

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k40-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADL	$ABLE 2. \qquad 40/44-FIN ALLOCATION TABLE (FICTO(L) + 43/40(440))$																
I/O ⁽²⁾	40-Pin PDIP	40-Pin UQFN	44-Pin QFN	44-Pin TQFP	A/D	Reference	Comparator	Timers	ссь	CWG	ZCD	Interrupt	EUSART	WSQ	MSSP	dn-llud	Basic
RA0	2	17	19	19	ANA0	_	C1INO- C2IN0-	_	_	_	—	IOCA0	_	_	-	Y	_
RA1	3	18	20	20	ANA1	-	C1IN1- C2IN1-	-	-	-	—	IOCA1	-	-	-	Y	-
RA2	4	19	21	21	ANA2	DAC1OUT1 VREF- (DAC5) VREF- (ADC)	C1IN0+ C2IN0+	-	-	-	—	IOCA2	_	_	_	Y	_
RA3	5	20	22	22	ANA3	VREF+ (DAC5) VREF+ (ADC)	C1IN1+	-	-	-	—	IOCA3	-	MDCIN1 ⁽¹⁾	-	Y	_
RA4	6	21	23	23	ANA4	—	—	T0CKI ⁽¹⁾	—	_	_	IOCA4	_	MDCIN2 ⁽¹⁾	_	Y	—
RA5	7	22	24	24	ANA5	_	_	_	_	_	_	IOCA5	_	MDMIN ⁽¹⁾	SS1 ⁽¹⁾	Y	_
RA6	14	29	33	31	ANA6	-	-	-	—	-	—	IOCA6	-	-	-	Y	CLKOUT OSC2
RA7	13	28	32	30	ANA7	-	-	-	-	-	—	IOCA7	_	-	-	Y	OSC1 CLKIN
RB0	33	8	9	8	ANB0	-	C2IN1+	-	-	CWG1 ⁽¹⁾	ZCDIN	IOCB0 INT0 ⁽¹⁾	-	-	SS2 ⁽¹⁾	Y	-
RB1	34	9	10	9	ANB1	-	C1IN3- C2IN3-	-	-	-	—	IOCB1 INT1 ⁽¹⁾	_	_	SCK2 ⁽¹⁾ SCL2 ^(3,4)	Y	-
RB2	35	10	11	10	ANB2	-	-	-	—	-	—	IOCB2 INT2 ⁽¹⁾	-	-	SDI2 ⁽¹⁾ SDA2 ^(3,4)	Y	-
RB3	36	11	12	11	ANB3	—	C1IN2- C2IN2-	-	-	-	-	IOCB3	_	-	-	Y	-
RB4	37	12	14	14	ANB4	—	_	T5G ⁽¹⁾	_	_	_	IOCB4	_	_	_	Y	_
RB5	38	13	15	15	ANB5	—	—	T1G ⁽¹⁾	—	_	—	IOCB5	_	—	—	Y	
RB6	39	14	16	16	ANB6	—	—	—		_	—	IOCB6	CK2 ⁽¹⁾	—	—	Y	ICSPCLK
RB7	40	15	17	17	ANB7	DAC1OUT2	—	T6AIN ⁽¹⁾	—	—	—	IOCB7	RX2/DT2 ⁽¹⁾	—	—	Y	ICSPDAT
RC0	15	30	34	32	ANC0	-	-	T1CKI ⁽¹⁾ T3CKI ⁽¹⁾ T3G ⁽¹⁾	-	_	—	IOCC0	-	-	-	Y	SOSCO
RC1	16	31	35	35	ANC1	—	-	-	CCP2 ⁽¹⁾	-	_	IOCC1	-	—	-	Y	SOSCIN SOSCI

TABLE 2: 40/44-PIN ALLOCATION TABLE (PIC18(L)F45/46K40)

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers (Register 17-1).

2: All pin outputs default to PORT latch data. Any pin can be selected as a peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for I2C logic levels; The SCLx/SDAx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I2C specific or SMBus input buffer thresholds.

2.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-3. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate website (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

3.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data memory are controlled independently. Internal access to the program memory is unaffected by any code protection setting.

3.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Self-writing the program memory is dependent upon the write protection setting. See **Section 3.4 "Write Protection"** for more information.

3.3.2 DATA MEMORY PROTECTION

The entire Data EEPROM Memory space is protected from external reads and writes by the CPD bit in the Configuration Words. When $\overline{CPD} = 0$, external reads and writes of Data EEPROM Memory are inhibited and a read will return all '0's. The CPU can continue to read Data EEPROM Memory regardless of the protection bit settings.

3.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Words define the size of the program memory block that is protected.

3.5 User ID

Eight words in the memory space (200000h-200000Fh) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 11.2 "User ID, Device ID and Configuration Word Access" for more information on accessing these memory locations. For more information on checksum calculation, see the "PIC18(L)F2X/4XK40 Memory Programming Specification" (DS40001772).

7.0 PERIPHERAL MODULE DISABLE (PMD)

Sleep, Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume some amount of power. There may be cases where the application needs what these modes do not provide: the ability to allocate limited power resources to the CPU while eliminating power consumption from the peripherals.

The PIC18(L)F2x/4xK40 family addresses this requirement by allowing peripheral modules to be selectively enabled or disabled, placing them into the lowest possible power mode.

For legacy reasons, all modules are ON by default following any Reset.

7.1 Disabling a Module

Disabling a module has the following effects:

- All clock and control inputs to the module are suspended; there are no logic transitions, and the module will not function.
- The module is held in Reset.
- Any SFR becomes "unimplemented"
 - Writing is disabled
 - Reading returns 00h
- I/O functionality is prioritized as per Section 15.1, I/O Priorities
- All associated Input Selection registers are also disabled

7.2 Enabling a Module

When the PMD register bit is cleared, the module is re-enabled and will be in its Reset state (Power-on Reset). SFR data will reflect the POR Reset values.

Depending on the module, it may take up to one full instruction cycle for the module to become active. There should be no interaction with the module (e.g., writing to registers) for at least one instruction after it has been re-enabled.

7.3 Effects of a Reset

Following any Reset, each control bit is set to '0', enabling all modules.

7.4 System Clock Disable

Setting SYSCMD (PMD0, Register 7-1) disables the system clock (Fosc) distribution network to the peripherals. Not all peripherals make use of SYSCLK, so not all peripherals are affected. Refer to the specific peripheral description to see if it will be affected by this bit.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unkn	iown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is set	t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 7	Unimplemen	ted: Read as 'd)'				
bit 6	TMR6MD: Di	sable Timer TM	IR6 bit				
	1 = TMR6 m	odule disabled					
	0 = TMR6 m	odule enabled					
bit 5	TMR5MD: Di	sable Timer TM	IR5 bit				
	1 = TMR5 m	odule disabled					
	0 = TMR5 m	odule enabled					
bit 4	TMR4MD: Di	sable Timer TM	IR4 bit				
	1 = TMR4 m	odule disabled					
	0 = TMR4 m	odule enabled					
bit 3	TMR3MD: Di	sable Timer TM	IR3 bit				
	1 = TMR3 m	odule disabled					
	0 = TMR3 m	odule enabled					
bit 2	TMR2MD: Di	sable Timer TM	IR2 bit				
	1 = TMR2 m	odule disabled					
b : t . d							
DIC	1 mR1 mD: Dis	sable limer liv	IR'I DI				
	$\perp = TMRTm$	odule disabled					
hit 0		sable Timer TM	IR0 hit				
Situ	1 = TMR0 m	odule disabled					
	0 = TMR0 m	odule enabled					

REGISTER 7-2: PMD1: PMD CONTROL REGISTER 1

8.14 Power Control (PCON0) Register

The Power Control (PCON0) register contains flag bits to differentiate between a:

- Brown-out Reset (BOR)
- Power-on Reset (POR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Window Violation (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON0 register bits are shown in Register 8-2.

Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 8-3).

Software should reset the bit to the inactive state after restart (hardware will not reset the bit).

Software may also set any PCON0 bit to the active state, so that user code may be tested, but no Reset action will be generated.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN							BORRDY	75
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	76
STATUS	_	TO	PD	Ν	OV	Z	DC	С	118
WDTCON0	_	_		WDTPS<4:0> SEN					
WDTCON1	_	V	/DTCS<2:0>	TCS<2:0> — WINDOW<2:0>					

TABLE 8-4: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

	-			•	- /		
R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
		WDTTMR<4:0>			STATE	PSCNT	<17:16>
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable b	oit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	nged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

REGISTER 9-5: WDTTMR: WDT TIMER REGISTER (READ-ONLY)

bit 7-3 WDTTMR<4:0>: Watchdog Window Value bits

	WDT Win	Open Bereent	
WINDOW	Closed	Open	Open Percent
111	N/A	00000-11111	100
110	00000-00011	00100-11111	87.5
101	00000-00111	01000-11111	75
100	00000-01011	01100-11111	62.5
011	00000-01111	10000-11111	50
010	00000-10011	10100-11111	37.5
001	00000-10111	11000-11111	25
000	00000-11011	11100-11111	12.5

bit 2 STATE: WDT Armed Status bit

1 = WDT is armed

0 = WDT is not armed

bit 1-0 **PSCNT<17:16>:** Prescale Select Upper Byte bits⁽¹⁾

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the WDTTMR registers. PSCNT<17:0> is intended for debug operations and should be read during normal operation.

REGISTER 11-5: NVMDAT: DATA EEPROM MEMORY DATA

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NVMD	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
x = Bit is unkn	own	'0' = Bit is clea	ared	'1' = Bit is set	t		
-n = Value at F	POR						

bit 7-0 **NVMDAT<7:0>:** The value of the data memory word returned from NVMADR after a Read command, or the data written by a Write command.

TABLE 11-5: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
NVMCON1	NVMRE	G<1:0>	_	FREE	WRERR	WREN	WR	RD	145		
NVMCON2	Unlock Pattern										
NVMADRL		NVMADR<7:0>									
NVMADRH ⁽¹⁾	—	_	_	—	—	—	NVMA	DR<9:8>	146		
NVMDAT				NVME)AT<7:0>				147		
TBLPTRU	—	_		Program N	lemory Table	Pointer (TBL	PTR<21:16>)		127*		
TBLPTRH			Program N	lemory Table	e Pointer (TBI	LPTR<15:8>)			127*		
TBLPTRL			Program I	Memory Table	e Pointer (TB	SLPTR<7:0>)			127*		
TABLAT				TA	BLAT				126*		
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	170		
PIE7	SCANIE	CRCIE	NVMIE	—	—	—	—	CWG1IE	186		
PIR7	SCANIF	CRCIF	NVMIF	_	_	_	_	CWG1IF	178		
IPR7	SCANIP	CRCIP	NVMIP	_	_	_	_	CWG1IP	194		

Legend: — = unimplemented, read as '0'. Shaded bits are not used during EEPROM access.

*Page provides register information.

Note 1: The NVMADRH register is not implemented on PIC18(L)F26/45/46K40.

12.0 8x8 HARDWARE MULTIPLIER

12.1 Introduction

All PIC18 devices include an 8x8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 12-1.

12.2 Operation

Example 12-1 shows the instruction sequence for an 8x8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 12-2 shows the sequence to do an 8x8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 12-1: 8x8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1,	W	;				
MULWF	ARG2		;	ARG1	*	ARG2	->
			;	PRODI	1:1	PRODL	

EXAMPLE 12-2: 8x8 SIGNED MULTIPLY

		1.0	OTINE
MOVF	ARG1, W		
MULWF	ARG2	; 1	ARG1 * ARG2 ->
		;]	PRODH:PRODL
BTFSC	ARG2, SB	; :	Fest Sign Bit
SUBWF	PRODH, F	;]	PRODH = PRODH
		;	- ARG1
MOVF	ARG2, W		
BTFSC	ARG1, SB	; 1	Cest Sign Bit
SUBWF	PRODH, F	; F	PRODH = PRODH
		;	- ARG2

_		Program	Cycles	Time					
Routine	Multiply Method	Memory (Words)	(Max)	@ 64 MHz	@ 40 MHz	@ 10 MHz	@ 4 MHz		
9v9 uppigpod	Without hardware multiply	13	69	4.3 μs	6.9 μs	27.6 μs	69 μs		
oxo unsigned	Hardware multiply	1	1	62.5 ns	100 ns	400 ns	1 μs		
9v9 signed	Without hardware multiply	33	91	5.7 μs	9.1 μs	36.4 μs	91 μs		
oxo signeu	Hardware multiply	6	6	375 ns	600 ns	2.4 μs	6 μ s		
16x16 unsigned	Without hardware multiply	21	242	15.1 μs	24.2 μs	96.8 μ s	242 μs		
16x16 unsigned	Hardware multiply	28	28	1.8 μs	2.8 μs	11.2 μs	28 μs		
16x16 signed	Without hardware multiply	52	254	15.9 μs	25.4 μs	102.6 μs	254 μs		
	Hardware multiply	35	40	2.5 μs	4.0 μs	16.0 μs	40 μs		

TABLE 12-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1		
	_	_			—	CCP2IP	CCP1IP		
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 7-2	Unimplement	ted: Read as '	0'						
bit 1	CCP2IP: ECC 1 = High prior 0 = Low prior	CP2 Interrupt P rity ity	riority bit						
bit 0	CCP1IP: ECC 1 = High prior 0 = Low prior	CP1 Interrupt P rity ity	riority bit						

REGISTER 14-24: IPR6: PERIPHERAL INTERRUPT PRIORITY REGISTER 6

	PPS Input	Default Pin	Register Reset	Input Available from Selected PORTx						
Peripheral	Register	Selection at POR	Value at POR	PIC1	B(L)F2	6K40	PIC	18(L)F	45/46	K40
Interrupt 0	INT0PPS	RB0	5'b0 1000	А	В		А	В	_	_
Interrupt 1	INT1PPS	RB1	5'b0 1001	А	В	_	А	В	_	_
Interrupt 2	INT2PPS	RB2	5'b0 1010	А	В	_	А	В	-	
Timer0 Clock	T0CKIPPS	RA4	5'b0 0100	А	В	_	А	В	_	_
Timer1 Clock	T1CKIPPS	RC0	5'bl 0000	А	_	С	А	_	С	
Timer1 Gate	T1GPPS	RB5	5'b0 1101	_	В	С		В	С	_
Timer3 Clock	T3CKIPPS	RC0	5'b1 0000	—	В	С	_	В	С	
Timer3 Gate	T3GPPS	RC0	5'b1 0000	Α	_	С	А	_	С	_
Timer5 Clock	T5CKIPPS	RC2	5'b1 0010	А	_	С	А	_	С	
Timer5 Gate	T5GPPS	RB4	5'b0 1100	_	В	С	_	В	_	D
Timer2 Clock	T2INPPS	RC3	5'bl 0011	Α	_	С	А	_	С	
Timer4 Clock	T4INPPS	RC5	5'b1 0101	_	В	С	_	В	С	_
Timer6 Clock	T6INPPS	RB7	5'b0 1111	_	В	С	_	В	_	D
CCP1	CCP1PPS	RC2	5'b1 0010	_	В	С	_	В	С	_
CCP2	CCP2PPS	RC1	5'bl 0001	_	В	С	_	В	С	_
CWG	CWG1PPS	RB0	5'b0 1000	—	В	С	_	В	-	D
DSM Carrier Low	MDCARLPPS	RA3	5'b0 0011	Α	_	С	А	_	_	D
DSM Carrier High	MDCARHPPS	RA4	5'b0 0100	Α	_	С	А	_	_	D
DSM Source	MDSRCPPS	RA5	5'b0 0101	А	_	С	А	_		D
ADC Conversion Trigger	ADACTPPS	RB4	5'b0 1100	_	В	С	_	В	_	D
MSSP1 Clock	SSP1CLKPPS	RC3	5'bl 0011	_	В	С	_	В	С	_
MSSP1 Data	SSP1DATPPS	RC4	5'bl 0100	—	В	С	_	В	С	
MSSP1 Slave Select	SSP1SSPPS	RA5	5'b0 0101	А	_	С	А	_	-	D
MSSP2 Clock	SSP2CLKPPS	RB1	5'b0 1001	—	В	С	_	В	-	D
MSSP2 Data	SSP2DATPPS	RB2	5'b0 1010	_	В	С	_	В		D
MSSP2 Slave Select	SSP2SSPPS	RB0	5'b0 1000	_	В	С	_	В	_	D
EUSART1 Receive	RX1PPS	RC7	5'bl 0111	_	В	С	_	В	С	_
EUSART1 Transmit	TX1PPS	RC6	5'b1 0110	_	В	С	—	В	С	_
EUSART2 Receive	RX2PPS	RB7	5'b0 1111	_	В	С	_	В	_	D
EUSART2 Transmit	TX2PPS	RB6	5'b0 1110	_	В	С	_	В	_	D

TABLE 17-1:PPS INPUT REGISTER DETAILS

22.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 22-4.

EQUATION 22-4: PWM RESOLUTION

Resolution = $\frac{\log[4(PR2 + 1)]}{\log(2)}$ bits

Note: If the pulse-width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 22-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)	
-------------	--	----------------	--

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 22-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

22.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

22.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

22.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

23.6 Handling VPEAK Variations

If the peak amplitude of the external voltage is expected to vary, the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of $\pm 600 \ \mu$ A and above a reasonable minimum range. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed $\pm 600 \ \mu$ A and the minimum is at least $\pm 100 \ \mu$ A, compute the series resistance as shown in Equation 23-5. The compensating pull-up for this series resistance can be determined with Equation 23-4 because the pull-up value is independent from the peak voltage.

EQUATION 23-5: SERIES R FOR V RANGE

$$R_{SERIES} = \frac{V_{MAXPEAK} + V_{MINPEAK}}{7 \times 10^{-4}}$$

23.7 Operation During Sleep

The ZCD current sources and interrupts are unaffected by Sleep.

23.8 Effects of a Reset

The ZCD circuit can be configured to default to the active or inactive state on Power-on-Reset (POR). When the \overline{ZCD} Configuration bit is cleared, the ZCD circuit will be active at POR. When the \overline{ZCD} Configuration bit is set, the ZCDSEN bit of the ZCDCON register must be set to enable the ZCD module.

23.9 Disabling the ZCD Module

The ZCD module can be disabled in two ways:

- Configuration Word 2H has the ZCD bit which disables the ZCD module when set, but it can be enabled using the ZCDSEN bit of the ZCDCON register (Register 23-1). If the ZCD bit is clear, the ZCD is always enabled.
- 2. The ZCD can also be disabled using the ZCDMD bit of the PMD2 register (Register 7-3). This is subject to the status of the ZCD bit.

24.14 Register Definitions: CWG Control

Long bit name prefixes for the CWG peripheral is shown in Table 24-2. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 24-2:

Peripheral	Bit Name Prefix
CWG	CWG

I

REGISTER 24-1: CWG1CON0: CWG CONTROL REGISTER 0

R/W-0/0	R/W/HC-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
EN	LD ⁽¹⁾	—	—	—		MODE<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7	EN: CWG1 Enable bit 1 = Module is enabled 0 = Module is disabled
bit 6	 LD: CWG1 Load Buffers bit⁽¹⁾ 1 = Dead-band count buffers to be loaded on CWG data rising edge, following first falling edge after this bit is set 0 = Buffers remain unchanged
bit 5-3	Unimplemented: Read as '0'
bit 2-0	MODE<2:0>: CWG1 Mode bits 111 = Reserved 110 = Reserved 101 = CWG outputs operate in Push-Pull mode 100 = CWG outputs operate in Half-Bridge mode 011 = CWG outputs operate in Reverse Full-Bridge mode 010 = CWG outputs operate in Forward Full-Bridge mode 001 = CWG outputs operate in Synchronous Steering mode 000 = CWG outputs operate in Asynchronous Steering mode
Note 1:	This bit can only be set after EN = 1; it cannot be set in the same cycle when EN is set.

PIC18LF26/45/46K40

27.5.1.5 Synchronous Master Reception

Data is received at the RXx/DTx pin. The RXx/DTx pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCxSTA register) or the Continuous Receive Enable bit (CREN of the RCxSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RXx/DTx pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCxIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCxREG. The RCxIF bit remains set as long as there are unread characters in the receive FIFO.

Note:	If the RX/DT function is on an analog pin,
	the corresponding ANSEL bit must be
	cleared for the receiver to function.

27.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TXx/CKx pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note: If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding ANSEL bit must be cleared.

27.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCxREG is read to access the FIFO. When this happens the OERR bit of the RCxSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCxREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

27.5.1.8 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCxREG.

27.5.1.9 Synchronous Master Reception Setup:

- Initialize the SPxBRGH:SPxBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RXx pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- Interrupt flag bit RCxIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCxIE was set.
- 9. Read the RCxSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCxREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

35.2.2 EXTENDED INSTRUCTION SET

ADDFSR Add Literal to FSR								
Synta	ax:	ADDFSR	f, k					
Oper	ands:	$0 \le k \le 63$						
Oper	ation:	FSR(f) + k	\sim J $x \rightarrow FSR($	f)				
Statu	s Affected:	None						
Enco	oding:	1110	1000	ffk]	k	kkkk		
Desc	cription:	The 6-bit I contents of	The 6-bit literal 'k' is added to the contents of the FSR specified by 'f'.					
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3			Q4		
	Decode	Read	Proce	SS	٧	Vrite to		
		literal 'k'	Data	a		FSR		

_ ·			
Example:	ADDFSR	2,	23h

Before Instru	ction	
FSR2	=	03FFh
After Instruct		
FSR2	=	0422h

ADDULNK	JLNK Add Literal to FSR2 and Return				
Syntax:	ADDULN	ADDULNK k			
Operands:	$0 \le k \le 63$				
Operation:	FSR2 + k \rightarrow FSR2,				
	$(TOS) \rightarrow$	PC			
Status Affected:	None				
Encoding:	1110	1000	11kk	kkkk	
	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.				
Words:	1				
Cycles:	2				
O Cuelo Activitur					

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

_		
-		

Refore Instruction

Before Instru					
FSR2	=	03FFh			
PC	=	0100h			
After Instruction					
FSR2	=	0422h			
PC	=	(TOS)			

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

FIGURE 37-13: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 37-20: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—	—	ns	
			With Prescaler	20	_	_	ns	
CC02*	ТссН	CCPx Input High Time	No Prescaler	0.5Tcy + 20	_	_	ns	
			With Prescaler	20	-	-	ns	
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820