

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45k40-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18(L)F26/45/46K40

REGISTER 6-	2: CPUDOZ	E: DOZE AN	D IDLE REG	ISTER				
R/W-0/u	R/W/HC/HS-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
IDLEN	DOZEN	ROI	DOE	—		DOZE<2:0>		
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable I	oit	U = Unimple	emented bit, re	ead as '0'		
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value Resets	at POR and	BOR/Value at a	ll other	
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is c	leared by ha	dware		
bit 7	IDLEN: Idle Ena 1 = A SLEEP ins 0 = A SLEEP ins	ble bit struction inhibits struction places	s the CPU cloc the device int	ck, but not the to full Sleep m	e peripheral cl node	ock(s)		
bit 6	DOZEN: Doze E 1 = The CPU ex 0 = The CPU ex	inable bit ^(1,2) accutes instruct accutes all instr	ion cycles acc	cording to DO	ZE setting est power ope	ration)		
bit 5	 ROI: Recover-On-Interrupt bit 1 = Entering the Interrupt Service Routine (ISR) makes DOZEN = 0 bit, bringing the CPU to full-speed operation 0 = Interrupt entry does not change DOZEN 							
bit 4	DOE: Doze-On-Exit bit 1 = Executing RETFIE makes DOZEN = 1, bringing the CPU to reduced speed operation 0 = RETFIE does not change DOZEN							
bit 3	Unimplemented	I: Read as '0'						
bit 2-0	DOZE<2:0>: Ra 111 =1:256 110 =1:128 101 =1:64 100 =1:32 011 =1:16 010 =1:8 001 =1:4 000 =1:2	tio of CPU Inst	ruction Cycles	to Peripheral	Instruction C	ycles		

- **Note 1:** When ROI = 1 or DOE = 1, DOZEN is changed by hardware interrupt entry and/or exit.
 - 2: Entering ICD overrides DOZEN, returning the CPU to full execution speed; this bit is not affected.

FC1h TMR5L Holding Register for the Least Significant Byte of the 16-bit TMR5 Register FC0h T2RST — — — RSEL<3:0> FBFh T2CLKCON — — — CS<3:0> FBEh T2HLT PSYNC CPOL CSYNC MODE<4:0> FBDh T2CON ON CKPS<2:0> OUTPS<3:0>	00000000 0000 00000000 00000000 1111111 00000000
FC0h T2RST - - - - RSEL<3:0> FBFh T2CLKCON - - - CS<3:0> FBEh T2HLT PSYNC CPOL CSYNC MODE<4:0> FBDh T2CON ON CKPS<2:0> OUTPS<3:0>	0000 0000 00000000 11111111 00000000
FBFh T2CLKCON — — — — CS<3:0> FBEh T2HLT PSYNC CPOL CSYNC MODE<4:0> FBDh T2CON ON CKPS<2:0> OUTPS<3:0>	0000 00000000 11111111 00000000 0000 0000
FBEh T2HLT PSYNC CPOL CSYNC MODE<4:0> FBDh T2CON ON CKPS<2:0> OUTPS<3:0>	00000000 00000000 11111111 00000000 0000 0000
FBDh T2CON ON CKPS<2:0> OUTPS<3:0>	00000000 11111111 00000000 0000 0000
	11111111 00000000 0000 0000
FBCh T2PR TMR2 Period Register	00000000
FBBh T2TMR Holding Register for the 8-bit TMR2 Register	0000
FBAh T4RST – – – – RSEL<3:0>	0000
FB9h T4CLKCON — — — — CS<3:0>	
FB8h T4HLT PSYNC CPOL CSYNC MODE<4:0>	00000000
FB7h T4CON ON CKPS<2:0> OUTPS<3:0>	00000000
FB6h T4PR TMR4 Period Register	11111111
FB5h T4TMR Holding Register for the 8-bit TMR4 Register	00000000
FB4h T6RST — — — — RSEL<3:0>	0000
FB3h T6CLKCON — — — — CS<3:0>	0000
FB2h T6HLT PSYNC CPOL CSYNC MODE<4:0>	00000000
FB1h T6CON ON CKPS<2:0> OUTPS<3:0>	00000000
FB0h T6PR TMR6 Period Register	11111111
FAFh T6TMR Holding Register for the 8-bit TMR6 Register	00000000
FAEh CCPTMRS P4TSEL<1:0> P3TSEL<1:0> C2TSEL<1:0> C1TSEL<1:0>	01010101
FADh CCP1CAP — — — — — CTS<1:0>	00
FACH CCP1CON EN - OUT FMT MODE<3:0>	0-000000
FABh CCPR1H Capture/Compare/PWM Register 1 (MSB)	xxxxxxxx
FAAh CCPR1L Capture/Compare/PWM Register 1 (LSB)	xxxxxxxx
FA9h CCP2CAP CTS<1:0>	00
FA8h CCP2CON EN - OUT FMT MODE<3:0>	0-000000
FA7h CCPR2H Capture/Compare/PWM Register 2 (MSB)	xxxxxxxx
FA6h CCPR2L Capture/Compare/PWM Register 2 (LSB)	xxxxxxxx
FA5h PWM3CON EN - OUT POL	0-00
FA4h PWM3DCH DC<7:0>	xxxxxxxx
FA3h PWM3DCL DC<9:8>	xx
FA2h PWM4CON EN - OUT POL	0-00
FA1h PWM4DCH DC7:0>	xxxxxxx
FA0h PWM4DCL DC<9:8>	xx
F9Fh BAUD1CON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN	01-00-00
F9Eh TX1STA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D	00000010
F9Dh RC1STA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D	00000000
F9Ch SP1BRGH EUSART1 Baud Rate Generator, High Byte	00000000

TABLE 10-5:REGISTER FILE SUMMARY FOR PIC18(L)F26/45/46K40 DEVICES (CONTINUED)

 $\label{eq:legend: second sec$

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F26K40 (28-pin variants).

3: Not available on PIC18(L)F45K40 devices.

11.3.3 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the NVMADRL and NVMADRH register pair, clear NVMREG<1:0> control bit in NVMCON1 register to access Data EEPROM locations and then set control bit, RD. The data is available on the very next instruction cycle; therefore, the NVMDAT register can be read by the next instruction. NVMDAT will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 11-5.

FIGURE 11-11: DATA EEPROM READ FLOWCHART

11.3.4 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the address must first be written to the NVMADRL and NVMADRH register pair and the data written to the NVMDAT register. The sequence in Example 11-6 must be followed to initiate the write cycle.

The write will not begin if NVM Unlock sequence, described in **Section 11.1.4 "NVM Unlock Sequence"**, is not exactly followed for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in NVMCON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, NVMCON1, NVMADRL, NVMADRH and NVMDAT cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. Both WR and WREN cannot be set with the same instruction.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. A single Data EEPROM word is written and the operation includes an implicit erase cycle for that word (it is not necessary to set FREE). CPU execution continues in parallel and at the completion of the write cycle, the WR bit is cleared in hardware and the NVM Interrupt Flag bit (NVMIF) is set. The user can either enable this interrupt or poll this bit. NVMIF must be cleared by software.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
WPUx7	WPUx6	WPUx5	WPUx4	WPUx3	WPUx2	WPUx1	WPUx0		
bit 7							bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
'1' = Bit is set '0' = Bit is cleared		ared	x = Bit is unknown						
-n/n = Value at POR and BOR/Value at all other Resets									

REGISTER 15-5: WPUx: WEAK PULL-UP REGISTER

bit 7-0

WPUx<7:0>: Weak Pull-up PORTx Control bits

1 = Weak Pull-up enabled

0 = Weak Pull-up disabled

	Device									
Name	28 Pins	40/44 Pins	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WPUA	Х	Х	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
WPUB	Х	Х	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
WPUC	Х	Х	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
WPUD	Х		—	—	—	—	—		—	—
		Х	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0
WPUE	Х		_	_	_	_	WPUE3 ⁽¹⁾	_	_	_
		Х	_	_	_	_	WPUE3 ⁽¹⁾	WPUE2	WPUE1	WPUE0

TABLE 15-6: WEAK PULL-UP PORT REGISTERS

Note 1: If MCLRE = 1, the weak pull-up in RE3 is always enabled; bit WPUE3 is not affected.

PIC18F26/45/46K40

19.1 Register Definitions: Timer1/3/5

Long bit name prefixes for the Timer1/3/5 are shown in Table 20-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 19-1:

Peripheral	Bit Name Prefix
Timer1	T1
Timer3	Т3
Timer5	T5

REGISTER 19-1: TxCON: TIMERx CONTROL REGISTER

U-0	U-0	R/W-0/u	R/W-0/u	U-0	R/W-0/u	R/W-0/0	R/W-0/u
—	—	CKPS<1:0>		—	SYNC	RD16	ON
bit 7							bit 0

Legend:								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged					

bit 7-6	Unimplemented: Read as '0'
---------	----------------------------

bit 5-4 CKPS<1:0>: Timerx Input Clock Prescale Select bits

- 11 = 1:8 Prescale value
- 10 = 1:4 Prescale value
- 01 = 1:2 Prescale value
- 00 = 1:1 Prescale value
- bit 3 Unimplemented: Read as '0'
- bit 2 SYNC: Timerx External Clock Input Synchronization Control bit TMRxCLK = Fosc/4 or Fosc:
 - This bit is ignored. Timer1 uses the incoming clock as is.

Else:

- 1 = Do not synchronize external clock input
- 0 = Synchronize external clock input with system clock
- bit 1 RD16: 16-Bit Read/Write Mode Enable bit
 - 1 = Enables register read/write of Timer in one 16-bit operation
 - 0 = Enables register read/write of Timer in two 8-bit operations
- bit 0 ON: Timerx On bit
 - 1 = Enables Timerx
 - 0 = Disables Timerx

PIC18(L)F26/45/46K40

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	_	INT2EDG	INT1EDG	INT0EDG	170
PIE4	_	_	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	183
PIE5	_	_	_	_	_	TMR5GIE	TMR3GIE	TMR1GIE	184
PIR4	_	_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	174
PIR5	_	_	_	_	_	TMR5GIF	TMR3GIF	TMR1GIF	175
IPR4	_	_	TMR6IP	TMR5IP	TMR4IP	TMR3IP	TMR2IP	TMR1IP	191
IPR5	_	_	_	—	_	TMR5GIP	TMR3GIP	TMR1GIP	192
PMD1		TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	69
T1CON		_	CKPS	S<1:0>		SYNC	RD16	ON	229
T1GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	_	—	230
T3CON		_	CKPS<1:0>			SYNC	RD16	ON	229
T3GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	_	—	230
T5CON	_	—	CKPS	S<1:0>	—	SYNC	RD16	ON	229
T5GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	—	—	230
TMR1H		Holding Regi	ster for the N	/lost Significa	ant Byte of the 16	3-bit TMR1 R	egister		233
TMR1L		L	east Signific	ant Byte of th	ne 16-bit TMR1 F	Register			233
TMR3H		Holding Regi	ster for the N	/lost Significa	ant Byte of the 16	3-bit TMR3 R	egister		233
TMR3L		L	east Signific	ant Byte of th	ne 16-bit TMR3 F	Register			233
TMR5H		Holding Regi	ster for the N	/lost Significa	ant Byte of the 16	6-bit TMR5 R	egister		233
TMR5L		L	east Signific	ant Byte of th	ne 16-bit TMR5 F	Register			233
T1CKIPPS	_	—	_		T1C	KIPPS<4:0>			216
T1GPPS	_	—	_		T1	GPPS<4:0>			216
T3CKIPPS	—	_	—		ТЗС	KIPPS<4:0>			216
T3GPPS	_	_	—		Т3	GPPS<4:0>			216
T5CKIPPS	_	_	—		Т5С	KIPPS<4:0>			216
T5GPPS	_	_	_		T5	GPPS<4:0>			216

TABLE 19-4: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/5 AS A TIMER/COUNTER

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by TIMER1/3/5.

20.4 Timer2 Interrupt

Timer2 can also generate a device interrupt. The interrupt is generated when the postscaler counter matches one of 16 postscale options (from 1:1 through 1:16), which are selected with the postscaler control bits, OUTPS<3:0> of the T2CON register. The interrupt is enabled by setting the TMR2IE interrupt enable bit of the PIE4 register. Interrupt timing is illustrated in Figure 20-3.

FIGURE 20-3: TIMER2 PRESCALER, POSTSCALER, AND INTERRUPT TIMING DIAGRAM

	Rex 10.000056. 47/2019							
CKPS	0b010							
PRx	1							
OUTPS	0b0001							
TMRx_clk								
TMRx								
TMRx_postscaled								
TMRxIF	(1) (2)							
Note 1: 2:	Setting the interrupt flag is synchronized with the instruction clock. Synchronization may take as many as 2 instruction cycles Cleared by software.							

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 21-3:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

TABLE 21-4:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

21.5.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

21.5.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

21.5.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

25.1 Register Definitions: Modulation Control

Long bit name prefixes for the Modulation peripheral is shown in Table 25-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 25-1:

Peripheral	Bit Name Prefix
MD	MD

REGISTER 25-1: MDCON0: MODULATION CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
EN	—	OUT	OPOL	—	—	—	BIT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: Modulator Module Enable bit
	 1 = Modulator module is enabled and mixing input signals 0 = Modulator module is disabled and has no output
bit 6	Unimplemented: Read as '0'
bit 5	OUT: Modulator Output bit
	Displays the current output value of the Modulator module. ⁽¹⁾
bit 4	OPOL: Modulator Output Polarity Select bit
	 1 = Modulator output signal is inverted; idle high output 0 = Modulator output signal is not inverted; idle low output
bit 3-1	Unimplemented: Read as '0'
bit 0	BIT: Allows software to manually set modulation source input to module ⁽²⁾
Note 1:	The modulated output frequency can be greater and asynchronous from the clock that updates this register bit, the bit value may not be valid for higher speed modulator or carrier signals.
2:	MDBIT must be selected as the modulation source in the MDSRC register for this operation.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
MDCON0	EN	—	OUT	OPOL	—	—	—	BIT	325
MDCON1	_	—	CHPOL	CHSYNC	—	—	CLPOL	CLSYNC	326
MDCARH	_	—	—	—	—	CHS<2:0>			327
MDCARL	—	—	—	—	—	– CLS<2:0>			327
MDSRC	_	—	—	— SRCS<3:0>					328
MDCARLPPS	_	—	—		C	ARLPPS<4:)>		216
MDCARHPPS	—	—	—		CARHPPS<4:0>				
MDSRCPPS	_	—	—	SRCPPS<4:0>					216
RxyPPS	—	—	—	RxyPPS<4:0>					218
PMD5	—	—	—	—	—	—	—	DSMMD	73

TABLE 25-4: SUMMARY OF REGISTERS ASSOCIATED WITH DATA SIGNAL MODULATOR MODE

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

C	onfiguration B	its		Poud Poto Formula	
SYNC	BRG16	BRGH	BRG/EUSART Mode	Bauu Kale Formula	
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]	
0	0	1	8-bit/Asynchronous		
0	1	0	16-bit/Asynchronous	FOSC/[16 (n+1)]	
0	1	1	16-bit/Asynchronous		
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]	
1	1	x	16-bit/Synchronous		

TABLE 27-3:BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPxBRGH:SPxBRGL register pair.

TABLE 27-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDxCON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	395
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	394
SPxBRGH	EUSARTx Baud Rate Generator, High Byte								
SPxBRGL	EUSARTx Baud Rate Generator, Low Byte								404*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	393

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

FIGURE 27-10: SYNCHRONOUS TRANSMISSION

R-0/0	R-0/0	R-0/0	R/HS/HC-0/0	U-0	R-0/0	R-0/0	R-0/0	
ADAOV	ADUTHR	ADLTHR	ADMATH	-	ADSTAT<2:0>			
bit 7		·					bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'		
u = Bit is und	changed	x = Bit is unk	nown	-n/n = Value	at POR and BC	R/Value at all o	other Resets	
'1' = Bit is se	t	'0' = Bit is cle	ared	HS/HC = Bit	is set/cleared b	y hardware		
bit 7	ADAOV : ADO 1 = ADC accu 0 = ADC accu	C Accumulator umulator or AD umulator and A	Overflow bit ERR calculation	n have overflo on have not o	owed			
bit 6	bit 6 ADUTHR: ADC Module Greater-than Upper Threshold Flag bit 1 = ADERR > ADUTH 0 = ADERR <aduth< td=""></aduth<>							
bit 5	ADLTHR : AD 1 = ADERR< 0 = ADERR≥	C Module Les ADLTH ADLTH	s-than Lower Th	nreshold Flag	bit			
bit 4	 ADMATH: ADC Module Computation Status bit 1 = Registers ADACC, ADFLTR, ADUTH, ADLTH and the ADAOV bit are updating or have already updated associated registers/bits have not changed since this bit was last cleared 							
bit 3	Unimplemen	ted: Read as	0'					
bit 2-0 ADSTAT<2:0>: ADC Module Cycle Multistage Status bits ⁽¹⁾ 111 = ADC module is in 2 nd conversion stage 110 = ADC module is in 2 nd acquisition stage 101 = ADC module is in 2 nd precharge stage 100 = Not used 011 = ADC module is in 1 st conversion stage 010 = ADC module is in 1 st acquisition stage 001 = ADC module is in 1 st precharge stage 001 = ADC module is not converting								
Note 1: If	ADCS = 1, and	Fosc <frc, td="" the<=""><td>ese bits may be</td><td>invalid.</td><td></td><td></td><td></td></frc,>	ese bits may be	invalid.				

REGISTER 31-5: ADSTAT: ADC STATUS REGISTER

32.2 Register Definitions: Comparator Control

Long bit name prefixes for the Comparators are shown in Table 32-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 32-1:

Peripheral	Bit Name Prefix
C1	C1
C2	C2

REGISTER 32-1: CMxCON0: COMPARATOR x CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-1	R/W-0/0	R/W-0/0
EN	OUT	—	POL	—	—	HYS	SYNC
bit 7							bit 0

Legend:				
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	EN: Comparator Enable bit
	1 = Comparator is enabled
bit 6	OUI: Comparator Output bit
	If $POL = 0$ (non-inverted polarity):
	1 = CxVP > CxVN
	0 = CxVP < CxVN
	If $POL = 1$ (inverted polarity):
	1 = C X V P < C X V N
	0 = CXVP > CXVN
bit 5	Unimplemented: Read as '0'
bit 4	POL: Comparator Output Polarity Select bit
	1 = Comparator output is inverted
	0 = Comparator output is not inverted
bit 3	Unimplemented: Read as '0'
bit 2	Unimplemented: Read as '1'
bit 1	HYS: Comparator Hysteresis Enable bit
	1 = Comparator hysteresis enabled
	0 = Comparator hysteresis disabled
bit 0	SYNC: Comparator Output Synchronous Mode bit
	1 = Comparator output to Timer1/3/5 and I/O pin is synchronous to changes on Timer1 clock source.
	0 = Comparator output to Timer1/3/5 and I/O pin is asynchronous
	Output updated on the falling edge of Timer1/3/5 clock source.

33.10 Register Definitions: HLVD Control

Long bit name prefixes for the HLVD peripheral is shown in Table 33-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 33-1:

Peripheral	Bit Name Prefix
HLVD	HLVD

REGISTER 33-1: HLVDCON1: LOW-VOLTAGE DETECT CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
_	_	_			SEL<	<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = Bit is unchanged

bit 7-4 Unimplemented: Read as '0'

bit 3-0 SEL<3:0>: High/Low Voltage Detection Limit Selection bits

SEL<3:0>	Typical Voltage
1111	Reserved
1110	4.63V
1101	4.32V
1100	4.12V
1011	3.91V
1010	3.71V
1001	3.60V
1000	3.4V
0111	3.09V
0110	2.88V
0101	2.78V
0100	2.57V
0011	2.47V
0010	2.26V
0001	2.06V
0000	1.85V

PIC18(L)F26/45/46K40

CPF	SGT	Compare	Compare f with W, skip if f > W					
Synta	ax:	CPFSGT	f {,a}					
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0.1]					
Oper	ation:	(f) – (W), skip if (f) > (unsigned c	(W) comparison)					
Statu	s Affected:	None						
Enco	ding:	0110	010a fff	ff ffff				
Description: Compares the contents of data me location 'f' to the contents of the W performing an unsigned subtraction If the contents of 'f' are greater tha contents of WREG, then the fetcher instruction is discarded and a NOP executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is sele If 'a' is '1', the BSR is used to select GPR bank. If 'a' is '0' and the extended instruction open in Indexed Literal Offset Addressin mode whenever f ≤ 95 (5Fh). See tion 35.2.3 "Byte-Oriented and B Oriented Instructions in Indexed								
Word	ls:	1						
Cycle	es:	1(2) Note: 3 cy	cles if skip and	d followed				
00	vcle Activity	by a						
~ 0	Q1	Q2	Q3	Q4				
	Decode	Read	Process	No				
		register 'f'	Data	operation				
lf sk	ip:							
	Q1	Q2	Q3	Q4				
	NO	INO	NO	INO operation				
lf sk	ip and followe	d by 2-word in	struction:	operation				
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
	No	No	No	No				
	operation	operation	operation	operation				
<u>Example</u> :		HERE NGREATER GREATER	HERE CPFSGT REG, 0 NGREATER : GREATER :					
Before Instruction		tion						
PC		= Ad	dress (HERE)				
W		= ?						
	After Instructio	on						
	If REG	> W;						
	PC	= Ad	dress (GREAT	FER)				
	PC	≤ W; = Ad	dress (NGREA	ATER)				

SLT	Compare	Compare f with W, skip if f < W					
ax:	CPFSLT f	{,a}					
ands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$					
ation:	(f) – (W), skip if (f) < ((unsigned c	(W) comparison)					
s Affected:	None						
ding:	0110	000a ff	ff ffff				
ription:	Compares t location 'f t performing If the conten contents of instruction i executed in 2-cycle instr If 'a' is '0', tl If 'a' is '1', tl GPR bank.	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the					
ls:	1						
es:	1(2) Note: 3 c by	1(2) Note: 3 cycles if skip and followed by a 2-word instruction					
ycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	No operation				
ip:							
Q1	Q2	Q3	Q4				
No	No	No	No				
ip and followed	d by 2-word in:	struction.	operation				
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
No operation	No	No	No				
Before Instruc PC W After Instructic If REG PC If REG PC	HERE (C NLESS : LESS : tion = Ad = ? on < W; = Ad ≥ W; = Ad	CPFSLT REG	, 1 5)				
	SLT ax: ands: ation: s Affected: ding: ription: s: s: ycle Activity: Q1 Decode ip: Q1 No operation ip and followed Q1 No operation ip and followed Q1 No operation No operation ip and followed Q1 No operation ip and followed Q1 No operation	SLTCompareax:CPFSLTfands: $0 \le f \le 255$ $a \in [0,1]$ ation:ation: $(f) - (W)$, skip if $(f) < (f)$ (unsigned compared to the second of the contents of the content of t	SLTCompare f with W, siax:CPFSLT f {.a}ands: $0 \le f \le 255$ a $\in [0,1]$ ation:(f) - (W), skip if (f) < (W) (unsigned comparison)s Affected:Noneding: 0110 $000a$ ffffription:Compares the contents of location 'f' to the content performing an unsigned If the contents of 'f' are location if' to the content performing an unsigned If the contents of W, then the instruction is discarded a executed instead, makin 2-cycle instruction. If 'a' is '1', the BSR is use GPR bank.ls:1es:1(2) Note:Q1Q2Q3Q3DecodeRead register 'f'Q1Q2Q3No No operationNoNo operationip:Q1Q1Q2Q3No No operationNoNo No operationNoNo No operationnple:HERE LESSEffore Instruction W=PC PC=Address (LESS If REG PCW; PC ENo No No No PCKiess ENo No No PCKiess EIf REG PC PCW; PC ENather Instruction If REG PC PC PCNather Instruction PC PC PC PCNather Instruction PC PC PC PCNather Instruction PC PC PC PCNather Instruction PC PC PC PCNather Instruction 				

PIC18(L)F26/45/46K40

RCA	LL	Relative C	Call				
Synta	ax:	RCALL n					
Oper	ands:	-1024 ≤ n ≤	1023				
Oper	ation:	$(PC) + 2 \rightarrow (PC) + 2 + 2$	TOS, $2n \rightarrow PC$				
Statu	s Affected:	None					
Enco	ding:	1101	1nnn	nnnn	nnnn		
Desc	ription: Is:	Subroutine from the cur address (PC stack. Then number '2n' have incren instruction, PC + 2 + 2r 2-cycle instruc-	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.				
Cuolo	15.	י ר					
Q Cycle Activity:		2					
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n' PUSH PC to stack	Proce Data	ss Wr a	rite to PC		
	No	No	No		No		
	operation	operation	operat	ion o	peration		

Example: HERE RCALL Jump

Before Instruction

PC = Address (HERE) After Instruction

PC = TOS = Address (Jump) Address (HERE + 2)

RES	ET	Reset	Reset					
Synta	ax:	RESET						
Oper	ands:	None						
Oper	ation:	Reset all re affected by	Reset all registers and flags that are affected by a MCLR Reset.					
Statu	s Affected:	All						
Enco	ding:	0000	0000	1111	1111			
Desc	ription:	This instru execute a	This instruction provides a way to execute a MCLR Reset by software.					
Word	ls:	1	1					
Cycle	es:	1						
Q Cycle Activity:								
	Q1	Q2	Q3	3	Q4			
	Decode	Start	No)	No			
		Reset	opera	tion c	operation			

Example:

After Instruction	
Desistant	

Reset Value Reset Value Registers = Flags* =

RESET

© 2015-2017 Microchip Technology Inc.

Param No.Sym.CharacteristicMin.Typ†Max.UnitsConditions Nic Input Low VoltageD300IID301WithD302with TTL bufferD303—D304—With Clevels—With I ² C levelsD305MCLRMCLR—D320With SMBus levelsD321MCLRVHInput High VoltageD322With TTL bufferD323—VHInput High VoltageD324With TTL bufferD325—VBInput High VoltageD326With TTL bufferD327With TTL bufferD328—VIInput High VoltageD329With Schmitt Trigger bufferD321With Schmitt Trigger bufferD322With Schmitt Trigger bufferUS25MCLRVICInput Leakage Current ⁽¹⁾ D340Input Leakage Current ⁽¹⁾ D340Input Leakage Current ⁽¹⁾ D341MCLR ⁽²⁾ D342MCLR ⁽²⁾ D343Input Leakage Current ⁽¹⁾ D344MCLR ⁽²⁾ D345Input Leakage Current ⁽¹⁾ D346MCLR ⁽²⁾ VCLMCLR ⁽²⁾ D347MCLR ⁽²⁾ D348Input Leakage CurrentD349Input Leakage Current ⁽¹⁾ D340MCLR ⁽²⁾ VD—D341Input Leakage Current ⁽¹⁾ D3	Standard	Standard Operating Conditions (unless otherwise stated)						
Vil. Input Low Voltage D300 I/O PORT: with TTL buffer — D301 — D302 with TTL buffer D303 — D304 — D305 with Schmitt Trigger buffer with VE Levels — D306 — MCLR — D321 Input High Voltage I/O PORT: — MCLR — D321 Input High Voltage I/O PORT: with Schmitt Trigger buffer VIH Input High Voltage I/O PORT: 0.2 Vob D322 with Schmitt Trigger buffer With Schmitt Trigger buffer 0.8 Vob 0.8 Vob — D324 with Schmitt Trigger buffer With Schmitt Trigger buffer 0.8 Vob 0.7 Vob — D324 With SMBus levels MCLR 0.7 Vob D324 Input Leakage Current ⁽¹⁾ D340 Input Leakage Current ⁽¹⁾	Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
D300 I/O PORT: with TTL buffer $ 0.8$ V $4.5V \le VDD \le 5.5V$ D301 with Schmitt Trigger buffer $ 0.15$ VDD V $1.8V \le VDD \le 4.5V$ D303 with Schmitt Trigger buffer $ 0.2$ VDD V $2.0V \le VDD \le 5.5V$ D304 with SMBus levels $ 0.3$ VDD V D305 MCLR $ 0.2$ VDD V D305 MCLR $ 0.2$ VDD V D306 MRLR $ 0.2$ VDD V D305 With TTL buffer 2.0 $ -$ V D320 with TTL buffer 2.0 $ -$ V $1.8V \le VDD \le 5.5V$ D321 with Schmitt Trigger buffer 0.25 VDD $+$ $ -$ V $1.8V \le VDD \le 5.5V$ D323 with SMBus levels 2.1 $ -$ V $2.7V \le VDD \le 5.5V$ D324		VIL	Input Low Voltage					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			I/O PORT:					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D300		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D301			_		0.15 VDD	V	$1.8V \le V \text{DD} \le 4.5V$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D302		with Schmitt Trigger buffer	_		0.2 Vdd	V	$2.0V \le V\text{DD} \le 5.5V$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D303		with I ² C levels	_		0.3 Vdd	V	
D305 MCLR 0.2 VDD V D305 Input High Voltage I/O PORT: I/O PORT: VIII I/O PORT: VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIIII VIIII VIIII VIIII VIIII VIIIII VIIIII VIIIII VIIIIIII VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	D304		with SMBus levels	_	_	0.8	V	$2.7V \le VDD \le 5.5V$
ViH Input High Voltage D320 //O PORT: with TTL buffer 2.0 D321 with TTL buffer D322 with Schmitt Trigger buffer D323 with Schmitt Trigger buffer D324 with Schmitt Trigger buffer D324 with SMBus levels D325 $0.8 VDD$ MCLR $0.7 VDD$ D340 MCLR Input Leakage Current ⁽¹⁾ I/O Ports $ \pm 5$ ± 1000 nA VSS $\leq VPIN \leq VDD$, Pin at high-impedance, $85^{\circ}C$ D341 MCLR ⁽²⁾ D342 MCLR ⁽²⁾ MCLR ⁽²⁾ $ \pm 5$ ± 1000 NA VSS $\leq VPIN \leq VDD$, Pin at high-impedance, $85^{\circ}C$ D341 MCLR ⁽²⁾ D342 MCLR ⁽²⁾ MCLR ⁽²⁾ $ \pm 50$ ± 200 NA VSS $\leq VPIN \leq VDD$, Pin at high-impedance, $85^{\circ}C$ D350 VOL VOL <t< td=""><td>D305</td><td></td><td>MCLR</td><td>_</td><td>_</td><td>0.2 VDD</td><td>V</td><td></td></t<>	D305		MCLR	_	_	0.2 VDD	V	
D320 I/O PORT: with TTL buffer 2.0 V $4.5V \le VDD \le 5.5V$ D321 with Schmitt Trigger buffer $0.25 VDD +$ V $1.8V \le VDD \le 4.5V$ D322 with Schmitt Trigger buffer $0.8 VDD$ V $1.8V \le VDD \le 5.5V$ D323 with Schmitt Trigger buffer $0.8 VDD$ V $2.0V \le VDD \le 5.5V$ D324 with SMBus levels 2.1 V $2.7V \le VDD \le 5.5V$ D325 MCLR $0.7 VDD$ V $2.7V \le VDD \le 5.5V$ D325 MCLR $0.7 VDD$ V $2.7V \le VDD \le 5.5V$ D325 MCLR $0.7 VDD$ V $2.7V \le VDD \le 5.5V$ D340 II/U MCLR $0.7 VDD$ V $2.7V \le VDD$, Pin at high-impedance, $85^{\circ}C$ D341 I/O Ports ± 50 ± 200 nA VSS $\le VPIN \le VDD$, Pin at		VIH	Input High Voltage					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			I/O PORT:					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D320		with TTL buffer	2.0	_	_	V	$4.5V \leq V\text{DD} \leq 5.5V$
D322 D323 D324with Schmitt Trigger buffer with $ ^2C$ levels with SMBus levels 0.8 VDD $ V$ $2.0V \le \text{VDD} \le 5.5V$ D324 D325with SMBus levels MCLR 2.1 $ V$ $2.7V \le \text{VDD} \le 5.5V$ D325MCLR 0.7 VDD $ V$ $2.7V \le \text{VDD} \le 5.5V$ D326MCLR 0.7 VDD $ V$ D340IIL I/O PortsInput Leakage Current ⁽¹⁾ 0.7 VDD $ V$ D341I/O Ports $ \pm 5$ ± 125 nA $VSs \le \text{VPIN} \le \text{VDD}$, Pin at high-impedance, 85° CD342MCLR ⁽²⁾ $ \pm 5$ ± 1000 nA $VSs \le \text{VPIN} \le \text{VDD}$, Pin at high-impedance, 85° CD342Weak Pull-up Current $ \pm 50$ ± 200 nA $VSs \le \text{VPIN} \le \text{VDD}$, Pin at high-impedance, 85° CD350VoLOutput Low Voltage $ 0.6$ V IoL = 10.0mA, VDD = 3.0VD360VOHOutput High Voltage $ V$ IoH = 6.0 mA, VDD = 3.0VD380CioAll I/O pins $ V$ IoH = 6.0 mA, VDD = 3.0V	D321			0.25 VDD + 0.8		—	V	$1.8V \leq V\text{DD} \leq 4.5V$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D322		with Schmitt Trigger buffer	0.8 VDD	_	—	V	$2.0V \le VDD \le 5.5V$
D324 D325with SMBus levels MCLR 2.1 $ V$ $2.7V \le VDD \le 5.5V$ D340IIL I/O PortsInput Leakage Current ⁽¹⁾ $0.7 VDD$ $ V$ D341I/O Ports $ \pm 5$ ± 125 nAVSS $\le VPIN \le VDD$, 	D323		with I ² C levels	0.7 Vdd	_	—	V	
D325MCLR 0.7 VDD $ V$ D340IILInput Leakage Current ⁽¹⁾ D340I/O Ports $ \pm 5$ ± 125 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 85°CD341 $ \pm 5$ ± 1000 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 125°CD342MCLR ⁽²⁾ $ \pm 50$ ± 200 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 125°CD342IPURWeak Pull-up Current $ \pm 50$ ± 200 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 85°CD350Vol.Output Low Voltage 25 120 200 μ AVDD = $3.0V$, VPIN $=$ VSSD360Vol.Output Low Voltage $ 0.6$ VIoL = 10.0 mA, VDD $= 3.0V$ D370VOHOutput High Voltage $ V$ D380CIOAll I/O pins $ 5$ 50 pF	D324		with SMBus levels	2.1		_	V	$2.7V \le V\text{DD} \le 5.5V$
IILInput Leakage Current(1)D340I/O Ports $ \pm 5$ ± 125 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 85°CD341 $ \pm 5$ ± 1000 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 125°CD342MCLR ⁽²⁾ $ \pm 50$ ± 200 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 125°CD342MCLR ⁽²⁾ $ \pm 50$ ± 200 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 85°CD350Vol Weak Pull-up Current $ \pm 50$ ± 200 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 85°CD360Vol Output Low Voltage $ 0.6$ VIoL = 10.0mA, VDD = 3.0VD360Vol Output High Voltage $ 0.6$ VIoL = 10.0mA, VDD = 3.0VD370VoH Output High Voltage $ -$ D380CioAll I/O pins $ 5$ 50 pF	D325		MCLR	0.7 Vdd		_	V	
D340I/O Ports $ \pm 5$ ± 125 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 85°CD341 $ \pm 5$ ± 1000 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 125°CD342 $MCLR^{(2)}$ $ \pm 50$ ± 200 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 125°CD342IPURWeak Pull-up Current $ \pm 50$ ± 200 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 85°CD350VOLOutput Low VoltageI/O ports $ 0.6$ VIoL = 10.0mA, VDD = 3.0VD360VOHOutput High VoltageI/O ports $ V$ IoH = 6.0 mA, VDD = 3.0VD370VOHAll I/O pins $ V$ IOH = 6.0 mA, VDD = 3.0V		lı∟	Input Leakage Current ⁽¹⁾	•			•	
D341 D342 $ \pm 5$ ± 1000 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 125°CD342MCLR(2) $ \pm 50$ ± 200 nAVSS \leq VPIN \leq VDD, Pin at high-impedance, 85°CD350IPUR D350Weak Pull-up Current 25 120200 μ AVDD = 3.0V, VPIN = VSSD360VOL I/O portsOutput Low Voltage $ 0.6$ VIoL = 10.0mA, VDD = 3.0VD370VOH I/O portsOutput High Voltage $ 0.6$ VIoL = 10.0mA, VDD = 3.0VD380CioAll I/O pins $ V$ IOH = 6.0 mA, VDD = 3.0V	D340		I/O Ports	—	± 5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C
D342 $\overline{MCLR}^{(2)}$ $ \pm 50$ ± 200 nA $VSS \leq VPIN \leq VDD,$ Pin at high-impedance, 85°CD350IPURWeak Pull-up Current25120200 μA $VDD = 3.0V, VPIN = VSS$ D360VOLOutput Low Voltage//O ports $ 0.6$ VIoL = 10.0mA, VDD = 3.0VD360VOHOutput High Voltage//O ports $ 0.6$ VIoL = 10.0mA, VDD = 3.0VD370VOHOutput High Voltage//O ports $VD - 0.7$ $ -$ VIOH = 6.0 mA, VDD = 3.0VD380CioAll I/O pins $ 5$ 50 pF F	D341			—	± 5	± 1000	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 125°C
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	D342		MCLR ⁽²⁾	—	± 50	± 200	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 85°C
D350 25 120 200 μA VDD = 3.0V, VPIN = VSS D360 Vol. Output Low Voltage I/O ports - - 0.6 V IoL = 10.0mA, Vdd = 3.0V D370 Vol. Output High Voltage - - 0.6 V IoL = 10.0mA, Vdd = 3.0V D370 Vol. Output High Voltage - - - V IoH = 6.0 mA, Vdd = 3.0V D380 Cio All I/O pins - 5 50 pF		IPUR	Weak Pull-up Current	•			•	
Vol. Output Low Voltage D360 I/O ports — — 0.6 V IoL = 10.0mA, Vdd = 3.0V Vol. Output High Voltage	D350			25	120	200	μA	VDD = 3.0V, VPIN = VSS
D360 I/O ports - - 0.6 V IoL = 10.0mA, VbD = 3.0V VOH Output High Voltage - - - - VOH IoL = 6.0 mA, VbD = 3.0V D370 I/O ports Vbb - 0.7 - - V IoH = 6.0 mA, Vbb = 3.0V D380 Cio All I/O pins - 5 50 pF		Vol	Output Low Voltage	•			•	
VOH Output High Voltage D370 I/O ports VDD - 0.7 — V IOH = 6.0 mA, VDD = 3.0V D380 Cio All I/O pins — 5 50 pF	D360		I/O ports	—	—	0.6	V	IOL = 10.0mA, VDD = 3.0V
D370 I/O ports VDD - 0.7 V IOH = 6.0 mA, VDD = 3.0V D380 Cio All I/O pins 5 50 pF		Voн	Output High Voltage					
D380 Cio All I/O pins — 5 50 pF	D370		I/O ports	Vdd - 0.7	—	—	V	Юн = 6.0 mA, VDD = 3.0V
	D380	Сю	All I/O pins	—	5	50	pF	

TABLE 37-4: I/O PORTS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined <u>as current</u> sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

TABLE 37-25:	I ² C BUS DATA	REQUIREMENTS
--------------	---------------------------	--------------

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	—		
SP101*	TLOW	Clock low time	100 kHz mode	4.7	-	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5TCY	—		
SP102*	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall time	100 kHz mode	—	250	ns	
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
SP109*	ΤΑΑ	Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
SP111	Св	Bus capacitive loading		—	400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TSU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.