

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k40-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.2.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. Low-Power Brown-Out Reset (LPBOR), if enabled
- 4. POR Reset
- 5. Windowed Watchdog Timer, if enabled
- 6. All interrupt sources except clock switch interrupt can wake-up the part.

The first five events will cause a device Reset. The last one event is considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 8.13 "Determining the Cause of a Reset"**.

When the SLEEP instruction is being executed, the next instruction (PC + 2) is prefetched. For the device to wake-up through an interrupt event, the corresponding Interrupt Enable bit must be enabled, as well as the Peripheral Interrupt Enable bit (PEIE = 1), for every interrupt not in PIRO. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP instruction, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes-up from Sleep, regardless of the source of wake-up.

Upon a wake from a Sleep event, the core will wait for a combination of three conditions before beginning execution. The conditions are:

- PFM Ready
- COSC-Selected Oscillator Ready
- BOR Ready (unless BOR is disabled)

6.2.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source, with the exception of the clock switch interrupt, has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared
- If the interrupt occurs **during or after** the execution of a SLEEP instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

9.1 Register Definitions: Windowed Watchdog Timer Control

U-0	U-0	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W ⁽³⁾ -q/q ⁽²⁾	R/W-0/0
—	-			WDTPS<4:0>			SEN
oit 7							bit (
_egend:							
R = Readab	le bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is un	changed	x = Bit is unkno	own	-n/n = Value a	t POR and BO	R/Value at all oth	ner Resets
1' = Bit is se	et	'0' = Bit is clea	red	q = Value dep	ends on condit	on	
bit 7-6	Unimpleme	ented: Read as '0	,				
oit 5-1	WDTPS<4:	0>: Watchdog Tin	ner Prescale S	elect bits ⁽¹⁾			
	Bit Value =	Prescale Rate					
	11111 = F	Reserved. Results	in minimum in	terval (1:32)			
	•						
	•						
	10011 = F	Reserved. Results	in minimum in	terval (1:32)			
	10010 = 1	:8388608 (2 ²³) (li	nterval 256s no	ominal)			
	10001 = 1	:4194304 (2 ²²) (lı :2097152 (2 ²¹) (lı	nterval 128s no	ominal)			
	10000 = 1	:1048576 (2 ²⁰) (II	nterval 648 noi	ninal) minal)			
	01110 = 1	:524288 (2 ¹⁹) (Int	terval 16s nom	inal)			
	01101 = 1	:262144 (2 ¹⁸) (Int	terval 8s nomir	nal)			
		:131072 (2 ¹⁷) (Int					
		:65536 (Interval 2		eset value)			
		:32768 (Interval 1		D			
		:16384 (Interval 5 :8192 (Interval 25					
		:4096 (Interval 12					
		:2048 (Interval 64					
		:1024 (Interval 32	-				
		:512 (Interval 16					
		:256 (Interval 8 m :128 (Interval 4 m					
		:64 (Interval 2 ms					
		:32 (Interval 1 ms	,				
oit 0	SEN: Softw	are Enable/Disab	le for Watchdo	g Timer bit			
	If WDTE<1:						
	This bit is ig						
	$\frac{\text{If WDTE} < 1}{1 - \text{WDT is}}$						
	1 = WDT is 0 = WDT is						
	If WDTE<1:						
	This bit is ig						

REGISTER 9-1: WDTCON0: WATCHDOG TIMER CONTROL REGISTER 0

- 2: When WDTCPS <4:0> in CONFIG3L = 11111, the Reset value of WDTPS<4:0> is 01011. Otherwise, the Reset value of WDTPS<4:0> is equal to WDTCPS<4:0> in CONFIG3L.
- 3: When WDTCPS <4:0> in CONFIG3L \neq 11111, these bits are read-only.

TADLE 13-3.	SUMIMART OF REGISTERS ASSOCIATED WITH CRC						1			
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CRCACCH		ACC<15:8>								
CRCACCL				ACC	<7:0>				153	
CRCCON0	EN	GO	BUSY	ACCM	—	—	SHIFTM	FULL	151	
CRCCON1		DLEN<	3:0>			PLEI	N<3:0>		151	
CRCDATH				DATA	<15:8>				152	
CRCDATL				DATA	\<7:0>				152	
CRCSHIFTH				SHIFT	<15:8>				153	
CRCSHIFTL				SHIF	T<7:0>				153	
CRCXORH				X<1	15:8>				154	
CRCXORL				X<7:1>				—	154	
PMD0	SYSCMD	FVRMD	HLVDMD	CRCMD	SCANMD	NVMMD	CLKRMD	IOCMD	68	
SCANCON0	SCANEN	SCANGO	BUSY	INVALID	INTM	—	MODE	=<1:0>	155	
SCANHADRU	—	—			HADF	R<21:16>			157	
SCANHADRH				HADR	<15:8>				158	
SCANHADRL				HAD	R<7:0>				158	
SCANLADRU	—	—			LADF	R<21:16>			156	
SCANLADRH	LADR<15:8>						156			
SCANLADRL	LADR<7:0>						157			
SCANTRIG	_	_	_			TSEI	_<3:0>		159	
INTCON	GIE/GIEH	PEIE/GIEL	IPEN		_	INT2EDG	INT1EDG	INT0EDG	170	
PIR7	SCANIF	CRCIF	NVMIF		_	_	_	CWG1IF	178	
PIE7	SCANIE	CRCIE	NVMIE	_	_	_	—	CWG1IE	186	
IPR7	SCANIP	CRCIP	NVMIP		_		_	CWG1IP	194	

TABLE 13-5:	SUMMARY OF REGISTERS ASSOCIATED WITH CRC
-------------	--

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the CRC module.

18.1 Timer0 Operation

Timer0 can operate as either an 8-bit timer/counter or a 16-bit timer/counter. The mode is selected with the T016BIT bit of the T0CON register.

18.1.1 16-BIT MODE

The register pair TMR0H:TMR0L, increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

18.1.1.1 Timer0 Reads and Writes in 16-Bit Mode

In 16-bit mode, to avoid rollover between reading high and low registers, the TMR0H register is a buffered copy of the actual high byte of Timer0, which is neither directly readable nor writable (see Figure 18-1). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte was valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

18.1.2 8-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

In 8-bit mode, the value of TMR0L is compared to that of the Period buffer, a copy of TMR0H, on each clock cycle. When the two values match, the following events happen:

- TMR0_out goes high for one prescaled clock period
- TMR0L is reset
- The contents of TMR0H are copied to the period buffer

In 8-bit mode, the TMR0L and TMR0H registers are both directly readable and writable. The TMR0L register is cleared on any device Reset, while the TMR0H register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- A write to the TMR0L register
- A write to either the T0CON0 or T0CON1 registers
- Any device Reset Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or
- Brown-out Reset (BOR)

18.1.3 COUNTER MODE

In Counter mode, the prescaler is normally disabled by setting the T0CKPS bits of the T0CON1 register to '0000'. Each rising edge of the clock input (or the output of the prescaler if the prescaler is used) increments the counter by '1'.

18.1.4 TIMER MODE

In Timer mode, the Timer0 module will increment every instruction cycle as long as there is a valid clock signal and the T0CKPS bits of the T0CON1 register (Register 18-2) are set to '0000'. When a prescaler is added, the timer will increment at the rate based on the prescaler value.

18.1.5 ASYNCHRONOUS MODE

When the TOASYNC bit of the TOCON1 register is set (TOASYNC = '1'), the counter increments with each rising edge of the input source (or output of the prescaler, if used). Asynchronous mode allows the counter to continue operation during Sleep mode provided that the clock also continues to operate during Sleep.

18.1.6 SYNCHRONOUS MODE

When the T0ASYNC bit of the T0CON1 register is clear (T0ASYNC = 0), the counter clock is synchronized to the system clock (Fosc/4). When operating in Synchronous mode, the counter clock frequency cannot exceed Fosc/4.

18.2 Clock Source Selection

The T0CS<2:0> bits of the T0CON1 register are used to select the clock source for Timer0. Register 18-2 displays the clock source selections.

18.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, Timer0 operates as a timer and will increment on multiples of the clock source, as determined by the Timer0 prescaler.

18.2.2 EXTERNAL CLOCK SOURCE

When an external clock source is selected, Timer0 can operate as either a timer or a counter. Timer0 will increment on multiples of the rising edge of the external clock source, as determined by the Timer0 prescaler.

REGISTER 18-3: TMR0L: TIMER0 COUNT REGISTER

	•••••••						
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMR	0<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit		U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	inged	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 TMR0<7:0>:TMR0 Counter bits <7:0>

REGISTER 18-4: TMR0H: TIMER0 PERIOD REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TMR0<15:8>							
bit 7						bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 When T016BIT = 0 PR0<7:0>:TMR0 Period Register Bits <7:0> When T016BIT = 1 TMR0<15:8>: TMR0 Counter bits <15:8>

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TMR0L	TMR0<7:0>								226
TMR0H				TMR0	<15:8>				226
T0CON0	T0EN	—	TOOUT	T016BIT		TOOUTPS	<3:0>		224
T0CON1		T0CS<2:0>		TOASYNC	T0ASYNC T0CKPS<3:0>				225
T0CKIPPS	—	—	—		TOCK	IPPS<4:0>			216
TMR0PPS	_	—	_		TMRC)PPS<4:0>			216
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	170
PIR0	—	—	TMR0IF	IOCIF	—	INT2IF	INT1IF	INT0IF	171
PIE0	—	—	TMR0IE	IOCIE	_	INT2IE	INT1IE	INT0IE	179
IPR0	—	—	TMR0IP	IOCIP	—	INT2IP	INT1IP	INT0IP	187
PMD1	_	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	69

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

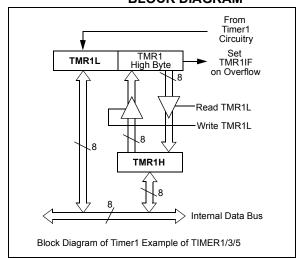
© 2015-2017 Microchip Technology Inc.

19.7 Timer1/3/5 16-Bit Read/Write Mode

Timer1/3/5 can be configured to read and write all 16 bits of data, to and from, the 8-bit TMRxL and TMRxH registers, simultaneously. The 16-bit read and write operations are enabled by setting the RD16 bit of the TxCON register.

To accomplish this function, the TMRxH register value is mapped to a buffer register called the TMRxH buffer register. While in 16-Bit mode, the TMRxH register is not directly readable or writable and all read and write operations take place through the use of this TMRxH buffer register.

When a read from the TMRxL register is requested, the value of the TMRxH register is simultaneously loaded into the TMRxH buffer register. When a read from the TMRxH register is requested, the value is provided from the TMRxH buffer register instead. This provides the user with the ability to accurately read all 16 bits of the Timer1/3/5 value from a single instance in time. Reference the block diagram in Figure 19-2 for more details.


In contrast, when not in 16-Bit mode, the user must read each register separately and determine if the values have become invalid due to a rollover that may have occurred between the read operations.

When a write request of the TMRxL register is requested, the TMRxH buffer register is simultaneously updated with the contents of the TMRxH register. The value of TMRxH must be preloaded into the TMRxH buffer register prior to the write request for the TMRxL register. This provides the user with the ability to write all 16 bits to the TMRxL:TMRxH register pair at the same time.

Any requests to write to the TMRxH directly does not clear the Timer1/3/5 prescaler value. The prescaler value is only cleared through write requests to the TMRxL register.

FIGURE 19-2:

TIMER1/3/5 16-BIT READ/WRITE MODE BLOCK DIAGRAM

19.8 Timer1/3/5 Gate

Timer1/3/5 can be configured to count freely or the count can be enabled and disabled using Timer1/3/5 gate circuitry. This is also referred to as Timer1/3/5 gate enable.

Timer1/3/5 gate can also be driven by multiple selectable sources.

19.8.1 TIMER1/3/5 GATE ENABLE

The Timer1/3/5 Gate Enable mode is enabled by setting the TMRxGE bit of the TxGCON register. The polarity of the Timer1/3/5 Gate Enable mode is configured using the TxGPOL bit of the TxGCON register.

When Timer1/3/5 Gate Enable mode is enabled, Timer1/3/5 will increment on the rising edge of the Timer1/3/5 clock source. When Timer1/3/5 Gate signal is inactive, the timer will not increment and hold the current count. Enable mode is disabled, no incrementing will occur and Timer1/3/5 will hold the current count. See Figure 19-4 for timing details.

TABLE 19-3:	TIMER1/3/5 GATE ENABLE
	SELECTIONS

TMRxCLK	TxGPOL	TxG	Timer1/3/5 Operation
\uparrow	1	1	Counts
\uparrow	1	0	Holds Count
1	0	1	Holds Count
\uparrow	0	0	Counts

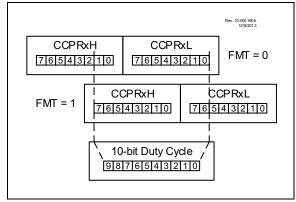
20.6 Timer2 Operation During Sleep

When PSYNC = 1, Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and T2PR registers will remain unchanged while processor is in Sleep mode.

When PSYNC = 0, Timer2 will operate in Sleep as long as the clock source selected is also still running. Selecting the LFINTOSC, MFINTOSC, or HFINTOSC oscillator as the timer clock source will keep the selected oscillator running during Sleep.

R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	
P4TSE	P4TSEL<1:0>		L<1:0>	C2TSE	EL<1:0>	C1TSE	L<1:0>	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 7-6		>: PWM4 Time		S				
		based on TMR						
		based on TMR						
	01 = PWW4 00 = Reserv	based on TMR	2					
			r Calastian hit	-				
bit 5-4		>: PWM3 Time based on TMR		.5				
		based on TMR	-					
		based on TMR	-					
	00 = Reserv		-					
bit 3-2	C2TSEL<1:0	>: CCP2 Timer	Selection bits	6				
	11 = CCP2 is	based off Time	er5 in Capture	/Compare mod	le and Timer6 i	n PWM mode		
	10 = CCP2 is	based off Time	er3 in Capture	/Compare mod	le and Timer4 i	n PWM mode		
			er1 in Capture	e/Compare mod	le and Timer2 i	n PWM mode		
	00 = Reserve	ed						
bit 1-0		>: CCP1 Timer						
	11 = CCP1 is based off Timer5 in Capture/Compare mode and Timer6 in PWM mode							
				/Compare mod				
			er1 in Capture	e/Compare mod	le and Timer2 i	n PWM mode		
	00 = Reserve	ed						

REGISTER 21-2: CCPTMRS: CCP TIMERS CONTROL REGISTER


21.5.5 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the CCPRxH:CCPRxL register pair. The alignment of the 10-bit value is determined by the FMT bit of the CCPxCON register (see Figure 21-5). The CCPRxH:CCPRxL register pair can be written to at any time; however the duty cycle value is not latched into the 10-bit buffer until after a match between PR2 and TMR2.

Equation 21-2 is used to calculate the PWM pulse width.

Equation 21-3 is used to calculate the PWM duty cycle ratio.

FIGURE 21-5: PWM 10-BIT ALIGNMENT

EQUATION 21-2: PULSE WIDTH

Pulse Width = (CCPRx)	H:CCPRxL register pair) •
Tosc	• (TMR2 Prescale Value)

EQUATION 21-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPRxH:CCPRxL register pair)}{4(PR2 + 1)}$$

CCPRxH:CCPRxL register pair are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH:CCPRxL register pair, then the CCPx pin is cleared (see Figure 21-4).

21.5.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 21-4.

EQUATION 21-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse-width value is greater than the period the assigned PWM pin(s) will remain unchanged.

R/W-0	R/W/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾
bit 7			I				bit (
Legend:	1.1.1						
R = Readab		W = Writable	DIT	HC = Bit is cle	•		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	GCEN: Gene	eral Call Enable	bit				
	Unused in M	aster mode.					
bit 6	ACKSTAT: A	cknowledge Sta	atus bit (Master	r Transmit mod	e only)		
		edge was not re		ave			
		edge was receiv					
bit 5		nowledge Data	bit (Master Re	ceive mode onl	y) ⁽¹⁾		
	1 = Not Ackn						
	0 = Acknowle	•		(2)			
bit 4		nowledge Sequ			ning and trang	mits ACKDT dat	ha hiti
		ically cleared by			pins and trans		la DIL,
		edge sequence					
bit 3	RCEN: Rece	ive Enable bit (Master Receive	e mode only) ⁽²⁾			
	1 = Enables	Receive mode f	or I ² C				
	0 = Receive						
bit 2	PEN: Stop C	ondition Enable	bit ⁽²⁾				
	1 = Initiates S 0 = Stop con	•	n SDAx and S	CLx pins; autor	natically cleare	ed by hardware	
bit 1	RSEN: Repe	ated Start Conc	lition Enable bi	t ⁽²⁾			
		Repeated Start d Start condition		DAx and SCLx	pins; automat	tically cleared by	/ hardware
bit 0	SEN: Start C	ondition Enable	bit ⁽²⁾				
	1 = Initiates \$ 0 = Start con		n SDAx and S	CLx pins; autor	matically clear	ed by hardware	
	The value that w eceive.	ill be transmitted	d when the use	er initiates an A	cknowledge se	equence at the e	end of a
2.	f the l^2 C module	is active these	bite may not k	no oot (no onoo	ling) and the S		

2: If the I²C module is active, these bits may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

26.8.9 ACKNOWLEDGE SEQUENCE

The ninth SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an \overline{ACK} is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPxCON3 register are clear.

There are certain conditions where an ACK will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

26.9 I²C Slave Mode Operation

The MSSP Slave mode operates in one of four modes selected by the SSPM bits of the SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

26.9.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 26-5) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSP Mask register affects the address matching process. See **Section 26.9.9** "**SSP Mask Register**" for more information.

26.9.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

26.9.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSb's of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCL is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPxIF and UA are set, and SCL is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

26.9.2 SLAVE RECEPTION

When the R/W bit of a matching received address byte is clear, the R/W bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 26-3.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register, except sometimes in 10-bit mode. See **Section 26.9.6.2 "10-bit Addressing Mode"** for more detail.

© 2015-2017 Microchip Technology Inc.

26.9.8 GENERAL CALL ADDRESS SUPPORT

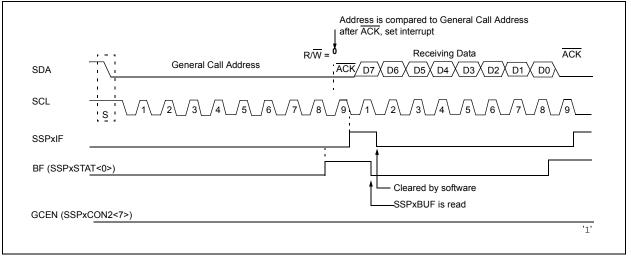
The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I²C protocol, defined as address 0x00. When the GCEN bit of the SSPxCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPxADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSPxBUF and respond. Figure 26-24 shows general reception а call sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode. If the AHEN bit of the SSPxCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

26.9.9 SSP MASK REGISTER

An SSP Mask (SSPxMSK) register (Register 26-12) is available in I²C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care".


This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

• 7-bit Address mode: address compare of A<7:1>.

10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

		SYNC = 0, BRGH = 0, BRG16 = 0													
BAUD	Fosc = 32.000 MHz			Fosc	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)			
300	_		_	_		_	_		_	_					
1200	—	—	—	1221	1.73	255	1200	0.00	239	1200	0.00	143			
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71			
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17			
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16			
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8			
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2			
115.2k	—	_	_	—	—	—	—	—	—	—	—	—			

TABLE 27-5: SAMPLE BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0													
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz		Fosc = 3.6864 MHz			Fosc = 1.000 MHz						
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)			
300		_	_	300	0.16	207	300	0.00	191	300	0.16	51			
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12			
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	_	_	_			
9600	9615	0.16	12	_	_	_	9600	0.00	5	_	_	_			
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_			
19.2k	_	_	_	_	_	_	19.20k	0.00	2	_	_	_			
57.6k	—	—	—	—	—	—	57.60k	0.00	0	—	_	—			
115.2k	—	_	_	—	_	—	—	_	—	—	—	—			

					SYNC = 0, BRGH = 1, BRG16 = 0								
BAUD	Fosc = 32.000 MHz		Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300			_			_		_	_		_	_	
1200	_	_	—	_	_	—	—	_	—	—	_	_	
2400		_	_	_	_	_	_	_	_	_	_	_	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

FIGURE 27-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RXx/DTx pin TXx/CKx pin (SCKP = 0)	
TXx/CKx pin (SCKP = 1) Write to bit SREN	
SREN bit	·0'
RCxIF bit (Interrupt) ——— Read RCxREG ————	
Note: Timing dia	agram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .

TABLE 27-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0	204
ANSELC	ANSELC7	ANSELC6	ANSELC5	ANSELC4	ANSELC3	ANSELC2	ANSELC1	ANSELC0	204
BAUDxCON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	395
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	-	-	INT2EDG	INT1EDG	INT0EDG	170
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	182
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	174
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	190
RCxREG			EUS	ARTx Receiv	e Data Regis	ter			399*
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	394
RxyPPS	_	_	_		F	RxyPPS<4:0>			218
RXxPPS	_	_	_			RXPPS<4:0>			216
SPxBRGH	EUSARTx Baud Rate Generator, High Byte							404*	
SPxBRGL		EUSARTx Baud Rate Generator, Low Byte							404*
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	393

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

SUB	FSR	Subtrac	Subtract Literal from FSR							
Synta	ax:	SUBFSR	f, k							
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$							
		f ∈ [0, 1,	f ∈ [0, 1, 2]							
Oper	ation:	FSR(f) – I	$FSR(f) - k \rightarrow FSRf$							
Statu	s Affected:	None								
Enco	ding:	1110	1001	ffkk	kkkk					
Desc	ription:	The 6-bit	The 6-bit literal 'k' is subtracted from							
		the conter	nts of the	FSR spe	ecified by					
		'f'.								
Word	s:	1	1							
Cycle	es:	1								
QC	ycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Read	Proce	ess	Write to					
		register 'f'	Data	a c	destination					
Evan	nle [.]	CIIDECD	2 22h							

Example:	SUBFSR	2,	23h

Before Instru	ction	
FSR2	=	03FFh
After Instruct	ion	
FSR2	=	03DCh

Syntax:	SU	BULNK k						
Operands:	0 ≤	k ≤ 63						
Operation:	FSI	$R2 - k \rightarrow FS$	R2					
	(TC	$(TOS) \rightarrow PC$						
Status Affected	l: Nor	None						
Encoding:	1	110 10	01	11kk	kkkk			
Words:	The exe sec This the '11 1 2	ecuted by loa e instruction t ecute; a NOP i cond cycle. s may be tho SUBFSR inst '); it operates	akes tw s perfo ught of ruction	vo cycle ormed du as a spe , where t	s to uring the ecial case of f = 3 (binary			
Cycles: Q Cycle Activ		Q2	(23	Q4			
Q Cycles: Q Cycle Activ Q1		QZ						
Q Cycle Activ	le	Read register 'f'	Pro	ocess ata	Write to destination			
Q Cycle Activ	le	Read	Pro D	cess				

Example: SUBULNK 23h

Before Instru	ction	
FSR2	=	03FFh
PC	=	0100h
After Instructi	on	
FSR2	=	03DCh
PC	=	(TOS)

36.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

36.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

36.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

36.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

36.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
Data EE	PROM Me	mory Specifications					·		
MEM20	ED	DataEE Byte Endurance	100k	_	—	E/W	$-40^\circ C \le T_A \le +85^\circ C$		
MEM21	T _{D_RET}	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated		
MEM22	N _{D_REF}	Total Erase/Write Cycles before Refresh	1M 500k	10M —	_	E/W	$\begin{array}{l} -40^{\circ}C \leq TA \leq +60^{\circ}C \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \end{array}$		
MEM23	$V_{D_{RW}}$	VDD for Read or Erase/Write operation	VDDMIN	_	VDDMAX	V			
MEM24	T _{D_BEW}	Byte Erase and Write Cycle Time		4.0	5.0	ms			
Program	Flash Me	emory Specifications		•	•				
MEM30	E _P	Flash Memory Cell Endurance	10k	_	_	E/W	-40°C ≤ TA ≤ +85°C (Note 1)		
MEM32	T _{P_RET}	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated		
MEM33	V _{P_RD}	VDD for Read operation	VDDMIN	—	VDDMAX	V			
MEM34	$V_{P_{REW}}$	VDD for Row Erase or Write operation	VDDMIN	_	VDDMAX	V			
MEM35	T _{P_REW}	Self-Timed Row Erase or Self-Timed Write	_	2.0	2.5	ms			

TABLE 37-5: MEMORY PROGRAMMING SPECIFICATIONS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Flash Memory Cell Endurance for the Flash memory is defined as: One Row Erase operation and one Self-Timed Write.

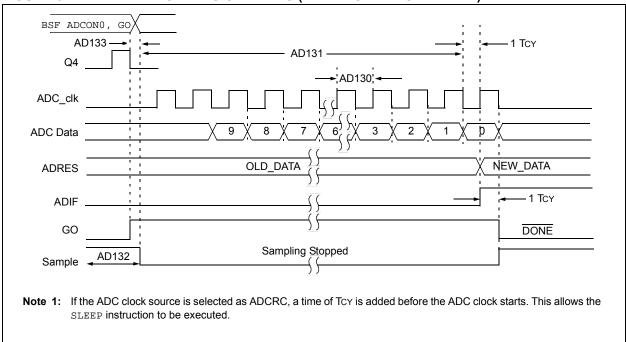
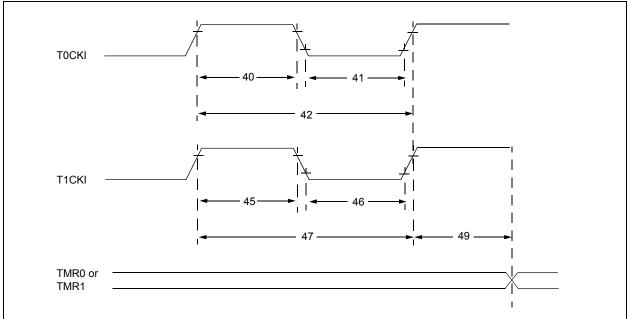
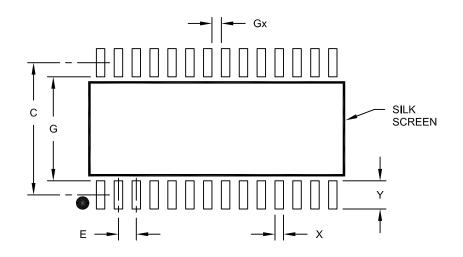



FIGURE 37-11: ADC CONVERSION TIMING (ADC CLOCK FROM ADCRC)


TABLE 37-19: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym.		Characteristi	с	Min.	Typ†	Max.	Units	Conditions
40*	T⊤0H			No Prescaler	0.5 Tcy + 20	-	_	ns	
				With Prescaler	10	_		ns	
41*	TT0L	T0CKI Low Pulse Width		No Prescaler	0.5 Tcy + 20	_		ns	
				With Prescaler	10	_		ns	
42*	Тт0Р	T0CKI Period	KI Period			—	_	ns	N = prescale value
45*	TT1H	T1CKI High Time	Synchronous, N	No Prescaler	0.5 Tcy + 20	_	_	ns	
			Synchronous, v	with Prescaler	15	_	_	ns	
			Asynchronous		30	_	_	ns	
46*	TT1L	T1CKI Low Time	Synchronous, N	No Prescaler	0.5 Tcy + 20	_	_	ns	
			Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30		_	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
			Asynchronous		60	—	_	ns	
49*	TCKEZTMR1	Delay from External Clock Edge to Timer			2 Tosc	_	7 Tosc	—	Timers in Sync mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. 28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	n E 1.27 BSC			
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A