

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf45k40t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

4.1 Overview

The oscillator module has multiple clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 4-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz-crystal resonators and ceramic resonators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources.

The RSTOSC bits of Configuration Word 1 (Register 3-1) determine the type of oscillator that will be used when the device runs after Reset, including when it is first powered up.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used in conjunction with the RSTOSC bits to select the External Clock mode.

The external oscillator module can be configured in one of the following clock modes, by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode (below 100 kHz)
- 2. ECM External Clock Medium Power mode (100 kHz to 8 MHz)
- 3. ECH External Clock High-Power mode (above 8 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (between 100 kHz and 8 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (above 4 MHz)

The ECH, ECM, and ECL Clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS Clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 4-1). Multiple device clock frequencies may be derived from these clock sources.

U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0			
—	DACMD	ADCMD	—	—	CMP2MD	CMP1MD	ZCDMD ⁽¹⁾			
bit 7							bit 0			
Legend:										
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
u = Bit is unchanged x = Bit is unknown -n/u				-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condit	ion				
bit 7	7 Unimplemented: Read as '0'									
bit 6	DACMD: Disable DAC bit									
	1 = DAC module disabled									
	0 = DAC mod	dule enabled								
bit 5	ADCMD: Disa	able ADC bit								
	1 = ADC mod	dule disabled								
	0 = ADC mod	dule enabled	_							
bit 4-3	Unimplemen	ted: Read as '0)'							
bit 2	CMP2MD: Dis	sable Compara	tor CMP2 bit							
	1 = CMP2 m	odule disabled								
	0 = CMP2 m	odule enabled								
bit 1	CMP1MD: Dis	sable Compara	tor CMP1 bit							
	1 = CMP1 m	odule disabled								
hit 0				a hit(1)						
DILU			B Delect modul	e bit '						
	$\perp = 2CD \mod 0$									

REGISTER 7-3: PMD2: PMD CONTROL REGISTER 2

Note 1: Subject to ZCD bit in CONFIG2H.

9.1 Register Definitions: Windowed Watchdog Timer Control

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0			
—	-			WDTPS<4:0>			SEN			
bit 7							bit 0			
Legend:										
R = Reada	able bit	W = Writable t	oit	U = Unimplem	ented bit, read	as '0'				
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR a						R/Value at all ot	ner Resets			
'1' = Bit is	set	'0' = Bit is clea	ared	q = Value dep	ends on condit	on				
h:+ 7 0			.,							
DIT 7-6	Unimpleme	nted: Read as 0		(1)						
bit 5-1	WDTPS<4:0	>: Watchdog Tir	mer Prescale S	elect bits("						
	Bit Value =	Prescale Rate								
	11111 = Re	eserved. Results	s in minimum in	terval (1:32)						
	•									
	•									
	10011 = Re	eserved. Results	s in minimum in	terval (1:32)						
	10010 - 1 .	8388608 (2 ²³) (I	ntonyal 256s nr	minal)						
	10010 = 1	:4194304 (2 ²²) (Interval 128s nominal)								
	10000 = 1:	2097152 (2 ²¹) (I)97152 (2 ²¹) (Interval 64s nominal)							
	01111 = 1 :	1048576 (2 ²⁰) (I	nterval 32s nor	ninal)						
	01110 = 1 :	524288 (2 ¹⁹) (In	terval 16s nom	inal)						
	01101 = 1:	262144 (2 ¹⁰) (In	terval 8s nomir	al)						
	01100 = 1:	131072 (211) (In 65526 (Interval (terval 4s nomin	ial)						
	01011 = 1.0	32768 (Interval 2	25 nominal) (Re 1e nominal)	set value)						
	01010 = 1.	16384 (Interval !	512 ms nomina	D						
	01000 = 1	8192 (Interval 2	56 ms nominal)	•)						
	00111 = 1 :	4096 (Interval 12	28 ms nominal)							
	00110 = 1:	2048 (Interval 64	4 ms nominal)							
	00101 = 1:	1024 (Interval 32	2 ms nominal)							
	00100 = 1:	512 (Interval 16	ms nominal)							
	00011 = 1	256 (Interval 8 m	ns nominal)							
	00010 = 1	120 (11101 val 4 11 64 (Interval 2 mg	ns nominal)							
	00000 = 1	32 (Interval 1 ms	s nominal)							
bit 0	SEN: Softwa	are Enable/Disat) ble for Watchdo	g Timer bit						
	If WDTE<1:0)> = 1x:								
	This bit is igr	nored.								
	<u>If WDTE<1:0</u>)> = 01:								
	1 = WDT is	turned on								
	0 = WDI is									
	<u>IT WDTE<1:(</u> This bit is iar	<u>12 = 00</u> : Nored								
				 .						
Note 1:	limes are appro	ximate. WDT tin	ne is based on	31 kHz LFINTO	JSC.					

REGISTER 9-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

- 2: When WDTCPS <4:0> in CONFIG3L = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3L.
- 3: When WDTCPS <4:0> in CONFIG3L \neq 11111, these bits are read-only.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR	
F74h	CRCDATL				DATA	A<7:0>				xxxxxxxx	
F73h	ADFLTRH				ADFLTF	RH<15:8>				xxxxxxxx	
F72h	ADFLTRL				ADFLT	RL<7:0>				xxxxxxxx	
F71h	ADACCH				ADACC	H<15:8>				xxxxxxxx	
F70h	ADACCL				ADAC	CL<7:0>				xxxxxxxx	
F6Fh	ADERRH				ADERR	H<15:8>				00000000	
F6Eh	ADERRL				ADER	RL<7:0>				00000000	
F6Dh	ADUTHH				ADUTH	H<15:8>				00000000	
F6Ch	ADUTHL				ADUTI	HL<7:0>				00000000	
F6Bh	ADLTHH		ADLTHH<15:8>								
F6Ah	ADLTHL		ADLTHL<7:0>								
F69h	ADSTPTH		ADSTPTH<15:8>								
F68h	ADSTPTL				ADSTF	PTL<7:0>				00000000	
F67h	ADCNT				ADCN	IT<7:0>				00000000	
F66h	ADRPT		ADRPT<7:0>								
F65h	ADSTAT	ADAOV	ADAOV ADUTHR ADLTHR ADMATH — ADSTAT<2:0>							000-000	
F64h	ADRESH	ADRESH<7:0>									
F63h	ADRESL	ADRESL<7:0>									
F62h	ADPREVH	ADPREVH<15:8>									
F61h	ADPREVL		ADPREVL<7:0>								
F60h	ADCON0	ADON	ADCONT	—	ADSC	-	ADFM	—	ADGO	00-000-0	
F5Fh	ADPCH	—	—			ADPC	CH<5:0>			000000	
F5Eh	ADPRE				ADPR	E<7:0>				00000000	
F5Dh	ADCAP	—	—	—			ADCAP<4:0>			00000	
F5Ch	ADACQ		-		ADAC	Q<7:0>				00000000	
F5Bh	ADCON3	—		ADCALC<2:0	>	ADSOI		ADTMD<2:0>	>	-0000000	
F5Ah	ADCON2	ADPSIS		ADCRS<2:0>	>	ADACLR		ADMD<2:0>		00000000	
F59h	ADCON1	ADPPOL	ADIPEN	ADGPOL	—	—	—	—	ADDSEN	0000	
F58h	ADREF	—	—	—	ADNREF	—	—	ADPR	EF<1:0>	0-00	
F57h	ADCLK	—	—		-	ADC	S<5:0>			000000	
F56h	ADACT	—	—	—			ADACT<4:0>			00000	
F55h	MDCARH	—	—	—	—	—		CHS<2:0>		000	
F54h	MDCARL	—	—	—	—	—		CLS<2:0>		000	
F53h	MDSRC	—	—	—	—		SRCS	8<3:0>		0000	
F52h	MDCON1	—	—	CHPOL	CHSYNC	—	—	CLPOL	CLSYNC	0000	
F51h	MDCON0	EN	—	OUT	OPOL	—	—	—	MDBIT	0-000	
F50h	SCANTRIG	_	—	_	_		TSEL	<3:0>		0000	
F4Fh	SCANCON0	SCANEN	SCANGO	BUSY	INVALID	INTM	-	MOD	E<1:0>	00000-00	
F4Eh	SCANHADRU	_	—			HADR	<21:16>			111111	

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F26/45/46K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F26K40 (28-pin variants).

3: Not available on PIC18(L)F45K40 devices.

11.3.3 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the NVMADRL and NVMADRH register pair, clear NVMREG<1:0> control bit in NVMCON1 register to access Data EEPROM locations and then set control bit, RD. The data is available on the very next instruction cycle; therefore, the NVMDAT register can be read by the next instruction. NVMDAT will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 11-5.

FIGURE 11-11: DATA EEPROM READ FLOWCHART

11.3.4 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the address must first be written to the NVMADRL and NVMADRH register pair and the data written to the NVMDAT register. The sequence in Example 11-6 must be followed to initiate the write cycle.

The write will not begin if NVM Unlock sequence, described in **Section 11.1.4 "NVM Unlock Sequence"**, is not exactly followed for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in NVMCON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, NVMCON1, NVMADRL, NVMADRH and NVMDAT cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. Both WR and WREN cannot be set with the same instruction.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. A single Data EEPROM word is written and the operation includes an implicit erase cycle for that word (it is not necessary to set FREE). CPU execution continues in parallel and at the completion of the write cycle, the WR bit is cleared in hardware and the NVM Interrupt Flag bit (NVMIF) is set. The user can either enable this interrupt or poll this bit. NVMIF must be cleared by software.

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0		
SCANIF	CRCIF	NVMIF	—	—		_	CWG1IF		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as						as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7	SCANIF: SCA	AN Interrupt Fla	ag bit						
	1 = SCAN inte	errupt has occu	irred (must be	e cleared in sof	ftware)				
	0 = SCAN interrupt has not occurred or has not been started								
bit 6	CRCIF: CRC	Interrupt Flag	oit						
	1 = CRC inter	rupt has occur	red (must be o	cleared in softw	ware)				
	0 = CRC inter	rupt has not oc	curred or has	not been start	ted				
bit 5	NVMIF: NVM	Interrupt Flag	bit						
	1 = NVM inter	rupt has occur	red (must be o	cleared in soft	ware)				
	0 = NVM inter	rupt has not or	ccurred or has	s not been star	ted				
bit 4-1	Unimplement	ted: Read as '	כי						
bit 0	CWG1IF: CW	G Interrupt Fla	g bit						
	1 = CWG inte 0 = CWG inte	rrupt has occur rrupt has not o	rred (must be ccurred or has	cleared in soft s not been star	ware) rted				

REGISTER 14-9: PIR7: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 7

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0			
—	—	—	—	—	TMR5GIE	TMR3GIE	TMR1GIE			
bit 7							bit 0			
Legend:										
R = Readable I	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 7-3	Unimplement	ted: Read as '	כ'							
bit 2	TMR5GIE: TMR5 Gate Interrupt Enable bit 1 = Enabled 0 = Disabled									
bit 1	bit 1 TMR3GIE: TMR3 Gate Interrupt Enable bit 1 = Enabled 0 = Disabled									
bit 0	TMR1GIE: TM 1 = Enabled 0 = Disabled	/IR1 Gate Inter	rupt Enable bi	t						

REGISTER 14-15: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	_	—	—	CCP2IE	CCP1IE
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						as '0'	
-n = Value at P	POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown	
bit 7-2	Unimplemen	ted: Read as '	0'				
bit 1	CCP2IE: ECC 1 = Enabled 0 = Disabled	CP2 Interrupt E	nable bit				
bit 0	CCP1IE: ECC 1 = Enabled 0 = Disabled	CP1 Interrupt E	nable bit				

REGISTER 14-16: PIE6: PERIPHERAL INTERRUPT ENABLE REGISTER 6

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
IOCEP	—	—	—	—	IOCEP3 ⁽¹⁾			
IOCEN					IOCEN3 ⁽¹⁾			
IOCEF	—	—	—	—	IOCEF3 ⁽¹⁾	_	_	_

TABLE 16-1: IOC REGISTERS

Note 1: If MCLRE = 1 or LVP = 1, RE3 port functionality is disabled and IOC on RE3 is not available.

TABLE 16-2:	SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANG
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	_	INT2EDG	INT1EDG	INT0EDG	170
IOCxF	IOCxF7	IOCxF6	IOCxF5	IOCxF4	IOCxF3	IOCxF2	IOCxF1	IOCxF0	211
IOCxN	IOCxN7	IOCxN6	IOCxN5	IOCxN4	IOCxN3	IOCxN2	IOCxN1	IOCxN0	211
IOCxP	IOCxP7	IOCxP6	IOCxP5	IOCxP4	IOCxP3	IOCxP2	IOCxP1	IOCxP0	211

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

19.9 Timer1/3/5 Interrupt

The Timer1/3/5 register pair (TMRxH:TMRxL) increments to FFFFh and rolls over to 0000h. When Timer1/3/5 rolls over, the Timer1/3/5 interrupt flag bit of the PIR4 register is set. To enable the interrupt-on-rollover, you must set these bits:

- TMRxON bit of the TxCON register
- TMRxIE bits of the PIE4 register
- PEIE/GIEL bit of the INTCON register
- · GIE/GIEH bit of the INTCON register

The interrupt is cleared by clearing the TMRxIF bit in the Interrupt Service Routine.

For more information on selecting high or low priority status for the Timer1/3/5 Overflow Interrupt, see **Section 14.0 "Interrupts"**.

Note: The TMRxH:TMRxL register pair and the TMRxIF bit should be cleared before enabling interrupts.

19.10 Timer1/3/5 Operation During Sleep

Timer1/3/5 can only operate during Sleep when set up in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMRxON bit of the TxCON register must be set
- TMRxIE bit of the PIE4 register must be set
- PEIE/GIEL bit of the INTCON register must be set
- TxSYNC bit of the TxCON register must be set
- Configure the TMRxCLK register for using secondary oscillator as the clock source
- Enable the SOSCEN bit of the OSCEN register (Register 4-7)

The device will wake-up on an overflow and execute the next instruction. If the GIE/GIEH bit of the INTCON register is set, the device will call the Interrupt Service Routine.

The secondary oscillator will continue to operate in Sleep regardless of the $\overline{\text{TxSYNC}}$ bit setting.

19.11 CCP Capture/Compare Time Base

The CCP modules use the TMRxH:TMRxL register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMRxH:TMRxL register pair is copied into the CCPRxH:CCPRxL register pair on a configured event.

In Compare mode, an event is triggered when the value in the CCPRxH:CCPRxL register pair matches the value in the TMRxH:TMRxL register pair. This event can be a Special Event Trigger.

For more information, see Section 21.0 "Capture/Compare/PWM Module".

19.12 CCP Special Event Trigger

When any of the CCP's are configured to trigger a special event, the trigger will clear the TMRxH:TMRxL register pair. This special event does not cause a Timer1/3/5 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPRxH:CCPRxL register pair becomes the period register for Timer1/3/5.

Timer1/3/5 should be synchronized and FOSC/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1/3/5 can cause a Special Event Trigger to be missed.

In the event that a write to TMRxH or TMRxL coincides with a Special Event Trigger from the CCP, the write will take precedence.

20.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal can also gate the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 20-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

Rev. 10.000 1988 5/30/2014	
MODE 0b00001	
TMRx_ers	
PRx 5	
$TMRx \left(\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	
TMRx_postscaled	
PWM Duty 3 Cycle	

REGISTER 21-3: CCPxCAP: CAPTURE INPUT SELECTION MULTIPLEXER REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x
—	—	—	—	—	—	CTS•	<1:0>
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-2 Unimplemented: Read as '0'

bit 1-0 CTS<1:0>: Capture Trigger Input Selection bits

CTS<1:0>	Connection			
01311.02	CCP1	CCP2		
11	IOC_Interrupt			
10	CMP2_output			
01	CMP1_output			
00	Pin selected by CCP1PPS Pin selected by CCP2PPS			

REGISTER 21-4: CCPRxL: CCPx REGISTER LOW BYTE

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	
CCPRx<7:0>								
bit 7 bit 0								

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0	MODE = Capture Mode:
	CCPRxL<7:0>: LSB of captured TMR1 value
	MODE = Compare Mode:
	CCPRxL<7:0>: LSB compared to TMR1 value
	MODE = PWM Mode && FMT = 0:
	CCPRxL<7:0>: CCPW<7:0> - Pulse-Width LS 8 bits
	MODE = PWM Mode && FMT = 1:
	CCPRxL<7:6>: CCPW<1:0> - Pulse-Width LS 2 bits
	CCPRxL<5:0>: Not used

© 2015-2017 Microchip Technology Inc.

	· · · · · · · · · · · · · · · · · · ·									
R/HS/HC	-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ACKTIN	1 PCIE ⁽¹⁾	SCIE ⁽¹⁾	BOEN ⁽²⁾	SDAHT	SBCDE	AHEN	DHEN			
bit 7							bit 0			
Legend:										
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'				
-n = Value at POR		'1' = Bit is set		HS/HC = Bit i	s set/cleared by	y hardware				
x = Bit is u	nknown	'0' = Bit is clea	ared							
bit 7	ACKTIM: Ack	knowledge Time	e Status bit							
	Unused in SP	임.		`						
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit()						
1 = Enable interrupt on detection of Stop condition										
bit 5	SCIE: Start C	ondition Interru	nt Enable hit(1)						
bit 0	1 = Enable in	terrupt on deter	ction of Start o	r Restart condit	ions					
	0 = Start dete	ction interrupts	are disabled							
bit 4	BOEN: Buffer	r Overwrite Ena	able bit ⁽²⁾							
	1 = SSPxBUF	⁻ updates every	/ time a new d	ata byte is shift	ed in, ignoring t	the BF bit				
	0 = If a new b	yte is received	with BF bit alr	eady set, SSPC	OV is set, and t	he buffer is not	updated			
bit 3	SDAHT: SDA	Hold Time Sel	ection bit							
	Unused in SP	임.								
bit 2	SBCDE: Slav	e Mode Bus Co	ollision Detect	Enable bit						
Unused in SPI.										
bit 1 AHEN: Address Hold Enable bit										
	Unused in SP	'l. 								
bit 0	DHEN: Data I	Hold Enable bit								
	Unusea in SP	Ί.								
Note 1:	This bit has no ef	fect in Slave m	odes that Star	and Stop cond	ition detection	is explicitly liste	ed as enabled.			
2:	2: For daisy-chained SPI operation: allows the user to ignore all but the last received byte. SSPOV is still set									

REGISTER 26-3: SSPxCON3: MSSPx CONTROL REGISTER 3 (SPI MODE)

2: For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPOV is still set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPxBUF.

26.10.7 I²C Master Mode Reception

Master mode reception (Figure 26-29) is enabled by programming the Receive Enable bit, RCEN bit of the SSP1CON2 register.

Note:	The MSSP module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPxCON2 register.

26.10.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPSR. It is cleared when the SSPxBUF register is read.

26.10.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

26.10.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

26.10.7.4 Typical Receive Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 6. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 7. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 8. User sets the RCEN bit of the SSPxCON2 register and the master clocks in a byte from the slave.
- 9. After the eighth falling edge of SCL, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPUF, clears BF.
- 11. Master sets the ACK value sent to slave in the ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Master's ACK is clocked out to the slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not ACK or Stop to end communication.

31.4 Capacitive Voltage Divider (CVD) Features

The ADC module contains several features that allow the user to perform a relative capacitance measurement on any ADC channel using the internal ADC sample and hold capacitance as a reference. This relative capacitance measurement can be used to implement capacitive touch or proximity sensing applications. Figure 31-6 shows the basic block diagram of the CVD portion of the ADC module.

REGISTER 31-4: ADCON3: ADC CONTROL REGISTER 3

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0
_	/	ADCALC<2:0>		ADSOI		ADTMD<2:0>	
bit 7							bit 0
Logond							

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7 Unimplemented: Read as '0'

bit 6-4 ADCALC<2:0>: ADC Error Calculation Mode Select bits

	Action During	1st Precharge Stage	
ADCALC	ADDSEN = 0 Single-Sample Mode	ADDSEN = 1 CVD Double-Sample Mode ⁽¹⁾	Application
111	Reserved	Reserved	Reserved
110	Reserved	Reserved	Reserved
101	ADLFTR-ADSTPT	ADFLTR-ADSTPT	Average/filtered value vs. setpoint
100	ADPREV-ADFLTR	ADPREV-ADFLTR	First derivative of filtered value ⁽³⁾ (negative)
011	Reserved	Reserved	Reserved
010	ADRES-ADFLTR	(ADRES-ADPREV)-ADFLTR	Actual result vs. averaged/filtered value
001	ADRES-ADSTPT	(ADRES-ADPREV)-ADSTPT	Actual result vs.setpoint
000	ADRES-ADPREV	ADRES-ADPREV	First derivative of single measurement ⁽²⁾
			Actual CVD result in CVD mode ⁽²⁾

bit 3 ADSOI: ADC Stop-on-Interrupt bit

If ADCONT = 1:

- 1 = ADGO is cleared when the threshold conditions are met, otherwise the conversion is retriggered
- 0 = ADGO is not cleared by hardware, must be cleared by software to stop retriggers

bit 2-0 ADTMD<2:0>: Threshold Interrupt Mode Select bits

- 111 = Interrupt regardless of threshold test results
- 110 = Interrupt if ADERR>ADUTH
- 101 = Interrupt if ADERR≤ADUTH
- 100 = Interrupt if ADERR<ADLTH or ADERR>ADUTH
- 011 = Interrupt if ADERR>ADLTH and ADERR<ADUTH
- 010 = Interrupt if ADERR≥ADLTH
- 001 = Interrupt if ADERR<ADLTH
- 000 = Never interrupt
- Note 1: When ADPSIS = 0, the value of ADRES-ADPREV) is the value of (S2-S1) from Table 31-3.
 - 2: When ADPSIS = 0
 - 3: When ADPSIS = 1.

33.10 Register Definitions: HLVD Control

Long bit name prefixes for the HLVD peripheral is shown in Table 33-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 33-1:

Peripheral	Bit Name Prefix		
HLVD	HLVD		

REGISTER 33-1: HLVDCON1: LOW-VOLTAGE DETECT CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
_	_	_			SEL<	<3:0>	
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = Bit is unchanged		

bit 7-4 Unimplemented: Read as '0'

bit 3-0 SEL<3:0>: High/Low Voltage Detection Limit Selection bits

SEL<3:0>	Typical Voltage				
1111	Reserved				
1110	4.63V				
1101	4.32V				
1100	4.12V				
1011	3.91V				
1010	3.71V				
1001	3.60V				
1000	3.4V				
0111	3.09V				
0110	2.88V				
0101	2.78V				
0100	2.57V				
0011	2.47V				
0010	2.26V				
0001	2.06V				
0000	1.85V				

PIC18(L)F26/45/46K40

TBL	RD	Table Read						
Synta	ax:	TBLRD (*; *+; *-; +*)						
Oper	ands:	None						
Oper	ation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT:						
Statu	s Affected:	None						
Enco	ding:	0000	000	00	0000)	10nn nn=0 * =1 *+ =2 *- =3 +*	
of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLRD instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-decrement							Iress the Table Ints to TBLPTR TBLPTR Memory icant Byte Memory the value	
Words: 1								
Cycle	es:	2						
Q Cycle Activity:								
	Q1	Q2			Q3		Q4	
	Decode	No operatio	on	ope	No eration	(No operation	
	No operation	No operat (Read Prog Memory	tion gram /)	ope	No eration	No (Wi	o operation ite TABLAT)	

TBLRD Table Read (Continued)

Example1:	TBLRD	*+	;	
Before Instructio TABLAT	on		=	55h
TBLPTR MEMORY	(00A356h)	= =	00A356h 34h
After Instruction				
TABLAT			=	34h
IDLPIK			-	00A35711
Example2:	TBLRD	+*	;	
Before Instruction	n			
TABLAT TBLPTR			= =	AAh 01A357h
MEMORY MEMORY	(01A357h (01A358h)	=	12h 34h
After Instruction				
				0.41
			=	34h 01A358h

TABLE 37-24: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions
SP90*	TSU:STA	Start condition	100 kHz mode	4700	_	_	ns	Only relevant for Repeated Start
		Setup time	400 kHz mode	600		_		condition
SP91* Тн	THD:STA	Start condition	100 kHz mode	4000		_	ns	After this period, the first clock pulse is generated
		Hold time	400 kHz mode	600		-		
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700		_	ns	
		Setup time	400 kHz mode	600		_		
SP93	THD:STO	Stop condition	100 kHz mode	4000		_	ns	
		Hold time	400 kHz mode	600		_		

* These parameters are characterized but not tested.

FIGURE 37-21: I²C BUS DATA TIMING

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Microchip Technology Drawing C04-105C Sheet 1 of 2