

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	R32C/100
Core Size	16/32-Bit
Speed	50MHz
Connectivity	EBI/EMI, I ² C, IEBus, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	82
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f64114dfb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Performance Overview

Tables 1.1 to 1.4 show the performance overview of the R32C/111 Group.

Table 1.1 Performance Overview for the 100-pin Package (1/2)

Unit	Function	Explanation
CPU Memory	Central processing unit	 R32C/100 Series CPU Core Basic instructions: 108 Minimum instruction execution time: 20 ns (f(CPU) = 50 MHz) Multiplier: 32-bit × 32-bit → 64-bit Multiply-accumulate unit: 32-bit × 32-bit + 64-bit → 64-bit IEEE-754 compatible FPU: Single precision 32-bit barrel shifter Operating mode: Single-chip mode, memory expansion mode, microprocessor mode (optional ⁽¹⁾) Flash memory: 256 to 512 Kbytes RAM: 32 to 63 Kbytes Data flash: 4 Kbytes × 2 blocks Refer to Table 1.5 for memory size of each product group
Valtaga		
Voltage Detector	Low voltage detector	Optional ⁽¹⁾ Low voltage detection interrupt
Clock	Clock generator	 4 circuits (main clock, sub clock, PLL, on-chip oscillator) Oscillation stop detector: Main clock oscillator stop/restart detection Frequency divide circuit: Divide-by-2 to divide-by-24 selectable Low power modes: Wait mode, stop mode
External Bus Expansion	Bus and memory expansion	Address space: 4 Gbytes (of which up to 64 Mbytes is user accessible)
	o,puncion	 External bus Interface: Support for wait-state insertion, 4 chip select outputs, 3V/5V interface Bus format: Separate bus/Multiplexed bus selectable, data bus width selectable (8/16 bits)
Interrupts		Interrupt vectors: 261 External interrupt inputs: NMI, INT × 6, key input × 4 Interrupt priority levels: 7
Watchdog Tim	er	15 bits × 1 (selectable input frequency from prescaler output)
DMA	DMAC	 4 channels Cycle-steal transfer mode Request sources: 51 2 transfer modes: Single transfer, repeat transfer
	DMAC II	 Triggered by an interrupt request of any peripheral 3 characteristic transfer functions: Immediate data transfer, calculation result transfer, chain transfer
I/O Ports	Programmable I/O ports	 2 input-only ports 82 CMOS I/O ports 2 N-channel open drain ports A pull-up resistor is selectable for every 4 input ports

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

Unit	Function	Explanation		
CPU	Central processing unit	 R32C/100 Series CPU Core Basic instructions: 108 Minimum instruction execution time: 20 ns (f(CPU) = 50 MHz) Multiplier: 32-bit × 32-bit → 64-bit Multiply-accumulate unit: 32-bit × 32-bit + 64-bit → 64-bit IEEE-754 compatible FPU: Single precision 32-bit barrel shifter Operating mode: Single-chip mode 		
Memory		Flash memory: 128/256 Kbytes RAM: 32 Kbytes Data flash: 4 Kbytes × 2 blocks Refer to Table 1.5 for memory size of each product group		
Voltage	Low voltage	Optional ⁽¹⁾		
Detector	detector	Low voltage detection interrupt		
Clock	Clock generator	 4 circuits (main clock, sub clock, PLL, on-chip oscillator) Oscillation stop detector: Main clock oscillator stop/restart detection Frequency divide circuit: Divide-by-2 to divide-by-24 selectable Low power modes: Wait mode, stop mode 		
Interrupts		Interrupt vectors: 261 External interrupt inputs: $\overline{\text{NMI}}$, $\overline{\text{INT}} \times 6$, key input × 4 Interrupt priority levels: 7		
Watchdog Ti	mer	15 bits × 1 (selectable input frequency from prescaler output)		
DMA	DMAC	 4 channels Cycle-steal transfer mode Request sources: 45 2 transfer modes: Single transfer, repeat transfer 		
	DMAC II	 Triggered by an interrupt request of any peripheral 3 characteristic transfer functions: Immediate data transfer, calculation result transfer, chain transfer 		
I/O Ports	Programmable I/O ports	 1 input-only port 49 CMOS I/O ports 2 N-channel open drain ports A pull-up resistor is selectable for every 4 input ports 		

Table 1.3	Performance Overview for the 64-pin Package (1/2)
-----------	---

Note:

1. Contact a Renesas Electronics sales office to use the optional features.

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Intelligent I/O Pin	Analog Pin
1	VDC1						
2	NSD						
3	CNVSS						
4	XCIN	P8_7					
5	XCOUT	P8_6					
6	RESET						
7	XOUT						
8	VSS						
9	XIN						
10	VCC1						
11		P8_5	NMI				
12		P8_4	INT2				
13		P8_3	INT1				
14		P8_2	INT0				
15		P8_1		TA4IN/Ū	CTS5/RTS5/SS5	IIO1_5/UD0B/UD1B	
16		P8_0		TA4OUT/U	RXD5/SCL5/STXD5	UD0A/UD1A	
17		P7_7		TA3IN	CLK5	IIO1_4/UD0B/UD1B	
18		P7_6		TA3OUT	TXD5/SDA5/SRXD5/ CTS8/RTS8	IIO1_3/UD0A/UD1A	
19		P7_5		TA2IN/W	RXD8	IIO1_2	
20		P7_4		TA2OUT/W	CLK8	IIO1_1	
21		P7_3		TA1IN/V	CTS2/RTS2/SS2/TXD8	IIO1_0	
22		P7_2		TA1OUT/V	CLK2		
23		P7_1		TA0IN/ TB5IN	RXD2/SCL2/STXD2	IIO1_7/OUTC2_2/ ISRXD2/IEIN	
24		P7_0		TA0OUT	TXD2/SDA2/SRXD2	IIO1_6/OUTC2_0/ ISTXD2/IEOUT	
25		P6_7			TXD1/SDA1/SRXD1		
26		P6_6			RXD1/SCL1/STXD1		
27		P6_5			CLK1		
28		P6_4			CTS1/RTS1/SS1	OUTC2_1/ISCLK2	
29		P3_3		TA1IN/V	CTS3/RTS3/SS3		
30		P3_2		TA1OUT/V	TXD3/SDA3/SRXD3		
31		P3_1		TA3OUT	RXD3/SCL3/STXD3	UD0B/UD1B	1
32		P3_0		TA0OUT	CLK3	UD0A/UD1A	1
33		P6_3			TXD0/SDA0/SRXD0		1
34		P6_2		TB2IN	RXD0/SCL0/STXD0		1
35		P6_1		TB1IN	CLK0		
36		P6_0		TB0IN	CTS0/RTS0/SS0		
37		P2_7				IIO0_7	AN2_7
38		P2_6				IIO0_6	AN2_6
39		P2_5	1			IIO0_5	AN2_5
40		P2_4				IIO0_4	AN2_4

RENESAS

 Table 1.9
 Pin Characteristics for the 64-pin Package (1/2)

1.5 Pin Definitions and Functions

Tables 1.11 to 1.17 show the pin definitions and functions.

		Functio	is for the	Tuu-pin Fackage (1/4)
Function	Symbol	I/O	Power Supply	Description
Power supply	VCC1, VCC2, VSS	I	_	Applicable as follows: VCC1 and VCC2 = 3.0 to 5.5 V (VCC1 \ge VCC2), VSS = 0 V
Connecting pins for decoupling capacitor	VDC0, VDC1	_	_	A decoupling capacitor for internal voltage should be connected between VDC0 and VDC1
Analog power supply	AVCC, AVSS	I	VCC1	Power supply for the A/D converter. AVCC and AVSS should be connected to VCC1 and VSS, respectively
Reset input	RESET	I	VCC1	The MCU is reset when this pin is driven low
CNVSS	CNVSS	I	VCC1	This pin should be connected to VSS via a resistor
Debug port	NSD	I/O	VCC1	This pin is to communicate with a debugger. It should be connected to VCC1 via a resistor of 1 to 4.7 $k\Omega$
Main clock input	XIN	I	VCC1	Input/output for the main clock oscillator. A crystal, or a ceramic resonator should be connected
Main clock output	XOUT	0	VCC1	between pins XIN and XOUT. An external clock should be input at the XIN while leaving the XOUT open
Sub clock input	XCIN	I	VCC1	Input/output for the sub clock oscillator. A crystal oscillator should be connected between pins XCIN
Sub clock output	XCOUT	0	VCC1	and XCOUT. An external clock should be input at the XCIN while leaving the XCOUT open
BCLK output	BCLK	0	VCC2	BCLK output
Clock output	CLKOUT	0	VCC2	Output of the clock with the same frequency as low speed clocks, f8, or f32
External interrupt input	INTO to INT5	I	VCC1 VCC2	Input for external interrupts
NMI input	P8_5/NMI	I	VCC1	Input for NMI
Key input interrupt	KIO to KI3	I	VCC1	Input for the key input interrupt
Bus control pins	D0 to D7	I/O	VCC2	Input/output of data (D0 to D7) while accessing an external memory space with a separate bus
	D8 to D15	I/O	VCC2	Input/output of data (D8 to D15) while accessing an external memory space with 16-bit separate bus
	A0 to A23	0	VCC2	Output of address bits A0 to A23

Table 1.11 Pin Definitions and Functions for the 100-pin Package (1/4)

Function	Symbol	I/O	Description
Power supply	VCC1, VSS	I	Applicable as follows: VCC1 = 3.0 to 5.5 V, VSS = 0 V
Connecting pins for decoupling capacitor	VDC0, VDC1	_	A decoupling capacitor for internal voltage should be connected between VDC0 and VDC1
Analog power supply	AVCC, AVSS	I	Power supply for the A/D converter. AVCC and AVSS should be connected to VCC and VSS, respectively
Reset input	RESET		The MCU is reset when this pin is driven low
CNVSS	CNVSS	I	This pin should be connected to VSS via a resistor
Debug port	NSD	I/O	This pin is to communicate with a debugger. It should be connected to VCC1 via a resistor of 1 to 4.7 $k\Omega$
Main clock input	XIN	I	Input/output for the main clock oscillator. A crystal, or a ceramic resonator should be connected between pins XIN
Main clock output	XOUT	0	and XOUT. An external clock should be input at the XIN while leaving the XOUT open
Sub clock input	XCIN	Ι	Input/output for the sub clock oscillator. A crystal oscillator should be connected between pins XCIN and XCOUT. An
Sub clock output	XCOUT	0	external clock should be input at the XCIN while leaving the XCOUT open
External interrupt input	INTO to INT5	I	Input for external interrupts
NMI input	P8_5/NMI	I	Input for NMI
Key input interrupt	KIO to KI3	I	Input for the key input interrupt
I/O port	P0_0 to P0_3, P1_5 to P1_7, P2_0 to P2_7, P3_0 to P3_3, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3, P10_0 to P10_7	I/O	I/O ports in CMOS. Each port can be programmed to input or output under the control of the direction register. Pull-up resistors are selected for the following 4-pin units: Pi_0 to Pi_3 and Pi_4 to Pi_7 (i = 0 to 3, 6 to 10); however, they are enabled only for the input pins. P7_0 and P7_1 outputs are N-channel open drain
Timer A	TA0OUT to TA4OUT	I/O	Timers A0 to A4 input/output. TA0OUT output assigned for port P7_0 is N-channel open drain
	TA0IN to TA4IN		Timers A0 to A4 input
Timer B	TB0IN to TB3IN, TB5IN	I	Timers B0 to B3, and B5 input
Three-phase motor control timer output	U, Ū, V, V, W, W	0	Three-phase motor control timer output

Table 1.15	Pin Definitions and Functions for 64-pin Package (1/3)

2.1 General Purpose Registers

2.1.1 Data Registers (R2R0, R3R1, R6R4, and R7R5)

These 32-bit registers are primarily used for transfers and arithmetic/logic operations. Each of the registers can be divided into upper and lower 16-bit registers, e.g. R2R0 can be divided into R2 and R0, R3R1 can be divided into R3 and R1, etc.

Moreover, data registers R2R0 and R3R1 can be divided into four 8-bit data registers: upper (R2H and R3H), mid-upper (R2L and R3L), mid-lower (R0H and R1H), and lower (R0L and R1L).

2.1.2 Address Registers (A0, A1, A2, and A3)

These 32-bit registers have functions similar to data registers. They are also used for address register indirect addressing and address register relative addressing.

2.1.3 Static Base Register (SB)

This 32-bit register is used for SB relative addressing.

2.1.4 Frame Base Register (FB)

This 32-bit register is used for FB relative addressing.

2.1.5 **Program Counter (PC)**

This 32-bit counter indicates the address of the instruction to be executed next.

2.1.6 Interrupt Vector Table Base Register (INTB)

This 32-bit register indicates the start address of a relocatable vector table.

2.1.7 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Two types of 32-bit stack pointers (SPs) are provided: user stack pointer (USP) and interrupt stack pointer (ISP).

Use the stack pointer select flag (U flag) to select either the user stack pointer (USP) or the interrupt stack pointer (ISP). The U flag is bit 7 in the flag register (FLG). Refer to 2.1.8 "Flag Register (FLG)" for details.

To minimize the overhead of interrupt sequence due to less memory access, set the user stack pointer (USP) or the interrupt stack pointer (ISP) to a multiple of 4.

2.1.8 Flag Register (FLG)

This 32-bit register indicates the CPU status.

2.1.8.1 Carry Flag (C flag)

This flag retains a carry, borrow, or shifted-out bit generated by the arithmetic logic unit (ALU).

2.1.8.2 Debug Flag (D flag)

This flag is only for debugging. Only set this bit to 0.

2.1.8.3 Zero Flag (Z flag)

This flag becomes 1 when the result of an operation is 0; otherwise it is 0.

2.1.8.4 Sign Flag (S flag)

This flag becomes 1 when the result of an operation is a negative value; otherwise it is 0.

2.1.8.5 Register Bank Select Flag (B flag)

This flag selects a register bank. It indicates 0 when register bank 0 is selected, and 1 when register bank 1 is selected.

2.1.8.6 Overflow Flag (O flag)

This flag becomes 1 when the result of an operation overflows; otherwise it is 0.

2.1.8.7 Interrupt Enable Flag (I flag)

This flag enables maskable interrupts. To disable maskable interrupts, set this flag to 0. To enable them, set this flag to 1. When an interrupt is accepted, the flag becomes 0.

2.1.8.8 Stack Pointer Select Flag (U flag)

To select the interrupt stack pointer (ISP), set this flag to 0. To select the user stack pointer (USP), set this flag to 1.

It becomes 0 when a hardware interrupt is accepted or when an INT instruction designated by a software interrupt number from 0 to 127 is executed.

2.1.8.9 Floating-point Underflow Flag (FU flag)

This flag becomes 1 when an underflow occurs in a floating-point operation; otherwise it is 0. It also becomes 1 when the operand contains invalid numbers (subnormal numbers).

2.1.8.10 Floating-point Overflow Flag (FO flag)

This flag becomes 1 when an overflow occurs in a floating-point operation; otherwise it is 0. It also becomes 1 when the operand contains invalid numbers (subnormal numbers).

2.1.8.11 Processor Interrupt Priority Level (IPL)

The processor interrupt priority level (IPL), consisting of 3 bits, selects a processor interrupt priority level from level 0 to 7. An interrupt is enabled when the interrupt request level is higher than the selected IPL.

When the processor interrupt priority level (IPL) is set to 111b (level 7), all interrupts are disabled.

2.1.8.12 Fixed-point Radix Point Designation Bit (DP bit)

This bit designates the radix point. It also specifies which portion of the fixed-point multiplication result to extract. It is used for the MULX instruction.

2.1.8.13 Floating-point Rounding Mode (RND)

The 2-bit floating-point rounding mode selects a rounding mode for floating-point calculation results.

2.1.8.14 Reserved

Only set this bit to 0. The read value is undefined.

Table 4.12	SFR List (12)
------------	---------------

Address	Register	Symbol	Reset Value
0002F0h			
0002F1h			
0002F2h			
0002F3h			
0002F4h	UART4 Special Mode Register 4	U4SMR4	00h
0002F5h	UART4 Special Mode Register 3	U4SMR3	00h
0002F6h	UART4 Special Mode Register 2	U4SMR2	00h
0002F7h	UART4 Special Mode Register	U4SMR	00h
0002F8h	UART4 Transmit/Receive Mode Register	U4MR	00h
	UART4 Bit Rate Register	U4BRG	XXh
0002FAh	UART4 Transmit Buffer Register	U4TB	XXXXh
0002FBh	•		
0002FCh	UART4 Transmit/Receive Control Register 0	U4C0	0000 1000b
	UART4 Transmit/Receive Control Register 1	U4C1	0000 0010b
	UART4 Receive Buffer Register	U4RB	XXXXh
0002FFh	•		
	Count Start Register for Timers B3, B4, and B5	TBSR	000X XXXXb
000301h		-	
	Timer A1-1 Register	TA11	XXXXh
000303h	•		
	Timer A2-1 Register	TA21	XXXXh
000305h			
	Timer A4-1 Register	TA41	XXXXh
000307h			70000
	Three-phase PWM Control Register 0	INVC0	00h
	Three-phase PWM Control Register 1	INVC1	00h
	Three-phase Output Buffer Register 0	IDB0	XX11 1111b
	Three-phase Output Buffer Register 1	IDB1	XX11 1111b
	Dead Time Timer	DTT	XXh
	Timer B2 Interrupt Generating Frequency Set Counter	ICTB2	XXh
00030Eh		10102	
00030Fh			
	Timer B3 Register	TB3	XXXXh
000311h		100	700011
	Timer B4 Register	TB4	XXXXh
000312h			//////
	Timer B5 Register	TB5	XXXXh
000314h		105	~~~~
000315h			
000310h			
000317h 000318h			
000318h			
000319h			
			0022 00006
	Timer B3 Mode Register	TB3MR	00XX 0000b
	Timer B4 Mode Register	TB4MR	00XX 0000b
-00031Dh	Timer B5 Mode Register	TB5MR	00XX 0000b
00031Eh 00031Fh			

X: Undefined

Blanks are reserved. No access is allowed.

Table 4.13	SFR List (13)
------------	---------------

Address	Register	Symbol	Reset Value
000320h			
000321h			
000322h			
000323h			
000324h	UART3 Special Mode Register 4	U3SMR4	00h
000325h	UART3 Special Mode Register 3	U3SMR3	00h
000326h	UART3 Special Mode Register 2	U3SMR2	00h
000327h	UART3 Special Mode Register	U3SMR	00h
000328h	UART3 Transmit/Receive Mode Register	U3MR	00h
000329h	UART3 Bit Rate Register	U3BRG	XXh
00032Ah	UART3 Transmit Buffer Register	U3TB	XXXXh
00032Bh			
00032Ch	UART3 Transmit/Receive Control Register 0	U3C0	0000 1000b
	UART3 Transmit/Receive Control Register 1	U3C1	0000 0010b
	UART3 Receive Buffer Register	U3RB	XXXXh
00032Fh			
000330h			
000331h			
000332h			
000333h			
	UART2 Special Mode Register 4	U2SMR4	00h
	UART2 Special Mode Register 3	U2SMR3	00h
	UART2 Special Mode Register 2	U2SMR2	00h
	UART2 Special Mode Register	U2SMR	00h
	UART2 Transmit/Receive Mode Register	U2MR	00h
	UART2 Bit Rate Register	U2BRG	XXh
	UART2 Transmit Buffer Register	U2TB	XXXXh
00033Bh	5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	UART2 Transmit/Receive Control Register 0	U2C0	0000 1000b
	UART2 Transmit/Receive Control Register 1	U2C1	0000 0010b
	UART2 Receive Buffer Register	U2RB	XXXXh
00033Fh		02110	,
	Count Start Register	TABSR	0000 0000b
	Clock Prescaler Reset Register	CPSRF	0XXX XXXXb
	One-shot Start Register	ONSF	0000 0000b
	Trigger Select Register	TRGSR	0000 0000b
	Increment/Decrement Select Register	UDF	0000 0000b
000345h			
	Timer A0 Register	TA0	XXXXh
000347h			
	Timer A1 Register	TA1	XXXXh
000348h			
	Timer A2 Register	TA2	XXXXh
0003105		1	
00034Bh		ΤΛ 2	VVVVh
00034Ch	Timer A3 Register	TA3	XXXXh
00034Ch 00034Dh	Timer A3 Register		
00034Ch 00034Dh	Timer A3 Register Timer A4 Register	TA3 TA4	XXXXh XXXXh

X: Undefined

Blanks are reserved. No access is allowed.

Table 4.20	SFR List (20)
------------	---------------

Address	Register	Symbol	Reset Value
040094h			
040095h			
040096h			
	Three-phase Output Buffer Control Register	IOBC	0XXX XXXXb
040098h	Input Function Select Register 0	IFS0	X000 0000b (1)
040099h			
04009Ah	Input Function Select Register 2	IFS2	0000 00X0b ⁽²⁾
04009Bh	Input Function Select Register 3	IFS3	XXXX XX00b
04009Ch			
04009Dh			
04009Eh			
04009Fh	Input Function Select Register 7 ⁽³⁾	IFS7	XXXX XX0Xb
0400A0h	Port P0_0 Function Select Register	P0_0S	0XXX X000b
	Port P1_0 Function Select Register	P1_0S	XXXX X000b
	Port P0_1 Function Select Register	P0_1S	0XXX X000b
0400A3h	Port P1_1 Function Select Register	P1_1S	XXXX X000b
	Port P0_2 Function Select Register	P0_2S	0XXX X000b
	Port P1_2 Function Select Register	P1_2S	XXXX X000b
	Port P0_3 Function Select Register	P0_3S	0XXX X000b
	Port P1_3 Function Select Register	P1_3S	XXXX X000b
	Port P0_4 Function Select Register	P0_4S	0XXX X000b
0400A9h	Port P1_4 Function Select Register	P1_4S	XXXX X000b
0400AAh	Port P0_5 Function Select Register	P0_5S	0XXX X000b
	Port P1_5 Function Select Register	P1_5S	XXXX X000b
	Port P0_6 Function Select Register	P0_6S	0XXX X000b
	Port P1_6 Function Select Register	P1_6S	XXXX X000b
	Port P0_7 Function Select Register	P0_7S	0XXX X000b
	Port P1_7 Function Select Register	P1_7S	XXXX X000b
	Port P2_0 Function Select Register	P2_0S	0XXX X000b
	Port P3_0 Function Select Register	P3_0S	XXXX X000b
	Port P2_1 Function Select Register	P2_1S	0XXX X000b
	Port P3_1 Function Select Register	P3_1S	XXXX X000b
	Port P2_2 Function Select Register	P2_2S	0XXX X000b
	Port P3_2 Function Select Register	P3_2S	XXXX X000b
	Port P2_3 Function Select Register	P2_3S	0XXX X000b
	Port P3_3 Function Select Register	P3_3S	XXXX X000b
	Port P2_4 Function Select Register	P2_4S	0XXX X000b
	Port P3_4 Function Select Register	P3_4S	XXXX X000b
	Port P2_5 Function Select Register	P2_5S	0XXX X000b
	Port P3_5 Function Select Register	P3_5S	XXXX X000b
	Port P2_6 Function Select Register	P2_6S	0XXX X000b
	Port P3_6 Function Select Register	P3_6S	XXXX X000b
	Port P2_7 Function Select Register	P2_7S	0XXX X000b
0400BFh	Port P3_7 Function Select Register	P3_7S	XXXX X000b

X: Undefined

Blanks are reserved. No access is allowed.

Notes:

- 1. The reset value is 0000 0000b in the 64-pin package.
- 2. The reset value is 0000 000Xb in the 64-pin package.
- 3. This register is provided for the 64-pin package only. No access is allowed in the 100-pin package.

14016 4.22	31 K LISI (22)		
Address	Register	Symbol	Reset Value
0400F0h	Port P10_0 Function Select Register	P10_0S	0XXX X000b
0400F1h			
0400F2h	Port P10_1 Function Select Register	P10_1S	0XXX X000b
0400F3h			
	Port P10 2 Function Select Register	P10 2S	0XXX X000b
0400F5h			
	Port P10_3 Function Select Register	P10_3S	0XXX X000b
0400F7h			
	Port P10_4 Function Select Register	P10_4S	0XXX X000b
0400F9h			0,000,0000
	Port P10_5 Function Select Register	P10_5S	0XXX X000b
0400FBh		1 10_00	
	Port P10_6 Function Select Register	P10_6S	0XXX X000b
0400FCh		F 10_03	
		D10 79	
	Port P10_7 Function Select Register	P10_7S	0XXX X000b
0400FFh			
040100h			
040101h			
040102h			
040103h			
040104h			
040105h			
040106h			
040107h			
040108h			
040109h			
04010Ah			
04010Bh			
04010Ch			
04010Dh			
04010Eh			
04010Fh			
040110h			
040111h			
040112h			
040113h			
040114h			
040115h			
040116h			
040117h			
040118h			
040110h			
040119h			
04011Bh			
04011Ch			
04011Dh			
04011Eh			
04011Fh			
X [·] Undefine			

Table 4.22SFR List (22)

X: Undefined

Blanks are reserved. No access is allowed.

5. Electrical Characteristics

Symbol		Characteristic	Condition	Value ⁽²⁾	Unit
V _{CC1,} V _{CC2}	Supply volta	age	$V_{CC1} = AV_{CC}$	-0.3 to 6.0	V
V _{CC2}	Supply volta	age	—	-0.3 to V _{CC1}	V
AV _{CC}	Analog sup	ply voltage	$V_{CC1} = AV_{CC}$	-0.3 to 6.0	V
VI	Input voltage	XIN, RESET, CNVSS, NSD, V _{REF} , P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_1, P9_3 to P9_7, P10_0 to P10_7 ⁽³⁾		-0.3 to V _{CC1} + 0.3	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7 ⁽³⁾		-0.3 to V _{CC2} + 0.3	V
		P7_0, P7_1		-0.3 to 6.0	V
V _O	Output voltage	XOUT, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 ⁽³⁾		-0.3 to V _{CC1} + 0.3	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7 ⁽³⁾		-0.3 to V _{CC2} + 0.3	V
		P7_0, P7_1		-0.3 to 6.0	V
P _d	Power cons	sumption	T _a = 25°C	500	mW
	Operating t	emperature range		-40 to 85	°C
T _{stg}	Storage ten	nperature range		-65 to 150	°C

 Table 5.1
 Absolute Maximum Ratings ⁽¹⁾

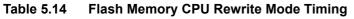
Notes:

- 1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. The V_{CC2} pin is available in the 100-pin package only. It should be considered as V_{CC1} in the 64-pin package.
- 3. Ports P0_4 to P0_7, P1_0 to P1_4, P3_4 to P3_7, P4, P5, P9_1, and P9_4 to P9_7 are available in the 100-pin package only.

Table 5.3Operating Conditions (2/5) $(V_{CC1} = V_{CC2} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } T_a = T_{opr}, \text{ unless otherwise noted})$ ⁽¹⁾

Symbol	Characteristic		Value ⁽²⁾			Unit
Gynnoor	Characteristic		Min.	Тур.	Max.	Onic
C _{VDC}	Decoupling capacitance for voltage regulator	Inter-pin voltage: 1.5 V	2.4		10.0	μF

Notes:


1. The device is operationally guaranteed under these operating conditions.

2. This value should be met with due consideration to the following conditions: operating temperature, DC bias, aging, etc.

Timing Requirements ($V_{CC1} = V_{CC2} = 3.0$ to 5.5 V, $V_{SS} = 0$ V, and Ta = T_{opr}, unless otherwise noted)

Symbol	Characteristics	Value		Unit
Symbol	Characteristics	Min.	Max.	Unit
t _{cR}	Read cycle time	200		ns
t _{su(S-R)}	Chip-select setup time before read	200		ns
t _{h(R-S)}	Chip-select hold time after read	0		ns
t _{su(A-R)}	Address setup time before read	200		ns
t _{h(R-A)}	Address hold time after read	0		ns
t _{w(R)}	Read pulse width	100		ns
t _{cW}	Write cycle time	200		ns
t _{su(S-W)}	Chip-select setup time before write	0		ns
t _{h(W-S)}	Chip-select hold time after write	30		ns
t _{su(A-W)}	Address setup time before write	0		ns
t _{h(W-A)}	Address hold time after write	30		ns
t _{w(W)}	Write pulse width	50		ns

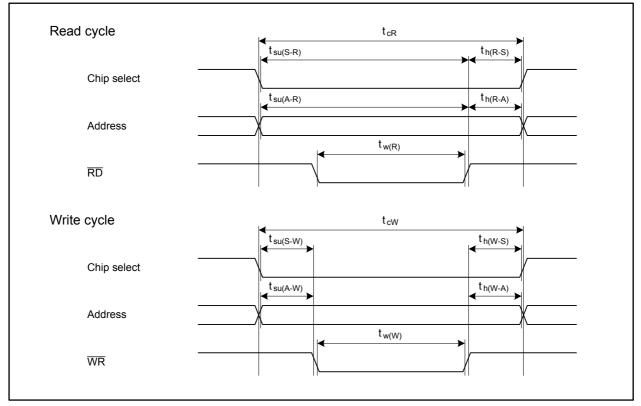


Figure 5.5 Flash Memory CPU Rewrite Mode Timing

$V_{CC1} = V_{CC2} = 5 V$

Table 5.15Electrical Characteristics (1/3)
(V_{CC1} = V_{CC2} = 4.2 to 5.5 V, V_{SS} = 0 V, T_a = T_{opr}, and f_(CPU) = 50 MHz, unless otherwise
noted)

Symbol		Characteristic	Measurement	Val	ue ⁽²⁾		Unit
Cymbol		Characteristic	Condition	Min.	Тур.	Max.	Onic
V _{OH}	High level output	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7 (1)	I _{OH} = -5 mA	V _{CC2} -2.0		V _{CC2}	V
	voltage	P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 (1)		V _{CC1} -2.0		V _{CC1}	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7 (1)	I _{OH} = -200 μA	V _{CC2} -0.3		V _{CC2}	V
		P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 (1)		V _{CC1} -0.3		V _{CC1}	V
V _{OL}	Low level output voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 (1)				2.0	v
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 (1)				0.45	v

Notes:

1. Ports P0_4 to P0_7, P1_0 to P1_4, P3_4 to P3_7, P4, P5, and P9_4 to P9_7 are available in the 100-pin package only.

2. The V_{CC2} pin is available in the 100-pin package only. It should be considered as V_{CC1} in the 64-pin package.

$V_{CC1} = V_{CC2} = 5 V$

Timing Requirements ($V_{CC1} = V_{CC2} = 4.2$ to 5.5 V, $V_{SS} = 0$ V, and $T_a = T_{opr}$, unless otherwise noted)

Symbol Characteristic	Characteristic	Value		Unit
Symbol	Characteristic	Min.	Max.	Unit
t _{c(TB)}	TBiIN input clock cycle time (one edge counting)	200		ns
t _{w(TBH)}	TBiIN input high level pulse width (one edge counting)	80		ns
t _{w(TBL)}	TBiIN input low level pulse width (one edge counting)	80		ns
t _{C(TB)}	TBiIN input clock cycle time (both edges counting)	200		ns
t _{w(TBH)}	TBiIN input high level pulse width (both edges counting)	80		ns
t _{w(TBL)}	TBiIN input low level pulse width (both edges counting)	80		ns

Table 5.27 Timer B Input (counting input in event counter mode)

Table 5.28 Timer B Input (pulse period measure mode)

Symbol Characteristic	Characteristic	Value		Unit
Symbol	Characteristic	Min.	Max.	Unit
t _{c(TB)}	TBiIN input clock cycle time	400		ns
t _{w(TBH)}	TBiIN input high level pulse width	180		ns
t _{w(TBL)}	TBiIN input low level pulse width	180		ns

Table 5.29 Timer B Input (pulse-width measure mode)

Symbol	Symbol Characteristic	Value		Unit
Symbol	Characteristic	Min.	Max.	Unit
t _{c(TB)}	TBiIN input clock cycle time	400		ns
t _{w(TBH)}	TBiIN input high level pulse width	180		ns
t _{w(TBL)}	TBiIN input low level pulse width	180		ns

$V_{CC1} = V_{CC2} = 3.3 V$

Timing Requirements ($V_{CC1} = V_{CC2} = 3.0$ to 3.6 V, $V_{SS} = 0$ V, and $T_a = T_{opr}$, unless otherwise noted)

Symbol	Characteristic		Value	
Symbol	Characteristic	Min.	Max.	Unit
t _{c(TB)}	TBilN input clock cycle time (one edge counting)	200		ns
t _{w(TBH)}	TBiIN input high level pulse width (one edge counting)	80		ns
t _{w(TBL)}	TBiIN input low level pulse width (one edge counting)	80		ns
t _{c(TB)}	TBiIN input clock cycle time (both edges counting)	200		ns
t _{w(TBH)}	TBiIN input high level pulse width (both edges counting)	80		ns
t _{w(TBL)}	TBiIN input low level pulse width (both edges counting)	80		ns

Table 5.50 Timer B Input (counting input in event counter mode)

Table 5.51 Timer B Input (pulse period measure mode)

Symbol	Symbol Characteristic	Value		Unit
Symbol	Characteristic	Min.	Max.	Offic
t _{c(TB)}	TBiIN input clock cycle time	400		ns
t _{w(TBH)}	TBiIN input high level pulse width	180		ns
t _{w(TBL)}	TBiIN input low level pulse width	180		ns

Table 5.52 Timer B Input (pulse-width measure mode)

Symbol	Characteristic	Value		Unit
		Min.	Max.	Offic
t _{c(TB)}	TBiIN input clock cycle time	400		ns
t _{w(TBH)}	TBiIN input high level pulse width	180		ns
t _{w(TBL)}	TBiIN input low level pulse width	180		ns

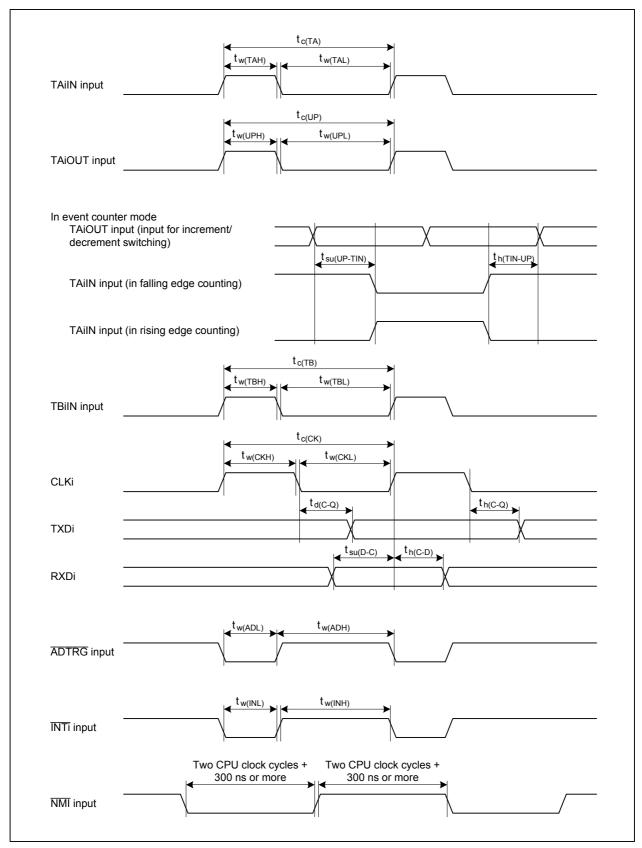


Figure 5.10 Timing of Peripherals

Revision History

R32C/111 Group Datasheet

Rev.	Date	Description			
		Page	Summary		
		2, 4, 6	 Modified the following expressions in Tables 1.1, 1.3, and 1.5: "Main clock oscillator stop/re-oscillation detection" to "Main clock oscillator stop/restart detection", and "inputs/outputs" to "I/O ports" Deleted Note 1 from Table 1.2 		
		4, 6	• Deleted memory expansion mode and microprocessor mode from the operating mode of the CPU in Tables 1.3 and 1.5		
		5, 7 7	Deleted Note 2 from Tables 1.4 and 1.6 Corrected package code in Table 1.6 to "PLQP0064KB-A" Completed "under development" phase of DEE6411EDEN in Table 1.7		
		8 10-12 13	 Completed "under development" phase of R5F6411EDFN in Table 1.7 Deleted Note 1 from Figures 1.2 to 1.4 Corrected a typo "R5_3" for pin number 41 in Figure 1.5 to "P5_3" 		
		13, 18, 21	Changed order of signals in Figures 1.5, 1.7, and 1.8		
		15, 19, 22	Changed order of timer pins "TB5IN/TA0IN" in Tables 1.8, 1.11, and 1.13 to "TA0IN/TB5IN" Modified expression "fC" in Table 1 15 to "low encod clocks"		
		24	Modified expression "fC" in Table 1.15 to "low speed clocks" Chapter 2. CPU		
		_	Modified wording and enhanced description in this chapter		
		32	• Corrected a typo "R3R0" in line 3 of 2.1.1 to "R3R1"		
			Chapter 3. Memory		
			Modified wording and enhanced description in this chapter		
			Chapter 4. SFRs		
		41, 42, 44	 Modified wording and enhanced description in this chapter Changed hexadecimal format of reset values for registers G1BCR0, G2BCR0, and G0BCR0 in Tables 4.6, 4.7, and 4.9 to binary 		
		41, 44	• Changed register name "Group i Timer Measurement Prescaler Register" in Tables 4.6 and 4.9 to "Group i Time Measurement Prescaler Register"		
		43	Modified expression "IE Bus" in Table 4.8 to "IEBus"		
		46	Modified expression "XY Control Register" in Table 4.11 to "X-Y Control Register"		
		48	Changed register name "UART2 Transmission/Receive Mode Register" and "Increment/Decrement Counting Select Register" in Table 4.13 to "UART2 Transmit/Receive Mode Register" and "Increment/Decrement Select Register", respectively; Changed hexadecimal format of reset values for registers TABSR, ONSF, and TRGSR to binary		
		50	Changed reset value "X00X X000b" for AD0CON2 register in Table 4.15 to "XX0X X000b"		
		59	Changed register name "External Interrupt Source Select Register i" in Table 4.24 to "External Interrupt Request Source Select Register i"		
		_	 Chapter 5. Electrical Characteristics Modified wording and enhanced description in this chapter Changed expression "clock period" to "clock cycle time" 		
		61	Changed format for ports P0 and P1 in Table 5.2		

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.