

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k40-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON1	—	N	OSC<2:0>			NDIV<3:0>				
OSCCON2	—	С	OSC<2:0>			CDIV<	3:0>		37	
OSCCON3	CSWHOLD	SOSCPWR	_	ORDY	NOSCR	_	_	_	38	
OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR	39	
OSCTUNE	—	_			HFTUN	<5:0>			41	
OSCFRQ	—	—	—	—		HFFRQ.	<3:0>		40	
OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	—	-	42	
PIE1	OSCFIE	CSWIE	—	—	—	-	ADTIE	ADIE	180	
PIR1	OSCFIF	CSWIF	_		_		ADTIF	ADIF	172	
IPR1	OSCFIP	CSWIP					ADTIP	ADIP	188	

TABLE 4-3:SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 4-4: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	—	FCMEN	—	CSWEN	—	—	CLKOUTEN	22
CONFIGT	7:0	—	F	RSTOSC<2:0	>	—	I	23		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

2: If the prefetched instruction clears the interrupt enable or GIEH/L, ISR vectoring will not occur, but DOZEN is cleared and the CPU will resume execution at full speed.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR			
EB1h	CWGINPPS	—	—	—		(WGINPPS<4:0	>		01000			
EB0h	CCP2PPS	_	_	_			CCP2PPS<4:0	>		10001			
EAFh	CCP1PPS	—	—	—			CCP1PPS<4:0	>		10010			
EAEh	ADACTPPS	—	—	—		ŀ	ADACTPPS<4:0	>		01100			
EADh	T6INPPS	—	—	—			T6INPPS<4:0>			01111			
EACh	T4INPPS	—	—	—			T4INPPS<4:0>			10101			
EABh	T2INPPS	—	—	—			T2INPPS<4:0>			10011			
EAAh	T5GPPS	—	—	—			T5GPPS<4:0>			01100			
EA9h	T5CKIPPS	—	—	—			T5CKIPPS<4:0	>		10010			
EA8h	T3GPPS	—	—	—			T3GPPS<4:0>			10000			
EA7h	T3CKIPPS	—	—	—			T3CKIPPS<4:0	>		10000			
EA6h	T1GPPS	—	—	—			T1GPPS<4:0>			01101			
EA5h	T1CKIPPS	—	—	—		T1GPPS<4:0> T1CKIPPS<4:0> T0CKIPPS<4:0> INT2PPS<4:0> INT1PPS<4:0> INT0PPS<4:0> PPC16							
EA4h	T0CKIPPS	—	—	—		TSGPPS<4:0> TSCKIPPS<4:0> T3GPPS<4:0> T3GPPS<4:0> T1GPPS<4:0> T1GPPS<4:0> T1CKIPPS<4:0> T1CKIPPS<4:0> TOCKIPPS<4:0> INT2PPS<4:0> INT1PPS<4:0> INT0PPS<4:0> SCKP BRG16 — PPSLOCKEI SCKP BRG16 — WUE ABDEN SYNC SENDB BRGH TRMT TX9D CREN ADDEN FERR OERR RX9D 2 Baud Rate Generator, High Byte T2 Baud Rate Generator, Low Byte USART2 Transmit Register USART2 Receive Register USART2 Receive Register BOEN SDAHT SBCDE AHEN DHEN ACKEN RCEN PEN RSEN SEN							
EA3h	INT2PPS	—	—	—		INT2PPS<4:0> INT1PPS<4:0>							
EA2h	INT1PPS	—	—	—		INT1PPS<4:0>							
EA1h	INTOPPS	—	—	—			INT0PPS<4:0>			01000			
EA0h	PPSLOCK	—	—	—	PPSLOCKED								
E9Fh	BAUD2CON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	01-00-00			
E9Eh	TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	00000010			
E9Dh	RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	00000000			
E9Ch	SP2BRGH			EUSA	ART2 Baud Rate	e Generator, H	gh Byte			00000000			
E9Bh	SP2BRGL			EUSA	ART2 Baud Rate	INT2PPS<4:0> INT1PPS<4:0> INT1PPS<4:0> INT0PPS<4:0> INT0PPS<4:0> CREN BRG16 — WUE ABDEN SYNC SENDB BRGH TRMT TX9D CREN ADDEN FERR OERR RX9D 2 Baud Rate Generator, High Byte 2 Baud Rate Generator, Low Byte JSART2 Transmit Register USART2 Receive Register BOEN SDAHT SBCDE AHEN DHEN							
E9Ah	TX2REG				EUSART2 Tra	T1CKIPPS<4:0>T0CKIPPS<4:0>INT2PPS<4:0>INT1PPS<4:0>INT0PPS<4:0>INT0PPS<4:0>SCKPBRG16—PPSLOCKEDSCKPBRG16—WUEABDENSYNCSENDBBRGHTRMTTX9DCRENADDENFERROERRRX9D2 Baud Rate Generator, High Byte2 Baud Rate Generator, Low ByteUSART2 Transmit RegisterUSART2 Receive RegisterBOENSDAHTSBCDEAHENDHENACKENRCENPENRSENSENCKPSRWUABFMSK<7:0>MSK<7:0>SS							
E99h	RC2REG				EUSART2 Re	eceive Register	•			00000000			
E98h	SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	00000000			
E97h	SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	00000000			
E96h	SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	1<3:0>		00000000			
E95h	SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	00000000			
E94h	SSP2MSK				MSK	<7:0>				11111111			
E93h	SSP2ADD				ADD	<7:0>				00000000			
E92h	SSP2BUF				BUF	<7:0>				xxxxxxxx			
E91h	SSP2SSPPS	—	—			S	SPSSPPS<4:0	>		00101			
E90h	SSP2DATPPS	—	—	—		S	SPDATPPS<4:)>		10100			
E8Fh	SSP2CLKPPS	—	—	—		S	SPCLKPPS<4:)>		10011			
E8Eh	TX2PPS	—	—	—			TXPPS<4:0>			10110			
E8Dh	RX2PPS	_	_	_			RXPPS<4:0>			10111			
E8Ch			KTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN CEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN COL SSPOV SSPEN CKP SSPM<3:0> MP CKE D/Ā P S RW UA BF MSK<7:0> BUF<7:0> SSPSSPPS<4:0> SSPDATPPS<4:0> - - SSPCLKPPS<4:0> - - TXPPS<4:0> - - RXPPS<4:0> - - RXPPS<4:0>										
E7Eh					onimpi	ementeu							

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F26/45/46K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F26K40 (28-pin variants).

3: Not available on PIC18(L)F45K40 devices.

11.1.1 TABLE READS AND TABLE WRITES

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is eight bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

The table read operation retrieves one byte of data directly from program memory and places it into the TABLAT register. Figure 11-1 shows the operation of a table read.

The table write operation stores one byte of data from the TABLAT register into a write block holding register. The procedure to write the contents of the holding registers into program memory is detailed in **Section 11.1.6 "Writing to Program Flash Memory"**. Figure 11-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. Tables containing data, rather than program instructions, are not required to be word aligned. Therefore, a table can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

FIGURE 11-2: TABLE WRITE OPERATION

11.3 Data EEPROM Memory

The data EEPROM is a nonvolatile memory array, separate from the data RAM and program memory, which is used for long-term storage of program data. It is not directly mapped in either the register file or program memory space but is indirectly addressed through the Special Function Registers (SFRs). The EEPROM is readable and writable during normal operation over the entire VDD range.

Four SFRs are used to read and write to the data EEPROM as well as the program memory. They are:

- NVMCON1
- NVMCON2
- NVMDAT
- NVMADRL
- NVMADRH(1)

Note 1: NVMADRH register is not implemented on PIC18(L)F45K40.

The data EEPROM allows byte read and write. When interfacing to the data memory block, NVMDAT holds the 8-bit data for read/write and the NVMADRH:NVMADRL register pair hold the address of the EEPROM location being accessed.

The EEPROM data memory is rated for high erase/write cycle endurance. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an internal programming timer; it will vary with voltage and temperature as well as from chip-to-chip. Please refer to the Data EEPROM Memory parameters in **Section 37.0 "Electrical Specifications"** for limits.

11.3.1 NVMADRL AND NVMADRH REGISTERS

The NVMADRH:NVMADRL registers are used to address the data EEPROM for read and write operations.

11.3.2 NVMCON1 AND NVMCON2 REGISTERS

Access to the data EEPROM is controlled by two registers: NVMCON1 and NVMCON2. These are the same registers which control access to the program memory and are used in a similar manner for the data EEPROM.

The NVMCON1 register (Register 11-1) is the control register for data and program memory access. Control bits NVMREG<1:0> determine if the access will be to program, Data EEPROM Memory or the User IDs, Configuration bits, Revision ID and Device ID.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear.

The WRERR bit is set by hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

The WR control bit initiates write operations. The bit can be set but not cleared by software. It is cleared only by hardware at the completion of the write operation.

The NVMIF interrupt flag bit of the PIR7 register is set when the write is complete. It must be cleared by software.

Control bits, RD and WR, start read and erase/write operations, respectively. These bits are set by firmware and cleared by hardware at the completion of the operation.

The RD bit cannot be set when accessing program memory (NVMREG<1:0> = 0x10). Program memory is read using table read instructions. See **Section 11.1.1 "Table Reads and Table Writes"** regarding table reads.

PIC18(L)F26/45/46K40

2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.

FIGURE 19-4: TIMER1/3/5 GATE ENABLE MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	-		INT2EDG	INT1EDG	INT0EDG	170
PIE4	_	_	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	183
PIR4	_	—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	175
IPR4	_	—	TMR6IP	TMR5IP	TMR4IP	TMR3IP	TMR2IP	TMR1IP	191
PMD1		TMR6MD	TMR6MD TMR5MD TMR4MD TMR3MD TMR2MD TMR1MD TMR0MD				69		
PR2			Tir	ner2 Module I	Period Regist	er			244*
TMR2			Holding F	Register for th	e 8-bit TMR2	Register			244*
T2CON	ON		CKPS<2:0>			OUTP	S<3:0>		262
T2CLKCON	_	—	_	_	_		CS<2:0>		264
T2RST	_	—	_	_	265				
T2HLT	PSYNC	CPOL	CSYNC			MODE<4:0>			263
PR4			Tir	ner4 Module I	Period Regist	er			244*
TMR4			Holding F	Register for th	e 8-bit TMR4	Register			244*
T4CON	ON		CKPS<2:0>			262			
T4CLKCON	_	_	_	_	_	— CS<2:0>			
T4RST	_	—	_	_		RSEL	.<3:0>		265
T4HLT	PSYNC	CPOL	CSYNC			MODE<4:0>			263
PR6			Tir	ner6 Module I	Period Regist	er			244*
TMR6			Holding F	Register for th	e 8-bit TMR6	Register			244*
T6CON	ON		CKPS<2:0>			OUTP	S<3:0>		262
T6CLKCON	_	—	_	_	_		CS<2:0>		264
T6RST	_	_	_	_		RSEL	.<3:0>		265
T6HLT	PSYNC	CPOL	CSYNC			MODE<4:0>			263
T2INPPS	—	—	_		Т	2INPPS<4:0	>		216
T4INPPS	—	—	_		Т	4INPPS<4:0	>		216
T6INPPS	_	_	_		Т	6INPPS<4:0	>		216

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

Page provides register information.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			DCH	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 22-3: PWMxDCH: PWM DUTY CYCLE HIGH BITS

bit 7-0 **DCh<7:0>:** PWM Duty Cycle Most Significant bits These bits are the MSbs of the PWM duty cycle. The two LSbs are found in PWMxDCL Register.

REGISTER 22-4: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
DCL<7:6>		—	—	—		—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 DC<8:9>: PWM Duty Cycle Least Significant bits These bits are the LSbs of the PWM duty cycle. The MSbs are found in PWMxDCH Register.

bit 5-0 Unimplemented: Read as '0'

23.10 Register Definitions: ZCD Control

R/W-0/0	U-0	R-x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0					
ZCDSEN	_	ZCDOUT	ZCDPOL	_	_	ZCDINTP	ZCDINTN					
bit 7							bit 0					
												
Legend:												
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'						
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 7	ZCDSEN: Zer This bit is igno 1= Zero-cro 0= Zero-cro	ro-Cross Detect pred when ZCI iss detect is en iss detect is dis	t Software Er DSEN fuse is abled. ZCD p sabled. ZCD p	able bit set. in is forced to o in operates ac	output to sourc	e and sink curre	ent. rols.					
bit 6	Unimplement	ted: Read as '	0'	-	-							
bit 5	ZCDOUT: Zer	o-Cross Detec	t Data Output	bit								
	ZCDOUT: Zero-Cross Detect Data Output bit ZCDPOL bit = 0: 1 = ZCD pin is sinking current 0 = ZCD pin is sourcing current ZCDPOL bit = 1: 1 = ZCD pin is sourcing current 0 = ZCD pin is sourcing current 0 = ZCD pin is sourcing current											
bit 4	ZCDPOL: Zer	o-Cross Detec	t Polarity bit									
	1 = ZCD logic 0 = ZCD logic	output is inver output is not i	ted nverted									
bit 3-2	Unimplement	ted: Read as '	0'									
bit 1	ZCDINTP: Ze 1 = ZCDIF bit 0 = ZCDIF bit	ro-Cross Deter is set on low-t is unaffected b	ct Positive-Go o-high ZCD_c oy low-to-high	ning Edge Inter output transition ZCD_output ti	rupt Enable bit า ransition							
bit 0	ZCDINTN: Ze 1 = ZCDIF bit 0 = ZCDIF bit	ro-Cross Deters is set on high- is unaffected to	ct Negative-G to-low ZCD_c by high-to-low	oing Edge Inte output transition ZCD_output tr	rrupt Enable bi า ransition	it						

REGISTER 23-1: ZCDCON: ZERO-CROSS DETECT CONTROL REGISTER

24.2.3.1 Direction Change in Full-Bridge Mode

In Full-Bridge mode, changing MODE<2:0> controls the forward/reverse direction. Changes to MODE<2:0> change to the new direction on the next rising edge of the modulated input.

A direction change is initiated in software by changing the MODE<2:0> bits of the CWG1CON0 register. The sequence is illustrated in Figure 24-8.

- The associated active output CWG1A and the inactive output CWG1C are switched to drive in the opposite direction.
- The previously modulated output CWG1D is switched to the inactive state, and the previously inactive output CWG1B begins to modulate.
- CWG modulation resumes after the directionswitch dead band has elapsed.

24.2.3.2 Dead-Band Delay in Full-Bridge Mode

Dead-band delay is important when either of the following conditions is true:

- The direction of the CWG output changes when the duty cycle of the data input is at or near 100%, or
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

The dead-band delay is inserted only when changing directions, and only the modulated output is affected. The statically-configured outputs (CWG1A and CWG1C) are not afforded dead band, and switch essentially simultaneously.

Figure 24-8 shows an example of the CWG outputs changing directions from forward to reverse, at near 100% duty cycle. In this example, at time t1, the output of CWG1A and CWG1D become inactive, while output CWG1C becomes active. Since the turn-off time of the power devices is longer than the turn-on time, a shootthrough current will flow through power devices QC and QD for the duration of 't'. The same phenomenon will occur to power devices QA and QB for the CWG direction change from reverse to forward.

When changing the CWG direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce the CWG duty cycle for one period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

FIGURE 24-8: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

© 2015-2017 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWG1CON0	EN	LD	—	—	_		MODE<2:0>	•	315
CWG1CON1	_	—	IN	_	POLD	POLC POLB POLA		316	
CWG1CLKCON		—	_	_	_	_	_	CS	317
CWG1ISM	—	—	—	_	_	ISM<2:0>			317
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	318
CWG1AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	<1:0> — —			319
CWG1AS1	—	_	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	320
CWG1DBR	—	_			DBR<	:5:0>			321
CWG1DBF	_	_			DBF<	:5:0>			321
PIE7	SCANIE	CRCIE	NVMIE	—	_	—	—	CWG1IE	186
PIR7	SCANIF	CRCIF	NVMIF	—	_	_	—	CWG1IF	178
IPR7	SCANIP	CRCIP	NVMIP	_	_	_	_	CWG1IP	194
PMD4	UART2MD	UART1MD	MSSP2MD	MSSP1MD		_	_	CWG1MD	72

TABLE 24-3: SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Legend: -= unimplemented locations read as '0'. Shaded cells are not used by CWG.

26.5.1 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 26-3) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 26-4, Figure 26-6, Figure 26-7 and Figure 26-8, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPxADD + 1))

Figure 26-4 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

Note: In Master mode the clock signal output to the SCK pin is also the clock signal input to the peripheral. The pin selected for output with the RxyPPS register must also be selected as the peripheral input with the SSPxCLKPPS register. The pin that is selected using the SSPxCLKPPS register should also be made a digital I/O. This is done by clearing the corresponding ANSEL bit.

	· ·										
											:
-CKE = 0) 	:	· : : 		· · ·	, , ,	· ·	* * * *	· ; ; ;	· · ·	· 1 	: : : : : :
97999999999999999999999999999999999999	:		5 5 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	s s s s 	c c s s s , , , , , , , , , , , , , , , , ,	: ; ; ; ; ; ; ; ;	s s s s s	2 6 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	e e e e	: : : :	· • • • • •
890 801		1/2_132.7 ; ; ; ////////////////////////////////	\$\88.8 ; ; ;	[X]33_5 , , ,	2. 53 4 , , ,	X3 ; ; ; ;	77. 1947. 2. 	/; , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,		. 673 63 	
ingui Sangia	:	- 1985 V 	- - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·	. 49.		- - - - - - - - - - - - - - - - - - -	: : : : : : :		40 %	: :
SSPAF	- - - - - -	: : : :	e 6 9 9 9	< < < 5 5 5	> > > < 4	· · ·	6 5 6 9 9	* * * \$ \$	2		
- 199 SSPSN 10 SSP3307	· · · ·		2 2 2 2 2	5 5 7 7	s s s 	• • • •	2 2 2 2 2	5 5 7	s ; s ; s ; s	; ,	
Voite Calisson		·····			******				******		

FIGURE 26-19:

PIC18(L)F26/45/46K40

27.2.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 27-2. The data is received on the RXx/DTx pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCxREG register.

27.2.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCxSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RXx/DTx I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

27.2.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 27.2.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCxIF interrupt flag bit of the PIR3 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCxREG register.

27.2.2.3 Receive Interrupts

The RCxIF interrupt flag bit of the PIR3 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCxIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCxIF interrupts are enabled by setting all of the following bits:

- RCxIE, Interrupt Enable bit of the PIE3 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RCxIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

30.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to:

- FVR Buffer
- External VREF+ pin
- VDD supply voltage

The negative input source (VSOURCE-) of the DAC can be connected to:

- External VREF- pin
- Vss

The output of the DAC (DACx_output) can be selected as a reference voltage to the following:

- · Comparator positive input
- ADC input channel
- DACxOUT1 pin
- DACxOUT2 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DAC1CON0 register.

-000026F 8/7/2015 Reserved 11 VSOURCE+ DACR<4:0> FVR Buffer 10 5 R VREF+ 01 AVDD 00 R DACPSS R R 32-to-1 MUX DACx_output 32 To Peripherals Steps . . DACEN R DACxOUT1⁽¹⁾ R DACOE1 R DACxOUT2⁽¹⁾ **VREF-**1 VSOURCE-DACOE2 0 AVss DACNSS Note 1: The unbuffered DACx output is provided on the DACxOUT pin(s).

FIGURE 30-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

35.1.1 STANDARD INSTRUCTION SET

ADDWF	ADD W to f						
Syntax:	ADDWF f {,d {,a}}						
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	(W) + (f) \rightarrow dest						
Status Affected:	N, OV, C, DC, Z						
Encoding:	0010 01da ffff ffff						
Description:	Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '0', the ASR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.						
Words:	1						
Cycles:	1						

QC	ycle Activity:						
	Q1		Q2	Q3 Process Data		Q4 Write to destination	
	Decode	Read register 'f'					
Example:		AI	DDWF	REG,	0, 0		
Before Instruc		tion					
	W REG	=	17h 0C2h				
After Instruction		on					
	W REG	= =	0D9h 0C2h				

Note:	All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
	symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

PIC18(L)F26/45/46K40

CLRF	Clear f	CLRWDT	Clear Watchdog Timer
Syntax:	CLRF f {,a}	Syntax:	CLRWDT
Operands:	$0 \leq f \leq 255$	Operands:	None
	a ∈ [0,1]	Operation:	$000h \rightarrow WDT$,
Operation:	$\begin{array}{l} 000h \rightarrow f \\ 1 \rightarrow Z \end{array}$	·	$\begin{array}{l} \text{000h} \rightarrow \text{WDT} \text{ postscaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 1 \rightarrow \overline{\text{TO}}, \end{array}$
Status Affected:	Z	o	$1 \rightarrow PD$
Encoding:	0110 101a ffff ffff	Status Affected:	TO, PD
Description:	Clears the contents of the specified	Encoding:	0000 0000 0000 0100
register. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank.		Description:	CLRWDT instruction resets the Watchdog Timer. It also resets <u>the</u> post- scaler of the WDT. Status bits, TO and PD, are set.
	If 'a' is '0' and the extended instruction	Words:	1
	in Indexed Literal Offset Addressing	Cycles:	1
	mode whenever $f \le 95$ (5Fh). See Sec-	Q Cycle Activity:	
	tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.	Q1 Decode	Q2 Q3 Q4 No Process No
Words:	1		operation Data operation
Cycles:	1	Example [.]	
Q Cycle Activity:		<u>Example</u> .	
Q1	Q2 Q3 Q4	WDT Co	punter = ?
Decode	ReadProcessWriteregister 'f'Dataregister 'f'	After Instruction	on punter = 00h
Example:	CLRF FLAG_REG, 1	TO PD	= 1 = 1
Before Instruc FLAG_R After Instructio FLAG R	xtion EG = 5Ah on EG = 00h		

PIC18(L)F26/45/46K40

SUE	BLW	ubtract	W from	n litei	al				
Synta	ax:	S	SUBLW k						
Operands:			$0 \leq k \leq 255$						
Operation:			$k - (W) \rightarrow W$						
Statu	is Affected:	Ν	, OV, C,	DC, Z					
Enco	oding:		0000 1000 kkkk kkkk						
Desc	cription	V. lit	W is subtracted from the 8-bit literal 'k'. The result is placed in W.						
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1		Q2	Q3		Q4			
	Decode	F lite	Read eral 'k'	Process Data		Write to W			
Exan	nple 1:	S	UBLW (2h					
Before Instruction W = 01h C = ? After Instruction W = 01h C = 1; result is positive Z = 0 N = 0									
Exan	Example 2: SUBLW 02h								
Before Instruction W = 02h C = ? After Instruction W = 00h C = 1; result is zero Z = 1 N = 0									
<u>Exan</u>	nple 3:	S	UBLW (2h					
	Before Instruc W C After Instructic W C Z N	tion = = on = = =	03h ? FFh ; (; 0 ; r 0 1	2's comp esult is no	lemer egativ	nt) ′e			

SUBWF	Subtract	Subtract W from f						
Syntax:	SUBWF	SUBWF f {,d {,a}}						
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ d \ \in \ [0,1] \\ a \ \in \ [0,1] \end{array}$						
Operation:	(f) – (W) –	$(f) - (W) \rightarrow dest$						
Status Affected:	Status Affected: N, OV, C, DC, Z							
Encoding:	0101	11da ffi	ff ffff					
Description: Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 35.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Medoe" for details								
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write to destination					
Example 1:	SUBWF	REG, 1, 0						
Before Instruc REG W C After Instructic REG W C Z N	tion = 3 = 2 = ? on = 1 = 2 = 1 ; re = 0 = 0	esult is positive	9					
Example 2:	SUBWF	REG, 0, 0						
Before Instruc REG W C After Instructic REG W C 7	tion = 2 = 2 = ? n = 2 = 0 = 1 ; n = 1	esult is zero						
N	= 0							
Example 3:	SUBWF	REG, 1, 0						
Before Instruc REG W C	tion = 1 = 2 = ?							
After Instructic REG W C Z N	on = FFh;(2 = 2 = 0;re = 0 = 1	's complement	t) re					

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		0.65 BSC		
Overall Height	Α	0.80 0.90 1.00			
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65 3.70 4.20			
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.50	0.55	0.70	
Terminal-to-Exposed Pad	K	0.20			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2