s attempted wh	$\frac{1}{2}$	nditions were i	not valid for a
	0 = No collisi	on			0)		
	In Slave Trans	<u>smit mode:</u>					
	1 = The SSP	xBUF register is	s written while	it is still transm	nitting the previ	ous word (mus	t be cleared in
	soπware)	on					
	In Receive mo	ode (Master or §	Slave modes)	:			
	This is a "don	't care" bit.	,	_			
bit 6	SSPOV: Rece	eive Overflow In	dicator bit				
	In Receive mo	<u>ode:</u>					
	1 = A byte is	received while t	he SSPxBUF	register is still h	iolding the prev	vious byte (mus	t be cleared in
	0 = No overfl	ow					
	<u>In Transmit m</u>	ode:					
	This is a "don	't care" bit in Tra	ansmit mode.				
bit 5	SSPEN: Mast	er Synchronous	s Serial Port E	nable bit ⁽¹⁾			
	1 = Enables t	he serial port and c	nd configures	the SDAx and S	SCLx pins as th	ie serial port pi	ns
hit 4		Pelease Control	bit	se piris as i/O p	on pins		
DIL 4	In Slave mode	2.	DI				
	1 = Releases	clock					
	0 = Holds cloo	ck low (clock str	etch), used to	ensure data se	etup time		
	In Master mod	<u>de:</u>					
hit 3_0	SSDM<3.05	Master Synchro	nous Sorial E	Port Mode Selec	t hite(2)		
DIL 3-0	$33FW < 3.0^{2}$.	ave mode: 10-h	nit address wit	h Start and Stor	n hit interrunts	enabled	
	$1110 = I^2 C SI$	ave mode: 7-bi	t address with	Start and Stop	bit interrupts e	nabled	
	1011 = I ² C Fi	rmware Control	led Master m	ode (slave Idle)			
	$1000 = I^2 C M$	aster mode: Clo	ock = Fosc/(4 vit address(3,4	* (SSPxADD +)	1))		
	$0110 = I^2 C SI$	ave mode: 7-bi	taddress				
Nate 4				he confirmed	a innut-		
NOTE 1:	vvnen enabled, th	e SDAx and SC	LX PINS MUST	be configured a	as inputs. d or implement	od in SPI mod	only
۷.	DIL COMUNICATIONS I	ior specifically I	isted nere die		a or implement		5 Only.

REGISTER 26-7: SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C MASTER MODE)

© 2015-2017 Microchip Technology Inc.

26.9.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 7-bit Addressing mode. Figure 26-14 and Figure 26-15 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSPxIF bit.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDA low sending an ACK to the master, and sets SSPxIF bit.
- 10. Software clears SSPxIF.
- 11. Software reads the received byte from SSPxBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSPxSTAT, and the bus goes idle.

26.9.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the eighth falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 26-16 displays a module using both address and data holding. Figure 26-17 includes the operation with the SEN bit of the SSPxCON2 register set.

- 1. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPxIF is set and CKP cleared after the eighth falling edge of SCL.
- 3. Slave clears the SSPxIF.
- Slave can look at the ACKTIM bit of the SSPxCON3 register to <u>determine</u> if the SSPxIF was after or before the ACK.
- 5. Slave reads the address value from SSPxBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPxIF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSPxIF.

Note: SSPxIF is still set after the ninth falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSPxIF not set

- 11. SSPxIF set and CKP cleared after eighth falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPxCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPxBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.

	SYNC = 0, BRGH = 0, BRG16 = 0												
BALID	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	_	_	_	_	_	_	_	_	_	_	_	
1200	—	—	—	1221	1.73	255	1200	0.00	239	1200	0.00	143	
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71	
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17	
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2	
115.2k	—	_		—	_	_	—	_	_	—	_	_	

TABLE 27-5: SAMPLE BAUD RATES FOR ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	_	—	
9600	9615	0.16	12	—	_	—	9600	0.00	5	—	_	—	
10417	10417	0.00	11	10417	0.00	5	—	_	—	_	_	—	
19.2k	_	_	_	—	_	_	19.20k	0.00	2	—	_	_	
57.6k	—	—	—	—	—	—	57.60k	0.00	0	—	—	—	
115.2k	—	_	—	—	_	—	—	_	—	—	_	—	

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	_		—	—			—	—	_	—	—	
1200	—	—	—	—	—	—	—	—	—	—	—	—	
2400	—	_	_	—	_	_	_	_	_	—	_	_	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

27.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXxSTA register. The Break character transmission is then initiated by a write to the TXxREG. The value of data written to TXxREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXxSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 27-9 for the timing of the Break character sequence.

27.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXxREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXxREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXxREG becomes empty, as indicated by the TXxIF, the next data byte can be written to TXxREG.

27.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCxSTA register and the received data as indicated by RCxREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- · RCxIF bit is set
- FERR bit is set
- RCxREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 27.4.3 "Auto-Wake-up on Break"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCxIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDxCON register before placing the EUSART in Sleep mode.

FIGURE 27-9: SEND BREAK CHARACTER SEQUENCE

31.5.8 CONTINUOUS SAMPLING MODE

Setting the ADCONT bit in the ADCON0 register automatically retriggers a new conversion cycle after updating the ADACC register. That means the ADGO bit is set to generate automatic retriggering, until the device Reset occurs or the A/D Stop-on-interrupt bit (ADSOI in the ADCON3 register) is set (correct logic).

31.5.9 DOUBLE SAMPLE CONVERSION

Double sampling is enabled by setting the ADDSEN bit of the ADCON1 register. When this bit is set, two conversions are required before the module will calculate threshold error (each conversion must still be triggered separately). The first conversion will set the ADMATH bit of the ADSTAT register and update ADACC, but will not calculate ADERR or trigger ADTIF. When the second conversion completes, the first value is transferred to ADPREV (depending on the setting of ADPSIS) and the value of the second conversion is placed into ADRES. Only upon the completion of the second conversion is ADERR calculated and ADTIF triggered (depending on the value of ADCALC).

31.6 Register Definitions: ADC Control

R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	U-0	R/W/HC-0
ADON	ADCONT	—	ADCS	—	ADFM	-	ADGO
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cl	eared by hardw	/are	
bit 7	ADON: ADC	Enable bit					
	1 = ADC is er	nabled					
	0 = ADC is di	sabled					
bit 6	ADCONT: AD	DC Continuous	Operation Ena	able bit			
	1 = ADGO is	s retriggered up	on completion	n of each conve	ersion trigger un	ntil ADTIF is s	et (if ADSOI is
	0 = ADC is c	leared upon co	is cleared (reg	ach conversion	trigger	1)	
bit 5	Unimplemen	ited: Read as '	0'		ligger		
bit 4		Clock Selection	o hit				
bit 4	1 = Clock su	nnlied from FR	C dedicated o	scillator			
	0 = Clock su	pplied by Fosc	, divided acco	rding to ADCL	< register		
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	ADFM: ADC	results Format	alignment Sel	ection			
	1 = ADRES	and ADPREV of	data are right-j	ustified			
	0 = ADRES a	and ADPREV of	data are left-ju	stified, zero-fille	ed		
bit 1	Unimplemen	ted: Read as '	0'				
bit 0	ADGO: ADC	Conversion Sta	atus bit				
	1 = ADC con	version cycle	in progress. S	Setting this bit	starts an ADC	conversion cy	cle. The bit is
		version comple	ted/not in proc		DIL		
		tereneri compio					

REGISTER 31-1: ADCON0: ADC CONTROL REGISTER 0

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	—			ADACT<4:0>		
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable b	bit	U = Unimpleme	ented bit, read as	s 'O'	
u = Bit is unchang	ged	x = Bit is unkn	own	-n/n = Value at	POR and BOR/\	/alue at all other	Resets
'1' = Bit is set		'0' = Bit is clea	ired				
bit 7-5	Unimplemente	d: Read as '0'					
bit 4-0	ADACT<4:0>: ./ 11111 = Softwa 11110 = Reser 11101 = Softwa 11100 = Softwa 11001 = Reser • • • • • • • • • • • • •	Auto-Conversio are write to ADF ved, do not use are read of ADF are read of ADF ved, do not use ved, do not use ved, do not use upt-on-change I ut ut 4_out 3_out _trigger _trigger _trigger _trigger _overflow _overflow _overflow elected by ADA(al Trigger Disa	n Trigger Select PCH RESH RRH nterrupt Flag	Bits			

REGISTER 31-32: ADACT: ADC AUTO CONVERSION TRIGGER CONTROL REGISTER

PIC18(L)F26/45/46K40

LFS	R	Load FSI	ર			MO	/ F	Move f			
Synta	ax:	LFSR f, k				Synt	ax:	MOVF f{	d {,a}}		
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 409 \end{array}$	95			Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$			
Oper	ation:	$k\toFSRf$						a ∈ [0,1]	a ∈ [0,1]		
Statu	is Affected:	None				Oper	ation:	$f \rightarrow dest$			
Enco	oding:	1110 1111	1110 (0000 k	00ff ₇ kkk	k ₁₁ kkk kkkk	Statu Enco	is Affected: oding:	N,Z			
Description: The 12-bit literal 'k' is loaded into the File Select Register pointed to by 'f'.			into the o by 'f'.	Description: The contents of register 'f' are m a destination dependent upon th							
Word	ls:	2						status of 'd'	. If 'd' is '0', th / If 'd' is '1' th	e result is	
Cycle Q C	es: vcle Activitv:	2						placed back Location 'f'	k in register 'f' can be anywh	(default). here in the	
	Q1	Q2	Q3		Q4			256-byte ba	ank.		
	Decode	Read literal 'k' MSB	Process Data	li N	Write teral 'k' ⁄ISB to FSRfH			If 'a' is '1', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl	he BSR is use nd the extend ed. this instru	ed instruction	
Exar	Decode	Read literal 'k' LSB	Process Data	Wr 'k'	ite literal to FSRfL			in Indexed mode when tion 35.2.3 Oriented Ir eral Offset	Literal Offset / ever f ≤ 95 (5 "Byte-Orient istructions in Mode" for de	Addressing Fh). See Sec- ed and Bit- Indexed Lit- tails	
	After Instructio	on				Word	ls.	1		itano.	
	FSR2H FSR2L	= 03 = AE	sn 3h			Cycle	es:	1			
						Q C	vcle Activity:				
							Q1	Q2	Q3	Q4	
							Decode	Read register 'f'	Process Data	Write W	
						Exar	nple:	MOVF RI	EG, 0, 0		
							Before Instruc REG W	ction = 22 = FF	h h		
							After Instruction REG	on = 22 = 22	h		

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	IILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		0.65 BSC	
Optional Center Pad Width	X2			6.60
Optional Center Pad Length	Y2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Contact Pad to Contact Pad (X40)	G1	0.30		
Contact Pad to Center Pad (X44)	G2	0.28		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C

© 2015-2017 Microchip Technology Inc.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Leads	Ν		44		
Lead Pitch	е		0.80 BSC		
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Overall Width	E	12.00 BSC			
Molded Package Width	E1		10.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Length	D1		10.00 BSC		
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	θ	0°	3.5°	7°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2