

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k40-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Allocation Tables

TABLE 1: 28-PIN ALLOCATION TABLE (PIC18(L)F26K40)

I/O ⁽²⁾	28-Pin SPDIP, SOIC, SSOP	28-Pin (U)QFN	AD	Reference	Comparator	Timers	CCP	CWG	ZCD	Interrupt	EUSART	WSQ	ASSM	Pull-up	Basic
RA0	2	27	ANA0	_	C1IN0- C2IN0-				_	IOCA0	—	—	_	Y	—
RA1	3	28	ANA1	_	C1IN1- C2IN1-	_	_	_	_	IOCA1	—	—	_	Y	_
RA2	4	1	ANA2	DAC1OUT1 Vref- (DAC) Vref- (ADC)	C1IN0+ C2IN0+	_	-	-	Ι	IOCA2	_			Y	-
RA3	5	2	ANA3	Vref+ (DAC) Vref+ (ADC)	C1IN1+	-	-		_	IOCA3	—	MDCIN1 ⁽¹⁾	_	Y	—
RA4	6	3	ANA4	_	_	T0CKI ⁽¹⁾	_	_	-	IOCA4	_	MDCIN2 ⁽¹⁾	_	Y	_
RA5	7	4	ANA5	_	_	_	_	_	_	IOCA5	_	MDMIN ⁽¹⁾	SS1 ⁽¹⁾	Y	_
RA6	10	7	ANA6	_	—	-	—	—	_	IOCA6	—	—	_	Y	CLKOUT OSC2
RA7	9	6	ANA7	_	_	_	_	_	_	IOCA7	—	—	_	Y	OSC1 CLKIN
RB0	21	18	ANB0	_	C2IN1+	_	—	CWG1 ⁽¹⁾	ZCDIN	IOCB0 INT0 ⁽¹⁾	—	—	SS2 ⁽¹⁾	Y	—
RB1	22	19	ANB1	_	C1IN3- C2IN3-	_	_	_	_	IOCB1 INT1 ⁽¹⁾	—	—	SCK2 ⁽¹⁾ SCL2 ^(3,4)	Y	—
RB2	23	20	ANB2	_	_	_	_	_	_	IOCB2 INT2 ⁽¹⁾	—	—	SDI2 ⁽¹⁾ SDA2 ^(3,4)	Y	—
RB3	24	21	ANB3	_	C1IN2- C2IN2-	_	_	_	_	IOCB3	—	—	_	Y	—
RB4	25	22	ANB4	_	_	T5G ⁽¹⁾	_	_	_	IOCB4	_	_	_	Y	—
RB5	26	23	ANB5	_	_	T1G ⁽¹⁾	_	_	_	IOCB5	—	_	_	Y	_
RB6	27	24	ANB6	_	_	—	_		_	IOCB6	CK2 ⁽¹⁾	_	_	Y	ICSPCLK
RB7	28	25	ANB7	DAC1OUT2		T6AIN ⁽¹⁾	_	_	_	IOCB7	RX2/DT2 ⁽¹⁾	_	_	Y	ICSPDAT

PIC18(L)F26/45/46K40

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers (Register 17-1).

2: All pin outputs default to PORT latch data. Any pin can be selected as a peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for 1²C logic levels; The SCLx/SDAx signals may be assigned to any of these pins. PPS assignments to the other pins (e.g., RB1) will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the 1²C specific or SMBus input buffer thresholds.

1.0 DEVICE OVERVIEW

This document contains device specific information for the following devices:

- PIC18F26K40
 PIC18LF26K40
- PIC18F45K40 PIC18LF45K40
- PIC18F46K40
 PIC18LF46K40

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance, Program Flash Memory. In addition to these features, the PIC18(L)F2x/4xK40 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power sensitive applications.

1.1 New Core Features

1.1.1 XLP TECHNOLOGY

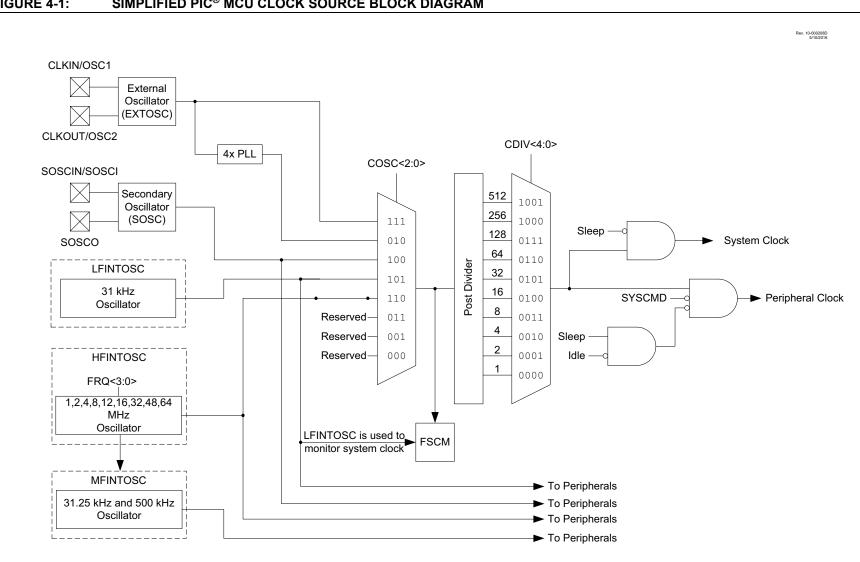
All of the devices in the PIC18(L)F2x/4xK40 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the secondary oscillator or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- **Multiple Idle Modes:** The controller can also run with its CPU core disabled but the peripherals still active. In these states, power consumption can be reduced even further, to as little as 4% of normal operation requirements.
- On-the-fly Mode Switching: The powermanaged modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design.
- **Peripheral Module Disable:** Modules that are not being used in the code can be selectively disabled using the PMD module. This further reduces the power consumption.

1.1.2 MULTIPLE OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18(L)F2x/4xK40 family offer several different oscillator options. The PIC18(L)F2x/4xK40 family can be clocked from several different sources:

- HFINTOSC
 - 1-64 MHz precision digitally controlled internal oscillator
- LFINTOSC
- 31 kHz internal oscillator
- EXTOSC
 - External clock (EC)
 - Low-power oscillator (LP)
 - Medium power oscillator (XT)
 - High-power oscillator (HS)
- SOSC
 - Secondary oscillator circuit operating at 31 kHz
- A Phase Lock Loop (PLL) frequency multiplier (4x) is available to the External Oscillator modes enabling clock speeds of up to 64 MHz
- Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the LFINTOSC. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued operation or a safe application shutdown.


3.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection, Device ID and Rev ID.

3.1 Configuration Words

There are six Configuration Word bits that allow the user to setup the device with several choices of oscillators, Resets and memory protection options. These are implemented as Configuration Word 1 through Configuration Word 6 at 300000h through 30000Bh.

Note:	The DEBUG bit in Configuration Words is
	managed automatically by device
	development tools including debuggers
	and programmers. For normal device
	operation, this bit should be maintained as
	a '1'.

FIGURE 4-1:

6.1.2 INTERRUPTS DURING DOZE

If an interrupt occurs and the Recover-On-Interrupt bit is clear (ROI = 0) at the time of the interrupt, the Interrupt Service Routine (ISR) continues to execute at the rate selected by DOZE<2:0>. Interrupt latency is extended by the DOZE<2:0> ratio.

If an interrupt occurs and the ROI bit is set (ROI = 1) at the time of the interrupt, the DOZEN bit is cleared and the CPU executes at full speed. The prefetched instruction is executed and then the interrupt vector sequence is executed. In Figure 6-1, the interrupt occurs during the 2nd instruction cycle of the Doze period, and immediately brings the CPU out of Doze. If the Doze-On-Exit (DOE) bit is set (DOE = 1) when the RETFIE operation is executed, DOZEN is set, and the CPU executes at the reduced rate based on the DOZE<2:0> ratio.

EXAMPLE 6-1: DOZE SOFTWARE EXAMPLE

```
//Mainline operation
bool somethingToDo = FALSE:
void main()
   initializeSystem();
           // DOZE = 64:1 (for example)
           // ROI = 1;
   GIE = 1; // enable interrupts
   while (1)
   {
       // If ADC completed, process data
       if (somethingToDo)
       {
           doSomething();
           DOZEN = 1; // resume low-power
       }
   }
// Data interrupt handler
void interrupt()
   // DOZEN = 0 because ROI = 1
   if (ADIF)
   {
       somethingToDo = TRUE;
       DOE = 0; // make main() go fast
       ADIF = 0;
   // else check other interrupts...
   if (TMROIF)
   {
       timerTick++;
       DOE = 1; // make main() go slow
       TMROIF = 0;
   }
```

6.2 Sleep Mode

Sleep mode is entered by executing the SLEEP instruction, while the Idle Enable (IDLEN) bit of the CPUDOZE register is clear (IDLEN = 0).

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running if enabled for operation during Sleep
- 2. The PD bit of the STATUS register is cleared (Register 10-2)
- 3. The $\overline{\text{TO}}$ bit of the STATUS register is set (Register 10-2)
- 4. The CPU clock is disabled
- 5. LFINTOSC, SOSC, HFINTOSC and ADCRC are unaffected and peripherals using them may continue operation in Sleep.
- I/O ports maintain the status they had before Sleep was executed (driving high, low, or highimpedance)
- 7. Resets other than WDT are not affected by Sleep mode

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using any oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 30.0 "5-Bit Digital-to-Analog Converter (DAC) Module" and Section 28.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

6.4 Register Definitions: Voltage Regulator Control

REGISTER 6-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1		
_	—	—	—	—	_	VREGPM	Reserved		
bit 7							bit 0		
Legend:									
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared									

bit 7-2 Unimplemented: Read as '0'

VREGPM: Voltage Regulator Power Mode Selection bit

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾
- Draws lowest current in Sleep, slower wake-up
- 0 =Normal Power mode enabled in Sleep⁽²⁾
- Draws higher current in Sleep, faster wake-up

bit 0 **Reserved:** Read as '1'. Maintain this bit set.

Note 1: PIC18F2x/4xK40 only.

bit 1

2: See Section 37.0 "Electrical Specifications".

TABLE 10-3: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F26/45/46K40 DEVICES

Address	Namo	Addross		Addross		Addross	Namo
r	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FD7h	PCON0	FAFh	T6TMR	F87h	LATE ⁽²⁾
FFEh	TOSH	FD6h	T0CON1	FAEh	CCPTMRS	F86h	LATD ⁽²⁾
FFDh	TOSL	FD5h	T0CON0	FADh	CCP1CAP	F85h	LATC
FFCh	STKPTR	FD4h	TMR0H	FACh	CCP1CON	F84h	LATB
FFBh	PCLATU	FD3h	TMR0L	FABh	CCP1H	F83h	LATA
FFAh	PCLATH	FD2h	T1CLK	FAAh	CCP1L	F82h	NVMCON2
FF9h	PCL	FD1h	T1GATE	FA9h	CCP2CAP	F81h	NVMCON1
FF8h	TBLPTRU	FD0h	T1GCON	FA8h	CCP2CON	F80h	NVMDAT
FF7h	TBLPTRH	FCFh	T1CON	FA7h	CCP2H	F7Fh	NVMADRH ⁽³⁾
FF6h	TBLPTRL	FCEh	TMR1H	FA6h	CCP2L	F7Eh	NVMADRL
FF5h	TABLAT	FCDh	TMR1L	FA5h	PWM3CON	F7Dh	CRCCON1
FF4h	PRODH	FCCh	T3CLK	FA4h	PWM3DCH	F7Ch	CRCCON0
FF3h	PRODL	FCBh	T3GATE	FA3h	PWM3DCL	F7Bh	CRCXORH
FF2h	INTCON	FCAh	T3GCON	FA2h	PWM4CON	F7Ah	CRCXORL
FF1h	—	FC9h	T3CON	FA1h	PWM4DCH	F79h	CRCSHIFTH
FF0h	—	FC8h	TMR3H	FA0h	PWM4DCL	F78h	CRCSHIFTL
FEFh	INDF0 ⁽¹⁾	FC7h	TMR3L	F9Fh	BAUD1CON	F77h	CRCACCH
FEEh	POSTINC0 ⁽¹⁾	FC6h	T5CLK	F9Eh	TX1STA	F76h	CRCACCL
FEDh	POSTDEC0 ⁽¹⁾	FC5h	T5GATE	F9Dh	RC1STA	F75h	CRCDATH
FECh	PREINC0 ⁽¹⁾	FC4h	T5GCON	F9Ch	SP1BRGH	F74h	CRCDATL
FEBh	PLUSW0 ⁽¹⁾	FC3h	T5CON	F9Bh	SP1BRGL	F73h	ADFLTRH
FEAh	FSR0H	FC2h	TMR5H	F9Ah	TX1REG	F72h	ADFLTRL
FE9h	FSR0L	FC1h	TMR5L	F99h	RC1REG	F71h	ADACCH
FE8h	WREG	FC0h	T2RST	F98h	SSP1CON3	F70h	ADACCL
FE7h	INDF1 ⁽¹⁾	FBFh	T2CLKCON	F97h	SSP1CON2	F6Fh	ADERRH
FE6h	POSTINC1 ⁽¹⁾	FBEh	T2HLT	F96h	SSP1CON1	F6Eh	ADERRL
FE5h	POSTDEC1 ⁽¹⁾	FBDh	T2CON	F95h	SSP1STAT	F6Dh	ADUTHH
FE4h	PREINC1 ⁽¹⁾	FBCh	T2PR	F94h	SSP1MSK	F6Ch	ADUTHL
FE3h	PLUSW1 ⁽¹⁾	FBBh	T2TMR	F93h	SSP1ADD	F6Bh	ADLTHH
FE2h	FSR1H	FBAh	T4RST	F92h	SSP1BUF	F6Ah	ADLTHL
FE1h	FSR1L	FB9h	T4CLKCON	F91h	PORTE	F69h	ADSTPTH
FE0h	BSR	FB8h	T4HLT	F90h	PORTD ⁽²⁾	F68h	ADSTPTL
FDFh	INDF2 ⁽¹⁾	FB7h	T4CON	F8Fh	PORTC	F67h	ADCNT
FDEh	POSTINC2 ⁽¹⁾	FB6h	T4PR	F8Eh	PORTB	F66h	ADRPT
FDDh	POSTDEC2 ⁽¹⁾	FB5h	T4TMR	F8Dh	PORTA	F65h	ADSTAT
FDCh	PREINC2 ⁽¹⁾	FB4h	T6RST	F8Ch	TRISE ⁽²⁾	F64h	ADRESH
FDBh	PLUSW2 ⁽¹⁾	FB3h	T6CLKCON	F8Bh	TRISD ⁽²⁾	F63h	ADRESL
FDAh	FSR2H	FB2h	T6HLT	F8Ah	TRISC	F62h	ADPREVH
FD9h	FSR2L	FB1h	T6CON	F89h	TRISB	F61h	ADPREVL
FD8h	STATUS	FB0h	T6PR	F88h	TRISA	F60h	ADCON0
L	is is not a physical re	J I					

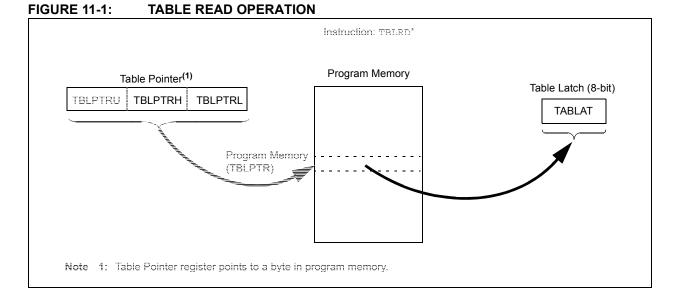
Note 1: This is not a physical register.

2: Not available on PIC18(L)F26K40 (28-pin variants).

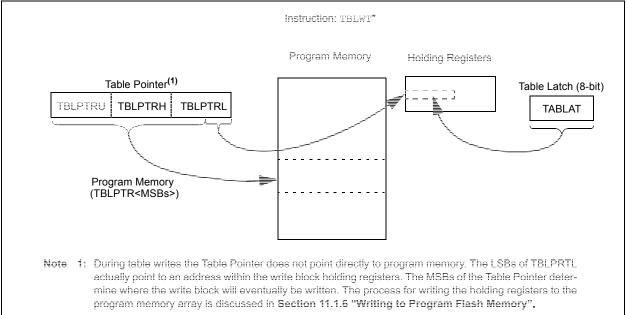
3: Not available on PIC18(L)F45K40.

11.1.1 TABLE READS AND TABLE WRITES

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:


- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is eight bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).


The table read operation retrieves one byte of data directly from program memory and places it into the TABLAT register. Figure 11-1 shows the operation of a table read.

The table write operation stores one byte of data from the TABLAT register into a write block holding register. The procedure to write the contents of the holding registers into program memory is detailed in **Section 11.1.6 "Writing to Program Flash Memory"**. Figure 11-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. Tables containing data, rather than program instructions, are not required to be word aligned. Therefore, a table can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

FIGURE 11-2: TABLE WRITE OPERATION

NEGISTER	14-II. FILI.I			TENADLE	REGISTER I							
R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0					
OSCFIE	CSWIE	—	_	_	—	ADTIE	ADIE					
bit 7				·			bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 7	OSCFIE: Osc	cillator Fail Inter	rupt Enable b	it								
	1 = Enabled											
	0 = Disabled											
bit 6	CSWIE: Cloc	k-Switch Interru	upt Enable bit									
	1 = Enabled											
	0 = Disabled											
bit 5-2	Unimplemen	ted: Read as '	כ'									
bit 1	ADTIE: ADC	Threshold Inte	rrupt Enable b	oit								
	1 = Enabled											
0 = Disabled												
bit 0	ADIE: ADC Ir	nterrupt Enable	bit									
	1 = Enabled											
	0 = Disabled											

REGISTER 14-11: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

19.2 Timer1/3/5 Operation

The Timer1/3/5 module is a 16-bit incrementing counter which is accessed through the TMRxH:TMRxL register pair. Writes to TMRxH or TMRxL directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1/3/5 is enabled by configuring the ON and GE bits in the TxCON and TxGCON registers, respectively. Table 19-2 displays the Timer1/3/5 enable selections.

TABLE 19-2:TIMER1/3/5 ENABLESELECTIONS

ON	GE	Timer1/3/5 Operation
1	1	Count Enabled
1	0	Always On
0	1	Off
0	0	Off

19.3 Clock Source Selection

The CS<3:0> bits of the TMRxCLK register (Register 19-3) are used to select the clock source for Timer1/3/5. The four TMRxCLK bits allow the selection of several possible synchronous and asynchronous clock sources. Register 19-3 displays the clock source selections.

19.3.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMRxH:TMRxL register pair will increment on multiples of Fosc as determined by the Timer1/3/5 prescaler.

When the Fosc internal clock source is selected, the Timer1/3/5 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1/3/5 value. To utilize the full resolution of Timer1/3/5, an asynchronous input signal must be used to gate the Timer1/3/5 clock input.

The following asynchronous sources may be used at the Timer1/3/5 gate:

- · Asynchronous event on the TxGPPS pin
- TMR0OUT
- TMR1/3/5OUT (excluding the TMR for which it is being used)
- TMR 2/4/6OUT (post-scaled)
- CCP1/2OUT
- PWM3/4OUT
- CMP1/2OUT
- ZCDOUT

Note:	In Counter mode, a falling edge must be
	registered by the counter prior to the first
	incrementing rising edge after any one or
	more of the following conditions:

- Timer1/3/5 enabled after POR
- Write to TMRxH or TMRxL
- Timer1/3/5 is disabled
- Timer1/3/5 is disabled (TMRxON = 0) when TxCKI is high then Timer1/3/5 is enabled (TMRxON = 1) when TxCKI is low.

19.3.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1/3/5 module may work as a timer or a counter.

When enabled to count, Timer1/3/5 is incremented on the rising edge of the external clock input of the TxCKIPPS pin. This external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated secondary internal oscillator circuit.

PIC18(L)F26/45/46K40

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_		INT2EDG	INT1EDG	INT0EDG	170
PIE4	_	_	TMR6IE	TMR5IE	TMR4IE	TMR3IE	TMR2IE	TMR1IE	183
PIE5	—	_	_	_	_	TMR5GIE	TMR3GIE	TMR1GIE	184
PIR4	—	—	TMR6IF	TMR5IF	TMR4IF	TMR3IF	TMR2IF	TMR1IF	174
PIR5	_	_	_	_		TMR5GIF	TMR3GIF	TMR1GIF	175
IPR4	_	_	TMR6IP	TMR5IP	TMR4IP	TMR3IP	TMR2IP	TMR1IP	191
IPR5	—	—	_	_	_	TMR5GIP	TMR3GIP	TMR1GIP	192
PMD1	—	TMR6MD	TMR5MD	TMR4MD	TMR3MD	TMR2MD	TMR1MD	TMR0MD	69
T1CON	—	—	CKPS	<1:0>	_	SYNC	RD16	ON	229
T1GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	_	_	230
T3CON	_	—	CKPS	i<1:0>		SYNC	RD16	ON	229
T3GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	_	_	230
T5CON	_	—	CKPS	i<1:0>		SYNC	RD16	ON	229
T5GCON	GE	GPOL	GTM	GSPM	GO/DONE	GVAL	—	—	230
TMR1H		Holding Regi	ster for the N	lost Significa	ant Byte of the 16	6-bit TMR1 R	egister		233
TMR1L		L	east Significa	ant Byte of th	ne 16-bit TMR1 F	Register			233
TMR3H		Holding Regi	ster for the N	lost Significa	ant Byte of the 16	6-bit TMR3 R	egister		233
TMR3L		L	east Significa	ant Byte of th	ne 16-bit TMR3 F	Register			233
TMR5H		Holding Regi	ster for the N	lost Significa	ant Byte of the 16	6-bit TMR5 R	egister		233
TMR5L		L	east Significa	ant Byte of th	ne 16-bit TMR5 F	Register			233
T1CKIPPS	_	—			T1C	CKIPPS<4:0>			216
T1GPPS	—	—	_		T1	GPPS<4:0>			216
T3CKIPPS	_	_	_		ТЗС	KIPPS<4:0>			216
T3GPPS	_	_	—		Т3	GPPS<4:0>			216
T5CKIPPS	_	—	_		T5C	CKIPPS<4:0>			216
T5GPPS		_	_		T5	GPPS<4:0>			216

TABLE 19-4: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1/3/5 AS A TIMER/COUNTER

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by TIMER1/3/5.

26.8 I²C Mode Operation

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the PIC[®] microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

26.8.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

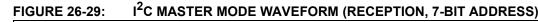
26.8.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

26.8.3 SDA AND SCL PINS

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

- Note 1: Data is tied to output zero when an I²C mode is enabled.
 - 2: Any device pin can be selected for SDA and SCL functions with the PPS peripheral. These functions are bidirectional. The SDA input is selected with the SSPxDATPPS registers. The SCL input is selected with the SSPxCLKPPS registers. Outputs are selected with the RxyPPS registers. It is the user's responsibility to make the selections so that both the input and the output for each function is on the same pin.


26.8.4 SDA HOLD TIME

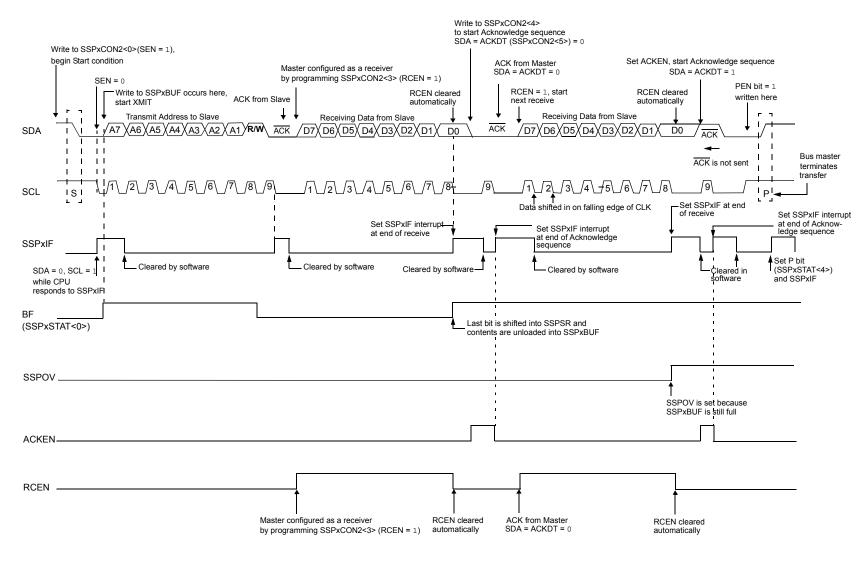

The hold time of the SDA pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 26-2: I²C BUS TERMS

TABLE 26-2:	I ² C BUS TERMS
TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and terminates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.

^{© 2015-2017} Microchip Technology Inc.

PIC18(L)F26/45/46K4(

27.1 Register Definitions: EUSART Control

CSRC				R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
00100	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7	·	·	·	·	•		bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	set	'0' = Bit is cle	ared				
bit 7	<u>Asynchrono</u> Don't care <u>Synchronou</u>	<u>s mode</u> :					
		mode (clock ge node (clock fron)		
bit 6	1 = Selects	ransmit Enable I 9-bit transmiss 8-bit transmiss	ion				
bit 5	TXEN: Trans 1 = Transm 0 = Transm)				
bit 4	1 = Synchro	ART Mode Sele phous mode ronous mode	ct bit				
bit 3	Asynchrono	ync Break on ne eak transmissio	ext transmissio		hardware upon o	completion)	
bit 2	Asynchrono	eed, if BRG16 = eed <u>s mode:</u>		is baudclk/4; e	lse baudclk/16		
bit 1		smit Shift Regist pty	er Status bit				
bit 0		bit of Transmit ess/data bit or a					

REGISTER 27-1: TXxSTA: TRANSMIT STATUS AND CONTROL REGISTER

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_		_	_		_	_		_	_			
1200	—	—	—	1221	1.73	255	1200	0.00	239	1200	0.00	143	
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71	
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17	
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2	
115.2k	—	_	_	—	—	—	—	—	—	—	—	—	

TABLE 27-5: SAMPLE BAUD RATES FOR ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300		_	_	300	0.16	207	300	0.00	191	300	0.16	51
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	_	_	_
9600	9615	0.16	12	_	_	_	9600	0.00	5	_	_	_
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_
19.2k	_	_	_	_	_	_	19.20k	0.00	2	_	_	_
57.6k	—	—	—	—	—	—	57.60k	0.00	0	—	_	—
115.2k	—	_	_	—	_	—	—	_	—	—	—	—

BAUD RATE	SYNC = 0, BRGH = 1, BRG16 = 0											
	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300			_			_		_			_	_
1200	_	_	—	_	_	—	—	_	—	—	_	_
2400		_	_	_	_	_	_	_	_	_	_	_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

31.1.3 ADC VOLTAGE REFERENCE

The ADPREF<1:0> bits of the ADREF register provide control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR 1.024V
- FVR 2.048V
- FVR 4.096V

The ADNREF bit of the ADREF register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See Section 28.0 "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

31.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCLK register and the ADCS bits of the ADCON0 register. There are 66 possible clock options:

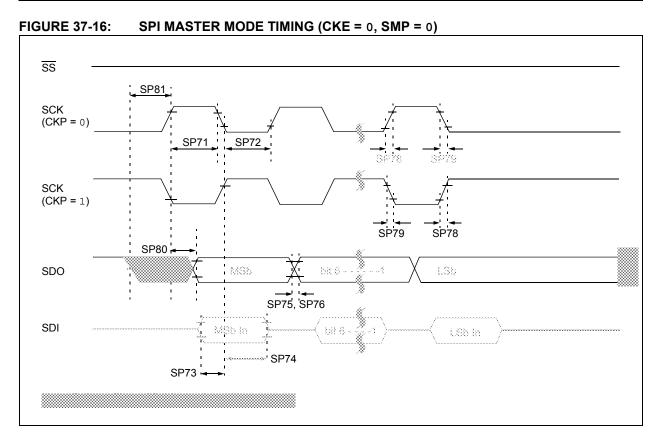
- Fosc/2
- Fosc/4
- Fosc/6
- Fosc/8
- Fosc/10
 - •
 - •
 - •
- Fosc/128
- FRC (dedicated RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 31-2.

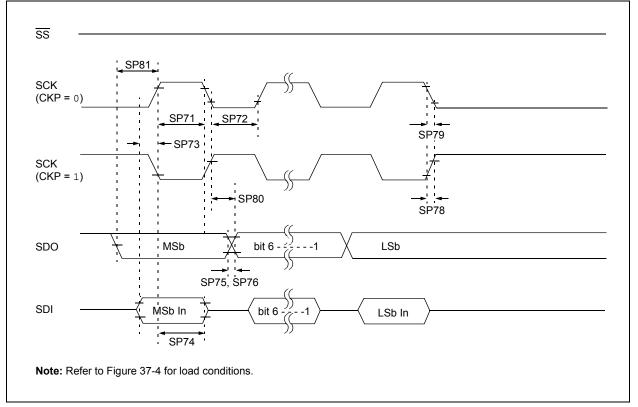
For correct conversion, the appropriate TAD specification must be met. Refer to Table 37-14 for more information. Table 31-1 gives examples of appropriate ADC clock selections.

Note 1:	Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.
2:	The internal control logic of the ADC runs off of the clock selected by the ADCS bit of ADCON0. What this can mean is when the ADCS bit of ADCON0 is set to '1' (ADC runs on FRC), there may be unexpected delays in operation when setting ADC control bits.

		Bit Clear Conditions	Value after Trig	Value after Trigger completion			Threshold Operations			Value at ADTIF interrupt				
Mode	ADMD	ADACC and ADCNT	ADACC	ADCNT	Retrigger	Threshold Test	Interrupt	ADAOV	ADFLTR	ADCNT				
Basic	0	ADACLR = 1	Unchanged	Unchanged	No	Every Sample	If thresh- old=true	N/A	N/A	count				
Accumulate	1	ADACLR = 1	S + ADACC or (S2-S1) + ADACC	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	Every Sample	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count				
Average	2	ADACLR = 1 or ADCNT>=ADRPT at ADGO or retrigger	S + ADACC or (S2-S1) + ADACC	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count				
Burst Average	3	ADACLR = 1 or ADGO set or retrigger	Each repetition: same as Average End with sum of all samples	Each repetition: same as Average End with ADCNT=ADRPT	Repeat while ADCNT <adrpt< td=""><td>lf ADCNT>= ADRPT</td><td>If thresh- old=true</td><td>ADACC Overflow</td><td>ADACC/2^{ADCRS}</td><td>ADRPT</td></adrpt<>	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	ADRPT				
Low-pass Filter	4	ADACLR = 1	S+ADACC-ADACC/ 2 ^{ADCRS} or (S2-S1)+ADACC-ADACC/ 2 ^{ADCRS}	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	Filtered Value	count				


Note: S1 and S2 are abbreviations for Sample 1 and Sample 2, respectively. When ADDSEN = 0, S1 = ADRES; When ADDSEN = 1, S1 = ADREV and S2 = ADRES.

R/W-0/	/0 R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0					
ADPSI	S	ADCRS<2:0>		ADACLR		ADMD<2:0>						
bit 7							bit C					
Legend:												
R = Read		W = Writable b		U = Unimplem								
	unchanged	x = Bit is unkn				OR/Value at all c	other Resets					
'1' = Bit is	set	ʻ0' = Bit is clea	red	HC = Bit is cle	eared by hard	ware						
bit 7	ADPSIS: A	ADC Previous Sam	ple Input Sel	ect bits								
		R is transfered to S is transfered to A										
bit 6-4	ADCRS<2	ADCRS<2:0>: ADC Accumulated Calculation Right Shift Select bits										
	If ADMD =		1:	0	d by 2 ^{ADCRS})	(1,2)						
bit 3	ADACLR:	ADACLR: A/D Accumulator Clear Command bit ⁽³⁾										
	0 = Clearir	ng action is comple	te (or not sta	rted)								
		C, ADAOV and AD	•									
bit 2-0		0>: ADC Operating	Mode Selec	tion bits ⁽⁴⁾								
	100 = Low 011 = Bur 010 = Ave 001 = Acc	= Reserved -pass Filter mode st Average mode rage mode umulate mode ic (Legacy) mode										
Note 1:	To correctly cal	culate an average,	the number	of samples (set	in ADRPT) m	ust be 2ADCRS						
2:		111 is a reserved o	•									
3:		ed by hardware wh delay may be man			n is complete	; depending on (oscillator					
4:	See Table 31-2	for Full mode des	criptions.									


REGISTER 31-3: ADCON2: ADC CONTROL REGISTER 2

PIC18(L)F26/45/46K40

ANDWF	AND W w	ith f		BC	Branch i	Branch if Carry			
Syntax:	ANDWF	f {,d {,a}}		Syntax:	BC n				
Operands:	$0 \le f \le 255$			Operands:	-128 ≤ n ≤	127			
	d ∈ [0,1] a ∈ [0,1]			Operation:	if CARRY (PC) + 2 +				
Operation:	(W) .AND.	(f) \rightarrow dest		Status Affected	l: None				
Status Affected:	N, Z			Encoding:	1110				
Encoding: Description:	register 'f'. in W. If 'd' is in register ' If 'a' is '0', t If 'a' is '1', t GPR bank. If 'a' is '0' a set is enabl in Indexed mode wher tion 35.2.3	s '1', the result f' (default). he Access Ba he BSR is use nd the extend led, this instru Literal Offset / never $f \le 95$ (5 "Byte-Orient	ND'ed with result is stored is stored back nk is selected. ed to select the ed instruction ction operates Addressing Fh). See Sec- red and Bit-	Words: Cycles: Q Cycle Activi If Jump:	If the CAR will branch The 2's co added to the incrementer instruction PC + 2 + 2 2-cycle inst 1 1(2)	If the CARRY bit is '1', then the will branch. The 2's complement number ' added to the PC. Since the PC incremented to fetch the next instruction, the new address w PC + 2 + 2n. This instruction is 2-cycle instruction. 1 1(2)			
		Mode" for de	Indexed Lit-	Q1	Q2	Q3	Q4		
Words:	1			Decod	e Read literal 'n'	Process Data	Write to PC		
Cycles:	1			No	No	No	No		
Q Cycle Activity:	·			operatio		operation	operation		
Q1	Q2	Q3	Q4	If No Jump:					
Decode	Read	Process	Write to	Q1	Q2	Q3	Q4		
	register 'f'	Data	destination	Decod	e Read literal 'n'	Process Data	No operation		
Example: Before Instru W REG After Instructi	= 17h = C2h	REG, 0, 0		<u>Example</u> : Before Ins PC After Instr If CA	= ac uction \RRY = 1	BC 5			

