

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 35x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46k40t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-5: CONFIGURATION WORD 3L (30 0004h): WINDOWED WATCHDOG TIMER

U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	WDTE	<1:0>			WDTCPS<4:0	>	
bit 7							bit 0

Legend: R = Readable bit W = Writable bit U = Unin

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '1'			
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7 Unimplemented: Read as '1'

bit 6-5 **WDTE<1:0>:** WDT Operating Mode bits

- 11 = WDT enabled regardless of Sleep; SEN bit in WDTCON0 is ignored
- 10 = WDT enabled while Sleep = 0, suspended when Sleep = 1; SEN bit in WDTCON0 is ignored
- 01 = WDT enabled/disabled by SEN bit in WDTCON0
- 00 = WDT disabled, SEN bit in WDTCON0 is ignored

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

	WDTPS at POR						
WDTCPS	Value	Divider Ratio		Typical Time Out (Fɪʌ = 31 kHz)	of WDTPS?		
11111	01011	1:65536	2 ¹⁶	2s	Yes		
10011	10011		-				
 11110	 11110	1:32	2 ⁵	1 ms	No		
10010	10010	1:8388608	2 ²³	256s			
10001	10001	1:4194304	2 ²²	128s			
10000	10000	1:2097152	2 ²¹	64s			
01111	01111	1:1048576	2 ²⁰	32s			
01110	01110	1:524299	2 ¹⁹	16s			
01101	01101	1:262144	2 ¹⁸	8s			
01100	01100	1:131072	2 ¹⁷	4s			
01011	01011	1:65536	2 ¹⁶	2s			
01010	01010	1:32768	2 ¹⁵	1s			
01001	01001	1:16384	2 ¹⁴	512 ms	No		
01000	01000	1:8192	2 ¹³	256 ms			
00111	00111	1:4096	2 ¹²	128 ms			
00110	00110	1:2048	2 ¹¹	64 ms			
00101	00101	1:1024	2 ¹⁰	32 ms			
00100	00100	1:512	2 ⁹	16 ms			
00011	00011	1:256	2 ⁸	8 ms			
00010	00010	1:128	2 ⁷	4 ms			
00001	00001	1:64	2 ⁶	2 ms			
00000	00000	1:32	2 ⁵	1 ms			

FIGURE 4-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

FIGURE 4-4: CERAMIC RESONATOR OPERATION (XT OR HS MODE)

4.3.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR), or a wake-up from Sleep. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

4.3.1.4 4x PLL

The oscillator module contains a 4x PLL that can be used with the external clock sources to provide a system clock source. The input frequency for the PLL must fall within specifications. See the PLL Clock Timing Specifications in Table 37-9.

The PLL can be enabled for use by one of two methods:

- 1. Program the RSTOSC bits in the Configuration Word 1 to 010 (enable EXTOSC with 4x PLL).
- 2. Write the NOSC bits in the OSCCON1 register to 010 (enable EXTOSC with 4x PLL).

4.4.2 CLOCK SWITCH AND SLEEP

If OSCCON1 is written with a new value and the device is put to Sleep before the switch completes, the switch will not take place and the device will enter Sleep mode.

When the device wakes from Sleep and the CSWHOLD bit is clear, the device will wake with the 'new' clock active, and the clock switch interrupt flag bit (CSWIF) will be set.

When the device wakes from Sleep and the CSWHOLD bit is set, the device will wake with the 'old' clock active and the new clock will be requested again.

FIGURE 4-7: CLOCK SWITCH (CSWHOLD = 1)

10.2.3 LOOK-UP TABLES IN PROGRAM MEMORY

There may be programming situations that require the creation of data structures, or look-up tables, in program memory. For PIC18 devices, look-up tables can be implemented in two ways:

- Computed GOTO
- Table Reads

10.2.3.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter. An example is shown in Example 10-2.

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW nn instructions. The W register is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW nn instructions that returns the value 'nn' to the calling function.

The offset value (in WREG) specifies the number of bytes that the program counter should advance and should be multiples of two (LSb = 0).

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

EXAMPLE 10-2: COMPUTED GOTO USING AN OFFSET VALUE

	MOVF CALL	OFFSET, TABLE	W
ORG	nn00h		
TABLE	ADDWF	PCL	
	RETLW	nnh	
	RETLW	nnh	
	RETLW	nnh	

10.2.3.2 Table Reads and Table Writes

A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 11.1.1 "Table Reads and Table Writes".

© 2015-2017 Microchip Technology Inc.

PIC18LF26/45/46K40

R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1
OSCFIP	CSWIP					ADTIP	ADIP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	OSCFIP: Osc	illator Fail Inter	rupt Priority b	bit			
	1 = High priority						
	0 = Low prior	rity					
bit 6	CSWIP: Clock	k-Switch Interru	upt Priority bit				
	1 = High prio	rity					
	0 = Low prior	rity					
bit 5-2	Unimplemen	ted: Read as '	0'				
bit 1	ADTIP: ADC	Threshold Inter	rrupt Priority b	bit			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 0	ADIP: ADC Ir	nterrupt Priority	bit				
	1 = High prio	rity					
	0 = Low prior	rity					

REGISTER 14-19: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

19.7 Timer1/3/5 16-Bit Read/Write Mode

Timer1/3/5 can be configured to read and write all 16 bits of data, to and from, the 8-bit TMRxL and TMRxH registers, simultaneously. The 16-bit read and write operations are enabled by setting the RD16 bit of the TxCON register.

To accomplish this function, the TMRxH register value is mapped to a buffer register called the TMRxH buffer register. While in 16-Bit mode, the TMRxH register is not directly readable or writable and all read and write operations take place through the use of this TMRxH buffer register.

When a read from the TMRxL register is requested, the value of the TMRxH register is simultaneously loaded into the TMRxH buffer register. When a read from the TMRxH register is requested, the value is provided from the TMRxH buffer register instead. This provides the user with the ability to accurately read all 16 bits of the Timer1/3/5 value from a single instance in time. Reference the block diagram in Figure 19-2 for more details.

In contrast, when not in 16-Bit mode, the user must read each register separately and determine if the values have become invalid due to a rollover that may have occurred between the read operations.

When a write request of the TMRxL register is requested, the TMRxH buffer register is simultaneously updated with the contents of the TMRxH register. The value of TMRxH must be preloaded into the TMRxH buffer register prior to the write request for the TMRxL register. This provides the user with the ability to write all 16 bits to the TMRxL:TMRxH register pair at the same time.

Any requests to write to the TMRxH directly does not clear the Timer1/3/5 prescaler value. The prescaler value is only cleared through write requests to the TMRxL register.

FIGURE 19-2:

TIMER1/3/5 16-BIT READ/WRITE MODE BLOCK DIAGRAM

19.8 Timer1/3/5 Gate

Timer1/3/5 can be configured to count freely or the count can be enabled and disabled using Timer1/3/5 gate circuitry. This is also referred to as Timer1/3/5 gate enable.

Timer1/3/5 gate can also be driven by multiple selectable sources.

19.8.1 TIMER1/3/5 GATE ENABLE

The Timer1/3/5 Gate Enable mode is enabled by setting the TMRxGE bit of the TxGCON register. The polarity of the Timer1/3/5 Gate Enable mode is configured using the TxGPOL bit of the TxGCON register.

When Timer1/3/5 Gate Enable mode is enabled, Timer1/3/5 will increment on the rising edge of the Timer1/3/5 clock source. When Timer1/3/5 Gate signal is inactive, the timer will not increment and hold the current count. Enable mode is disabled, no incrementing will occur and Timer1/3/5 will hold the current count. See Figure 19-4 for timing details.

TABLE 19-3:	TIMER1/3/5 GATE ENABLE
	SELECTIONS

TMRxCLK	TxGPOL	TxG	Timer1/3/5 Operation
\uparrow	1	1	Counts
\uparrow	1	0	Holds Count
\uparrow	0	1	Holds Count
\uparrow	0	0	Counts

PIC18(L)F26/45/46K40

FIGURE 19-5:	TIMER1/3/5 GATE TOGGLE MODE
TMRxGE	
TxGPOL	
TxGTM	
TxTxG_IN	
ТхСКІ	
TxGVAL	
TIMER1/3/5	N XN+1XN+2XN+3X N+4 XN+5XN+6XN+7X N+8

FIGURE 19-6: TIMER1/3/5 GATE SINGLE-PULSE MODE

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			CCPR	x<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
1.1.7.0	MODE						

REGISTER 21-5: CCPRxH: CCPx REGISTER HIGH BYTE

bit 7-0
MODE = Capture Mode:
CCPRxH<7:0>: MSB of captured TMR1 value
MODE = Compare Mode:
CCPRxH<7:0>: MSB compared to TMR1 value
MODE = PWM Mode && FMT = 0:
CCPRxH<7:2>: Not used
CCPRxH<7:2>: Not used
CCPRxH<1:0>: CCPW<9:8> – Pulse-Width MS 2 bits
MODE = PWM Mode && FMT = 1:
CCPRxH<7:0>: CCPW<9:2> – Pulse-Width MS 8 bits

22.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 22-4.

EQUATION 22-4: PWM RESOLUTION

Resolution = $\frac{\log[4(PR2 + 1)]}{\log(2)}$ bits

Note: If the pulse-width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 22-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)	
-------------	--	----------------	--

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 22-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

22.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

22.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to Section 4.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

22.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

FIGURE 24-15: SHUTDOWN FUNCTIONALITY, AUTO-RESTART DISABLED (REN = 0, LSAC = 01, LSBD = 01)

PIC18LF26/45/46K40

FIGURE 26-17: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)

PIC18(L)F26/45/46K40

TABLE 27-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3 Bit 2		Bit 1	Bit 0	Register on Page	
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	395	
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	—	—	INT2EDG	INT1EDG	INT0EDG	170	
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	BCL2IE	SSP2IE	BCL1IE	SSP1IE	174	
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	BCL2IF	SSP2IF	BCL1IF	SSP1IF	174	
IPR3	RC2IP	TX2IP	RC1IP	TX1IP	BCL2IP	SSP2IP	BCL1IP	SSP1IP	190	
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	394	
RxyPPS	_	_	_			RxyPPS<4:0	>		218	
TXxPPS	—	—	_			TXPPS<4:0	>		216	
SPxBRGH			EUSARTx	Baud Rate	Generator, H	ligh Byte			404*	
SPxBRGL	EUSARTx Baud Rate Generator, Low Byte									
TXxREG			EU	EUSARTx Transmit Register						
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	393	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission. * Page provides register information.

		-	-	-			
U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	-			DAC1R<4:0>		
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable b	it	U = Unimplem	nented bit, read a	as '0'	
u = Bit is unchanged x = Bit is unknow			own	-n/n = Value a	t POR and BOR	/Value at all othe	er Resets
'1' = Bit is set		'0' = Bit is clea	red				

REGISTER 30-2: DAC1CON1: DAC DATA REGISTER

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DAC1R<4:0>: Data Input Register for DAC bits

TABLE 30-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC1CON0	EN	—	OE1	OE2	PSS<1:0>		—	NSS	428
DAC1CON1	—	—	_			DAC1R<4:0	>		429
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	GDAFVR<1:0>		ADFVI	R<1:0>	423

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

31.1.3 ADC VOLTAGE REFERENCE

The ADPREF<1:0> bits of the ADREF register provide control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR 1.024V
- FVR 2.048V
- FVR 4.096V

The ADNREF bit of the ADREF register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See Section 28.0 "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

31.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCLK register and the ADCS bits of the ADCON0 register. There are 66 possible clock options:

- Fosc/2
- Fosc/4
- Fosc/6
- Fosc/8
- Fosc/10
 - •
 - •
 - •
- Fosc/128
- FRC (dedicated RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 31-2.

For correct conversion, the appropriate TAD specification must be met. Refer to Table 37-14 for more information. Table 31-1 gives examples of appropriate ADC clock selections.

Note 1:	Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.
2:	The internal control logic of the ADC runs off of the clock selected by the ADCS bit of ADCON0. What this can mean is when the ADCS bit of ADCON0 is set to '1' (ADC runs on FRC), there may be unexpected delays in operation when setting ADC control bits.

PIC18(L)F26/45/46K40

MOVFF	Move f to f		MOVLB	Move literal to low nibble in BSR					
Syntax:	MOVFF f _s	,f _d		Syntax:	MOVLW k	r.			
Operands:	0 ≤ f _s ≤ 409	95		Operands:	$0 \le k \le 255$	$0 \le k \le 255$			
	$0 \le f_d \le 409$	95		Operation:	$k \to BSR$				
Operation:	$(f_{s}) \rightarrow f_{d}$			Status Affected:	Status Affected: None				
Status Affected:	None			Encoding:	0000	0001 kk	kk kkkk		
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ff: ffff ff:	ff ffff _s ff ffff _d	Description:	The 8-bit lit Bank Selec of BSR<7:4	eral 'k' is load t Register (BS > always rem	ed into the SR). The value ains '0',		
Description:	The conten	ts of source re	gister 'f _s ' are		regardless	of the value o	f k ₇ :k ₄ .		
	Location of	source 'f _a ' car	ster 'f _d '. I be anvwhere	Words:	1				
	in the 4096	-byte data spa	ce (000h to	Cycles:	1				
	FFFh) and	location of des	stination 'f _d '	Q Cycle Activity:					
	FFFh.	anywhere no		Q1	Q2	Q3	Q4		
	Either sour (a useful sp	ce or destination	on can be W).	Decode	Read literal 'k'	Process Data	Write literal 'k' to BSR		
	MOVFF is p	particularly use	ful for						
	peripheral r	egister (such a	as the transmit	Example:	MOVLB	5			
	buffer or an The MOVFF PCL, TOSL destination	I/O port). instruction ca J, TOSH or TC register	nnot use the SL as the	Before Instruct BSR Reg After Instructio BSR Reg	ction gister = 02 on gister = 05	h			
Words:	2	i oglotoli							
Cvcles:	2 (3)								
Q Cvcle Activity:	- (-)								
Q1	Q2	Q3	Q4						
Decode	Read register 'f' (src)	Process Data	No operation						
Decode	No operation No dummy read	No operation	Write register 'f' (dest)						
Example:	MOVFF 1	REG1, REG2							
Before Instruc REG1 REG2 After Instructic REG1	tion = 33 = 11 in = 33	h h							
REG2	= 33	h							

PIC18(L)F26/45/46K40

RETFIE Return from Interrupt										
Synta	ax:	RETFIE {	s}							
Oper	ands:	$s \in [0,1]$	s ∈ [0,1]							
Oper	ation:	$(TOS) \rightarrow F$ $1 \rightarrow GIE/G$ if s = 1 $(WS) \rightarrow W$ (STATUSS) $(BSRS) \rightarrow$ PCLATU, F	$(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL},$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged.							
Statu	s Affected:	GIE/GIEH,	PEIE/GI	EL.						
Enco	ding:	0000	0000	0001	000s					
Description: Return from interrupt. Stack is popper and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, th contents of the shadow registers, WS STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If 's' = 0, no update theorem corresponding registers, wh										
Word	ls:	1								
Cycle	es:	2								
QC	ycle Activity:									
	Q1	Q2	Q3	3	Q4					
	Decode	No operation	Nc opera	tion	POP PC from stack Set GIEH or GIEL					
	No	No	No)	No					
	operation	operation	opera	tion	operation					
Example: RETFIE 1 After Interrupt										
	PC W BSR Status GIE/GIEF	I, PEIE/GIEL	= T = V = E = S = 1	TOS VS BSRS BTATUS	S					

C. mt-										
Synta	IX:	REILVV K	REILW K							
Oper	ands:	$0 \le k \le 255$	$U \le K \le 255$							
Opera	ation:	k → W, (TOS) → P PCLATU, F	$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged							
Statu	s Affected:	None								
Enco	ding:	0000	1100	kkk}	c	kkkk				
Desc	ription:	W is loaded program co of the stack high addres unchanged	d with the ounter is l (the retu ss latch (e 8-bit li loaded urn add PCLAT	teral from ress H) re	'k'. The the top). The emains				
Word	s:	1								
Cycle	es:	2								
QC	cle Activity:									
Q1		Q2	Q3		Q4					
	Decode	Read literal 'k'	Proce Dat	ess a	PC from Writ	OP PC n stack, te to W				
	No operation	No operation	No opera	tion	оре	No eration				
Exam	n <mark>ple</mark> : CALL TABLE	; W conta ; offset ; W now h ; table v	ins tak value as alue	ole						
TABL	E ADDWF PCL RETLW k0 RETLW k1	; W = off ; Begin t ;	set able							
	Before Instruc W	tion = 07h	CaDIC							

After Instruction W = value of kn

TABLE 37-3: POWE	R-DOWN CURRENT (I	PD) ^(1,2)
------------------	-------------------	----------------------

PIC18LF26/45/46K40				Standard Operating Conditions (unless otherwise stated)					
PIC18F26/45/46K40				Standard Operating Conditions (unless otherwise stated) VREGPM = 1					
Param.	Cumhal	Device Characteristics	Min	Tree	Max.	Max.	Unite		Conditions
No.	Symbol	Device Characteristics	MIN.	тур.т	+85°C	+125°C	Units	VDD	Note
D200	IPD	IPD Base	_	0.05	2	9	μΑ	3.0V	
D200	IPD	IPD Base	—	0.4	4	12	μΑ	3.0V	
D200A				20		_	μΑ	3.0V	VREGPM = 0
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT		0.4	3	10	μΑ	3.0V	
D201	IPD_WDT	Low-Frequency Internal Oscillator/ WDT	-	0.6	5	13	μA	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	0.6	5	13	μΑ	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)		0.8	8.5	15	μΑ	3.0V	
D203	IPD_FVR	FVR		31		—	μΑ	3.0V	FVRCON = 0X81 or 0x84
D203	IPD_FVR	FVR	_	32		—	μΑ	3.0V	FVRCON = 0X81 or 0x84
D204	IPD_BOR	Brown-out Reset (BOR)	-	9	14	18	μΑ	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)		14	19	21	μΑ	3.0V	
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)	-	0.5		—	μΑ	3.0V	
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)		0.7		_	μΑ	3.0V	
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)	I	31	_	—	μΑ	3.0V	
D206	IPD_HLVD	High/Low Voltage Detect (HLVD)		32		—	μΑ	3.0V	
D207	IPD_ADCA	ADC - Active		250		—	μΑ	3.0V	ADC is converting (4)
D207	IPD_ADCA	ADC - Active		280		_	μΑ	3.0V	ADC is converting (4)
D208	IPD_CMP	Comparator	_	25	38	40	μΑ	3.0V	
D208	IPD_CMP	Comparator	_	28	50	60	μΑ	3.0V	

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

4: ADC clock source is FRC.

40-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) - 5x5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.40 BSC			
Optional Center Pad Width	W2		3.80		
Optional Center Pad Length	T2			3.80	
Contact Pad Spacing	C1		5.00		
Contact Pad Spacing	C2		5.00		
Contact Pad Width (X40)	X1			0.20	
Contact Pad Length (X40)	Y1			0.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2156B