

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k40-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- **Memory Endurance:** The Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles up to 10K for program memory and 100K for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a boot loader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18(L)F2x/ 4xK40 family introduces an optional extension to the PIC18 instruction set, which adds eight new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced Peripheral Pin Select: The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins.
- Enhanced Addressable EUSART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- **10-bit A/D Converter with Computation:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead. It has a new module called ADC² with computation features, which provides a digital filter and threshold interrupt functions.
- Windowed Watchdog Timer (WWDT):
 - Timer monitoring of overflow and underflow events
 - Variable prescaler selection
 - Variable window size selection
 - All sources configurable in hardware or software

1.3 Details on Individual Family Members

Devices in the PIC18(L)F2x/4xK40 family are available in 28-pin and 40/44-pin packages. The block diagram for this device is shown in Figure 1-1.

The devices have the following differences:

- 1. Program Flash Memory
- 2. Data Memory SRAM
- 3. Data Memory EEPROM
- 4. A/D channels
- 5. I/O ports
- 6. Enhanced USART
- 7. Input Voltage Range/Power Consumption

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in the pin summary tables (Table 1 and Table 2).

4.2 Register Definitions: Oscillator Control

REGISTER 4-1: OSCCON1: OSCILLATOR CONTROL REGISTER1

U-0	R/W-f/f	R/W-f/f	R/W-f/f	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q
—		NOSC<2:0>			NDIV	<3:0>	
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'	

		0 - Onimplemented bit, read as 0
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	f = determined by fuse setting
		q = Reset value is determined by hardware

bit 7	Unimplemented: Read as '0'
bit 6-4	NOSC<2:0>: New Oscillator Source Request bits ^(1,2,3)
	The setting requests a source oscillator and PLL combination per Table 4-2.
	POR value = RSTOSC (Register 3-1).
bit 3-0	NDIV<3:0>: New Divider Selection Request bits ^(2,3)

The setting determines the new postscaler division ratio per Table 4-2.

- Note1: The default value (f/f) is determined by the RSTOSC Configuration bits. See Table 4-1below.
 - 2: If NOSC is written with a reserved value (Table 4-2), the operation is ignored and neither NOSC nor NDIV is written.
 - 3: When CSWEN = 0, this register is read-only and cannot be changed from the POR value.

TABLE 4-1:	DEFAULT OSCILLATOR SETTINGS USING RSTOSC BITS
------------	---

DOTOGO	SF	SFR Reset Values				
RSTOSC	NOSC/COSC	CDIV OSCFRQ		Initial Fosc Frequency		
111	111	1:1		EXTOSC per FEXTOSC		
110	110	4:1	4 1411-	Fosc = 1 MHz (4 MHz/4)		
101	101	1:1	4 MHz	LFINTOSC		
100	100	1:1		SOSC		
011			Reserve	ed		
010	010	1:1	4 MHz	EXTOSC + 4xPLL (1)		
001			Reserve	ed		
000	110	1:1	64 MHz	Fosc = 64 MHz		

Note 1: EXTOSC must meet the PLL specifications (Table 37-9).

7.0 PERIPHERAL MODULE DISABLE (PMD)

Sleep, Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume some amount of power. There may be cases where the application needs what these modes do not provide: the ability to allocate limited power resources to the CPU while eliminating power consumption from the peripherals.

The PIC18(L)F2x/4xK40 family addresses this requirement by allowing peripheral modules to be selectively enabled or disabled, placing them into the lowest possible power mode.

For legacy reasons, all modules are ON by default following any Reset.

7.1 Disabling a Module

Disabling a module has the following effects:

- All clock and control inputs to the module are suspended; there are no logic transitions, and the module will not function.
- The module is held in Reset.
- Any SFR becomes "unimplemented"
 - Writing is disabled
 - Reading returns 00h
- I/O functionality is prioritized as per Section 15.1, I/O Priorities
- All associated Input Selection registers are also disabled

7.2 Enabling a Module

When the PMD register bit is cleared, the module is re-enabled and will be in its Reset state (Power-on Reset). SFR data will reflect the POR Reset values.

Depending on the module, it may take up to one full instruction cycle for the module to become active. There should be no interaction with the module (e.g., writing to registers) for at least one instruction after it has been re-enabled.

7.3 Effects of a Reset

Following any Reset, each control bit is set to '0', enabling all modules.

7.4 System Clock Disable

Setting SYSCMD (PMD0, Register 7-1) disables the system clock (Fosc) distribution network to the peripherals. Not all peripherals make use of SYSCLK, so not all peripherals are affected. Refer to the specific peripheral description to see if it will be affected by this bit.

	PIC18(L)F24K40	PIC18(L)F25K40 PIC18(L)F45K40	PIC18(L)F26K40 PIC18(L)F46K40	PIC18(L)F27K40 PIC18(L)F47K40	
Γ	PC<21:0>	PC<21:0>	PC<21:0>	PC<21:0>	
	Ŧ	Ť	Ŧ	Ŧ	_
Note 1	Stack (31 levels)	Stack (31 levels)	Stack (31 levels)	Stack (31 levels)	Note
	ł	+	. ↓	+	_
0000h	Reset Vector	Reset Vector	Reset Vector	Reset Vector	00 000
•••	• • •	•••	•••	•••	•••
0008h	Interrupt Vector High	Interrupt Vector High	Interrupt Vector High	Interrupt Vector High	00 000
•••	• • •	•••	•••	•••	•••
0018h	Interrupt Vector Low	Interrupt Vector Low	Interrupt Vector Low	Interrupt Vector Low	00 00
001Ah	User Flash Memory				00 00
• 3FFFh	(8KW)	User Flash Memory			• 00 3FI
4000h		(16KW)			00 400
•			User Flash Memory		•
7FFFh			(32KW)	PFM Flash Memory	00 7FF
8000h				(64KW)	00 800
•					•
FFFFh	Not present ⁽¹⁾				00 FF
0000h		Not present ⁽¹⁾			01 000
FFFFh		Not present	(4)		01 FF
0000h			Not present ⁽¹⁾		02 000
•				Not present ⁽¹⁾	•
FFFFh					1F FF
0000h		Lises IDs.	(0.) (o. refe.)		20 000
••• 000Fh		User IDs	(8 vvoras)		20 000
0010h					20 00
•••		Rese	rved		•••
FFFFh					2F FF
0000h					30 000
••• 000Bh		Configuration W	fords (6 Words)		30 000
000Ch					30 000
•••		Rese	rved		
FFFFh					30 FF
0000h	DataEl	EByte0	DataEE	ERvita	31 000
•••			DataLL	LDyteo	•••
00FFh	DataEE	Byte255	•••	•	
	Unimple	emented			
03FFh	Chimple		DataEEB	syte1023	31 03
0400h					31 040
•••		Rese	rved		•••
FFFBh					3F FF
FFFCh		Revision ID	(1 Mord)(2)		3F FF
FFFDh		Revision ID			3F FF
FFFEh					3F FF
•••		Device ID	(1 Word) ⁽²⁾		•••
FFFFh					3F FF
		over. The region is read a			

TABLE 10-1: PROGRAM AND DATA MEMORY MAP

11.3.5 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 11-5: DATA EEPROM READ

; Data Memory Ad	ldress to read		
BC	F NVMCON1, NVMREG0	;	Setup Data EEPROM Access
BC	F NVMCON1, NVMREG1	;	Setup Data EEPROM Access
MO	VF EE_ADDRL, W	;	
MO	VWF NVMADRL	;	Setup Address low byte
MO	VF EE_ADDRH, W	;	
MO	VWF NVMADRH	;	Setup Address high byte (if applicable)
BS	F NVMCON1, RD	;	Issue EE Read
MO	VF NVMDAT, W	;	W = EE_DATA

EXAMPLE 11-6: DATA EEPROM WRITE

; Data Memory Addre	ess to write	
BCF	NVMCON1, NVMREG0	; Setup Data EEPROM access
BCF	NVMCON1, NVMREG1	; Setup Data EEPROM access
MOVF	EE_ADDRL, W	;
MOVWF	NVMADRL	; Setup Address low byte
MOVF	EE_ADDRH, W	;
MOVWF	NVMADRH	; Setup Address high byte (if applicable)
; Data Memory Value	e to write	
MOVF	EE_DATA, W	;
MOVWF	NVMDAT	;
; Enable writes		
BSF	NVMCON1, WREN	;
; Disable interrupt		
BCF	INTCON, GIE	;
; Required unlock s	-	
MOVLW	55h	
MOVWF	NVMCON2 AAh	· .
MOVLW MOVWF	NVMCON2	
; Set WR bit to bec		1
BSF	NVMCON1, WR	i
; Wait for write to		,
BTFSC	NVMCON1, WR	
BIFSC	\$-2	
; Enable INT	γ [−] ∠	
	THEODY OFF	
BSF	INTCON, GIE	;
; Disable writes		
BCF	NVMCON1, WREN	;

14.8 Register Definitions: Interrupt Control

REGISTER 14-1:	INTCON: INTERRUPT	CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
GIE/GIEH	PEIE/GIEL	IPEN	—	-	INT2EDG	INT1EDG	INT0EDG
bit 7		•				•	bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is c	leared	x = Bit is unk	nown
bit 7	GIE/GIEH: G If IPEN = 1:	lobal Interrupt I	Enable bit				
		ables all unma sables all interr		pts and cleared	by hardware for	r high-priority ir	nterrupts only
	1 = En	ables all unmas sables all interru		ots and cleared	by hardware for	all interrupts	
bit 6		Peripheral Inter	rupt Enable	bit			
	0 = Dis	ables all low-pr sables all low-p			d by hardware fo	r low-priority in	terrupts only
		ables all unma sables all peripl		-			
bit 5	1 = Enable	pt Priority Enab priority levels o priority levels o	n interrupts	i			
bit 4-3	Unimplemen	ited: Read as 'd)'				
bit 2	1 = Interrup	xternal Interrup at on rising edge at on falling edge	e of INT2 pir	ı			
bit 1	1 = Interrup	xternal Interrupt at on rising edge at on falling edge	e of INT1 pir	ı			
bit 0	1 = Interrup	xternal Interrupt at on rising edge at on falling edge	e of INT0 pir	ı			
co its er th	iterrupt flag bits a ondition occurs, r s corresponding nable bit. User s le appropriate inf	egardless of the enable bit or the software should terrupt flag bits	e state of ne global d ensure are clear				

prior to enabling an interrupt. This feature

allows for software polling.

REGISTER 17-3: PPSLOCK: PPS LOCK REGISTER

 	PPSLOCKED
	bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 0 PPSLOCKED: PPS Locked bit

1 = PPS is locked. PPS selections can not be changed.

0 = PPS is not locked. PPS selections can be changed.

TABLE 17-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
PPSLOCK	—	_	_	—	—	—	—	PPSLOCKED	219		
INTOPPS	—	_	_		INTOPPS<4:0>						
INT1PPS	—	_	_			INT1PPS<	4:0>		216		
INT2PPS	—	_	_			INT2PPS<	4:0>		216		
TOCKIPPS	—	_				T0CKIPPS<	<4:0>		216		
T1CKIPPS	_	_	_			T1CKIPPS<	<4:0>		216		
T1GPPS	—	_	_			T1GPPS<	4:0>		216		
T3CKIPPS	—	_				T3CKIPPS<	<4:0>		216		
T3GPPS	_	_	_			T3GPPS<	4:0>		216		
T5CKIPPS	—	_	_			T5CKIPPS<	<4:0>		216		
T5GPPS	—	_				T5GPPS<	4:0>		216		
T2INPPS	_					T2INPPS<	4:0>		216		
T4INPPS	—	_	_			T4INPPS<	4:0>		216		
T6INPPS	—	_	_			T6INPPS<	4:0>		216		
CCP1PPS	—	_	_			CCP1PPS<	:4:0>		216		
CCP2PPS	—	_	_			CCP2PPS<	:4:0>		216		
CWG1PPS	—	_	_			CWG1PPS	<4:0>		216		
MDCARLPPS	—	_	_		Ν	/IDCARLPPS	S<4:0>		216		
MDCARHPPS	—	_	_		N	IDCARHPP	S<4:0>		216		
MDSRCPPS	—	_	_			MDSRCPPS	<4:0>		216		
ADACTPPS	—	_	_			ADACTPPS	<4:0>		216		
SSP1CLKPPS	—	_	_		S	SP1CLKPP	S<4:0>		216		
SSP1DATPPS	—	_	_		S	SP1DATPP	S<4:0>		216		
SSP1SSPPS	—	_	_		S	SSP1SSPPS	\$<4:0>		216		
RX1PPS	—	_	—			RX1PPS<	4:0>		218		
TX1PPS	—	_	_			TX1PPS<4	4:0>		216		
SSP2CLKPPS	—	_	_		S	SP2CLKPP	S<4:0>		216		
SSP2DATPPS	—	_	—		S	SP2DATPP	S<4:0>		216		

© 2015-2017 Microchip Technology Inc.

Mada	MODE	<4:0>	Output	On creation		Timer Control	
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop
		000		Software gate (Figure 20-4)	ON = 1	_	ON = 0
		001	Period Pulse	Hardware gate, active-high (Figure 20-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0
		010	Fuise	Hardware gate, active-low	ON = 1 and TMRx_ers = 0	_	ON = 0 or TMRx_ers = 1
Free	0.0	011		Rising or falling edge Reset		TMRx_ers	
Running Period	00	100	Period	Rising edge Reset (Figure 20-6)		TMRx_ers ↑	ON = 0
		101	Pulse	Falling edge Reset		TMRx_ers ↓	
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0
		111	Reset	High level Reset (Figure 20-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1
		000	One-shot	Software start (Figure 20-8)	ON = 1	_	
		001 EG	Edge	Rising edge start (Figure 20-9)	ON = 1 and TMRx_ers ↑	_	
		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or
One-shot	01	100	Edge	Rising edge start and Rising edge Reset (Figure 20-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	Next clock after TMRx = PRx
		101	triggered start and hardware Reset	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓ (Note 2)	
		110		Low lovel Deast (Figure 20.11) TMDy are t		TMRx_ers = 0	
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1	
		000		Rese	rved		
		001	Edge	Rising edge start (Figure 20-12)	ON = 1 and TMRx_ers ↑	—	ON = 0 or
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	Next clock after
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	TMRx = PRx (Note 3)
Reserved	10	100		Rese	rved		•
Reserved		101		Rese	rved		
		110	Level triggered	High level start and Low level Reset (Figure 20-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or
One-shot		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)
Reserved	11	xxx		Rese	rved		

TABLE 20-1: TIMER2 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPTMRS	P4TSE	L<1:0>	P3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	EL<1:0>	286
PWM3CON	EN	_	OUT	POL	_	—	_	—	285
PWM3DCH				DC<7	:0>				287
PWM3DCL	DC<	9:8>>	_	—	—	—	—	—	287
PWM4CON	EN	_	OUT	POL	_	—	_	—	285
PWM4DCH				DC<7	:0>				287
PWM4DCL	DC<	<9:8>	_	_	—	—	_	—	287
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	—	INT2EDG	INT1EDG	INT0EDG	170
PIE4	_	_	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	183
PIR4	_	_	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	175
IPR4	_	_	TMR6IP	TMR5IP	TMR4IP	TMR3IP	TMR2IP	TMR1IP	191
RxyPPS	_	_	_		R	xyPPS<4:0>			218
TMR2				TMR2<	7:0>				244*
PR2				PR2<7	':0>				244*
T2CON	T2ON		T2CKPS<2:0>			T2OUTF	PS<3:0>		262
T2HLT	T2PSYNC	T2CPOL	T2CSYNC		T:	2MODE<4:0>	•		263
T2CLKCON	_	_	_	_		T2CS	<3:0>		264
T2RST		_	_	_		T2RSE	L<3:0>		265
PMD3	_	_	_	_	PWM4MD	PWM3MD	CCP2MD	CCP1MD	71

TABLE 22-4: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM. * Not a physical location.

24.7 Rising Edge and Reverse Dead Band

In Half-Bridge mode, the rising edge dead band delays the turn-on of the CWG1A output after the rising edge of the CWG data input. In Full-Bridge mode, the reverse dead-band delay is only inserted when changing directions from Forward mode to Reverse mode, and only the modulated output CWG1B is affected.

The CWG1DBR register determines the duration of the dead-band interval on the rising edge of the input source signal. This duration is from 0 to 64 periods of the CWG clock.

Dead band is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWG1DBR register value is double-buffered. When EN = 0 (Register 24-1), the buffer is loaded when CWG1DBR is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input, after the LD bit (Register 24-1) is set. Refer to Figure 24-12 for an example.

24.8 Falling Edge and Forward Dead Band

In Half-Bridge mode, the falling edge dead band delays the turn-on of the CWG1B output at the falling edge of the CWG data input. In Full-Bridge mode, the forward dead-band delay is only inserted when changing directions from Reverse mode to Forward mode, and only the modulated output CWG1D is affected.

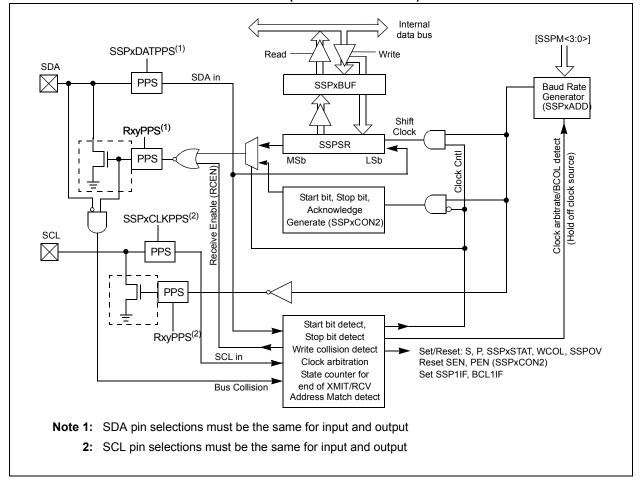
The CWG1DBF register determines the duration of the dead-band interval on the falling edge of the input source signal. This duration is from zero to 64 periods of CWG clock.

Dead-band delay is always initiated on the edge of the input source signal. A count of zero indicates that no dead band is present.

If the input source signal reverses polarity before the dead-band count is completed, then no signal will be seen on the respective output.

The CWG1DBF register value is double-buffered. When EN = 0 (Register 24-1), the buffer is loaded when CWG1DBF is written. If EN = 1, then the buffer will be loaded at the rising edge following the first falling edge of the data input after the LD (Register 24-1) is set. Refer to Figure 24-13 for an example.

controlled through addressing. Figure 26-9 is a block diagram of the I²C interface module in Master mode.


Figure 26-10 is a diagram of the I^2C interface module

in Slave mode.

26.6 I²C Mode Overview

The Inter-Integrated Circuit (I²C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A slave device is

FIGURE 26-9: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCL low and allowing SDA to float.

26.10.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all eight bits are shifted out.

26.10.6.2 WCOL Status Flag

If the user writes the SSPxBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

The WCOL bit must be cleared by software before the next transmission.

26.10.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

26.10.6.4 Typical transmit sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPxBUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 7. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 8. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.

- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPxCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

ADDWFC	ADD W and CARRY bit to f					
Syntax:	ADDWFC f {,d {,a}}					
Operands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$					
Operation:	$(W) + (f) + (C) \rightarrow dest$					
Status Affected:	N,OV, C, DC, Z					
Encoding:	0010 00da ffff ffff					
	Add W, the CARRY flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2 Q3 Q4					
Decode	ReadProcessWrite toregister 'f'Datadestination					
Example:	ADDWFC REG, 0, 1					
Before Instruct CARRY b REG W After Instruction CARRY b REG W	it = 1 = 02h = 4Dh n					

AND	DLW	AI	ND lite	ral with	w		
Synta	ax:	AN	NDLW	k			
Oper	ands:	0 ≤	≤ k ≤ 258	5			
Oper	ation:	(W	/) .AND.	$k\toW$			
Statu	is Affected:	N,	Z				
Enco	oding:		0000	1011	kkk	ck	kkkk
Description:				nts of W a 'k'. The r			d with the aced in W.
Word	ls:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1		Q2	Q3	5		Q4
	Decode	Rea	ad literal 'k'	Proce Dat		Wı	rite to W
Exan	nple:	AN	IDLW	05Fh			
	Before Instruc	tion					
	W	=	A3h				
	After Instruction	on					
	W	=	03h				

GOTO	Uncondit	ional Branc	h	INCF	Incremen	tf		
Syntax:	GOTO k			Syntax:	INCF f{,c	1 {,a}}		
Operands:	$0 \le k \le 104$	8575		Operands:	$0 \leq f \leq 255$			
Operation:	$k \rightarrow PC<20$):1>			d ∈ [0,1]			
Status Affected:	None			Operation:	a ∈ [0,1] (f) + 1 → de	oot		
Encoding:				Status Affected:	()			
1st word (k<7:0>)		1111 k ₇ k	0		C, DC, N,			
2nd word(k<19:8> Description:	,	k ₁₉ kkk kkl	0	Encoding: Description:	0010 The conten	10da	ffff	ffff
	value [°] 'k' is l	emory range. T loaded into PC ways a 2-cycle	C<20:1>.		incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is select If 'a' is '1', the BSR is used to select		sult is ault). selected	
Words:	2				GPR bank. If 'a' is '0' a		ended ir	struction
Cycles:	2				set is enab	led, this ins	struction	operates
Q Cycle Activity:					in Indexed			•
Q1	Q2	Q3	Q4		mode wher tion 35.2.3		• •	
Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC		Oriented In eral Offset	nstruction	s in Ind	lexed Lit-
No	No	No	No	Words:	1			
operation	operation	operation	operation	Cycles:	1			
				Q Cycle Activity:				
Example:	GOTO THE	RE		Q1	Q2	Q3		Q4
After Instruct PC =	ion Address (TI	HERE)		Decode	Read register 'f'	Proces Data	-	Write to estination
				Example:	INCF	CNT, 1	, 0	
				Before Instruc	tion			

CNT Z DC

After Instruction

CNT Z C DC FFh 0 ? ?

= = =

= = =

MOVFF	Move f to			MOVLB	Move lite	ral to low ni	bble in BSR	
Syntax:	MOVFF f _s ,f _d			Syntax:	MOVLW k			
Operands:	$0 \le f_s \le 409$			Operands:	$0 \le k \le 255$			
	$0 \le f_d \le 409$	15		Operation:	$k \to BSR$			
Operation:	$(f_s) \rightarrow f_d$			Status Affected:	Status Affected: None			
Status Affected:	None			Encoding:	0000	0001 kk	kk kkkk	
Encoding: 1st word (source) 2nd word (destin.) Description:	1100 1111	5		Description:	Bank Selec of BSR<7:4	eral 'k' is load t Register (BS > always rem of the value o	SR). The value ains '0',	
Description.		estination regis		Words:	1			
	Location of	source 'f_s' can	be anywhere	Cycles:	1			
		-byte data space location of dest			I			
	,	anywhere from	u	Q Cycle Activity: Q1	Q2	Q3	Q4	
		ce or destinatio pecial situation)		Decode	Read literal 'k'	Process Data	Write literal 'k' to BSR	
	peripheral r buffer or an The моvғғ	instruction car J, TOSH or TO	s the transmit not use the	<u>Example</u> : Before Instruc BSR Reg After Instructio BSR Reg	gister = 02 on			
Words:	2							
Cycles:	2 (3)							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f' (src)	Process Data	No operation					
Decode	No operation No dummy read	No operation	Write register 'f' (dest)					
Example: Before Instruc REG1 REG2 After Instructic REG1 REG2	tion = 33 = 111	h						

TST	FSZ	Test f, ski	Test f, skip if 0						
Synta	ax:	TSTFSZ f {	TSTFSZ f {,a}						
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]							
Oper	ation:	skip if f = 0							
Statu	s Affected:	None							
Enco	ding:	0110	011a fff	f ffff					
Desc	ription:	during the c is discarded making this If 'a' is '0', tl If 'a' is '1', tl GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when tion 35.2.3 Oriented In	If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.						
Word	ls:	1							
Cycle	es:		/cles if skip an a 2-word instru						
QC	ycle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read	Process	No					
lf sk	in [.]	register 'f'	Data	operation					
II OK	Q1	Q2	Q3	Q4					
1	No	No	No	No					
	operation	operation	operation	operation					
lf sk	ip and followed	-		<i></i>					
i	Q1	Q2	Q3	Q4					
	No operation	No operation	No operation	No operation					
	No	No	No	No					
	operation	operation	operation	operation					
Example: HERE TSTFSZ CNT, 1 NZERO : ZERO :									
	Before Instruc		dress (HERE						
	PC After Instructio)							
	If CNT PC If CNT PC PC PC	= 00 = Ad ≠ 00	dress (ZERO						

XOF	RLW	Exclusiv	Exclusive OR literal with W						
Synta	ax:	XORLW	k						
Oper	ands:	$0 \le k \le 25$	5						
Oper	ation:	(W) .XOR	$k \to W$						
Statu	s Affected:	N, Z							
Enco	ding:	0000	1010	kkkk	kkkk				
Desc	ription:	The conte the 8-bit li in W.			ed with t is placed				
Word	ls:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'k'	Proce Data		/rite to W				
Exan	nple:	XORLW	0AFh						
	Before Instruc	tion							

Before Instruction W = B5h After Instruction

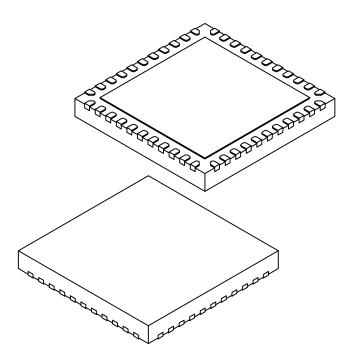
W = 1Ah

© 2015-2017 Microchip Technology Inc.

SUB	FSR	Subtrac	t Literal	from F	SR			
Synta	ax:	SUBFSR	SUBFSR f, k					
Oper	ands:	$0 \le k \le 63$	5					
		f ∈ [0, 1,	2]					
Oper	ation:	FSR(f) – I	$c \to FSRf$					
Statu	s Affected:	None						
Enco	ding:	1110	1001	ffkk	kkkk			
Desc	ription:	The 6-bit	The 6-bit literal 'k' is subtracted from					
			the contents of the FSR specified by					
		'f'.	ʻfʻ.					
Word	s:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read	Read Process		Write to			
		register 'f'	Data	a c	destination			
Evan	nle [.]	CIIDECD	2 22h					

Example:	SUBFSR	2,	23h

Before Instru	ction	
FSR2	=	03FFh
After Instruct	ion	
FSR2	=	03DCh


Syntax:	SL	SUBULNK k			
Operands:	0 :	$0 \le k \le 63$			
Operation:	FS	$FSR2 - k \rightarrow FSR2$			
	(T	$(TOS) \rightarrow PC$			
Status Affecte	d: No	one			
Encoding:		1110 10	01	11kk	kkkk
Words:	Th ex se Th the '11 1 2	2			
Cycles: Q Cycle Acti		Q2		Q3	Q4
		042			
Q Cycle Acti		Read register 'f'	Pro	ocess Data	Write to destination
Q Cycle Acti	de	Read	Pro		

Example: SUBULNK 23h

Before Instru	ction		
FSR2	=	03FFh	
PC	=	0100h	
After Instruction			
FSR2	=	03DCh	
PC	=	(TOS)	

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	44			
Pitch	е	0.65 BSC			
Overall Height	Α	0.80 0.90 1.00			
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.25 6.45 6.60			
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

TABLE B-1: DEVICE DIFFERENCES

Features ⁽¹⁾	PIC18(L)F26K40	PIC18(L)F45K40	PIC18(L)F46K40
Program Memory (Bytes)	65536	32768	65536
SRAM (Bytes)	3720	2048	3720
EEPROM (Bytes)	1024	256	1024
Interrupt Sources	36	36	36
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Capture/Compare/PWM Modules (CCP)	2	2	2
10-bit Analog-to-Digital Module	4 internal 24 external	4 internal 35 external	4 internal 35 external
Packages	28-pin SPDIP 28-pin SOIC 28-pin SSOP 28-pin QFN 28-pin UQFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN	40-pin PDIP 40-pin UQFN 44-pin TQFP 44-pin QFN

Note 1: PIC18F2x/4xK40: operating voltage, 2.3V-5.5V. PIC18LF2x/4xK40: operating voltage, 1.8V-3.6V.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820