

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R32C/100
Core Size	16/32-Bit
Speed	50MHz
Connectivity	EBI/EMI, I ² C, IEBus, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	49
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f6411edfn-ua

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

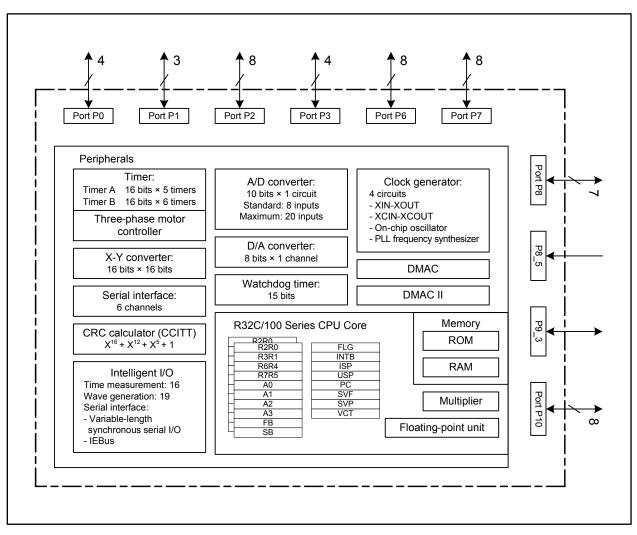


Figure 1.3 R32C/111 Group Block Diagram for the 64-pin Package

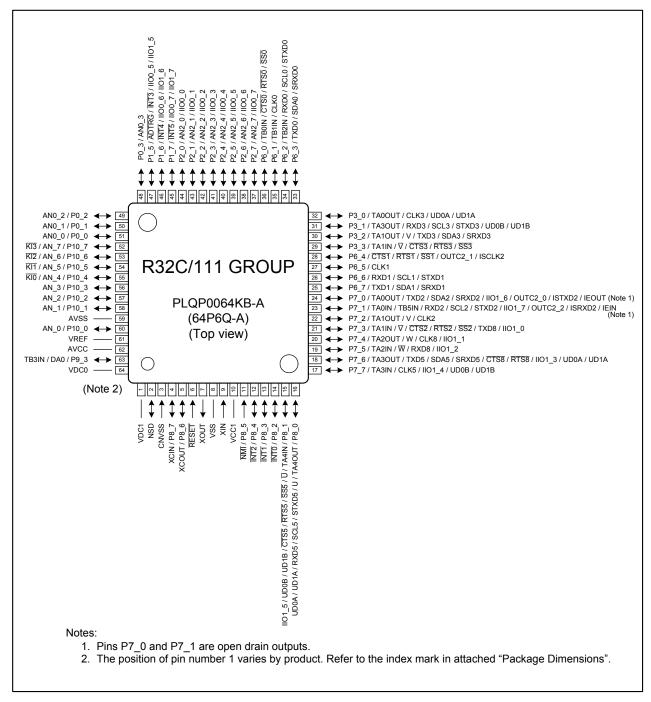


Figure 1.6 Pin Assignment for the 64-pin Package (top view)

2.1.8.5 Register Bank Select Flag (B flag)

This flag selects a register bank. It indicates 0 when register bank 0 is selected, and 1 when register bank 1 is selected.

2.1.8.6 Overflow Flag (O flag)

This flag becomes 1 when the result of an operation overflows; otherwise it is 0.

2.1.8.7 Interrupt Enable Flag (I flag)

This flag enables maskable interrupts. To disable maskable interrupts, set this flag to 0. To enable them, set this flag to 1. When an interrupt is accepted, the flag becomes 0.

2.1.8.8 Stack Pointer Select Flag (U flag)

To select the interrupt stack pointer (ISP), set this flag to 0. To select the user stack pointer (USP), set this flag to 1.

It becomes 0 when a hardware interrupt is accepted or when an INT instruction designated by a software interrupt number from 0 to 127 is executed.

2.1.8.9 Floating-point Underflow Flag (FU flag)

This flag becomes 1 when an underflow occurs in a floating-point operation; otherwise it is 0. It also becomes 1 when the operand contains invalid numbers (subnormal numbers).

2.1.8.10 Floating-point Overflow Flag (FO flag)

This flag becomes 1 when an overflow occurs in a floating-point operation; otherwise it is 0. It also becomes 1 when the operand contains invalid numbers (subnormal numbers).

2.1.8.11 Processor Interrupt Priority Level (IPL)

The processor interrupt priority level (IPL), consisting of 3 bits, selects a processor interrupt priority level from level 0 to 7. An interrupt is enabled when the interrupt request level is higher than the selected IPL.

When the processor interrupt priority level (IPL) is set to 111b (level 7), all interrupts are disabled.

2.1.8.12 Fixed-point Radix Point Designation Bit (DP bit)

This bit designates the radix point. It also specifies which portion of the fixed-point multiplication result to extract. It is used for the MULX instruction.

2.1.8.13 Floating-point Rounding Mode (RND)

The 2-bit floating-point rounding mode selects a rounding mode for floating-point calculation results.

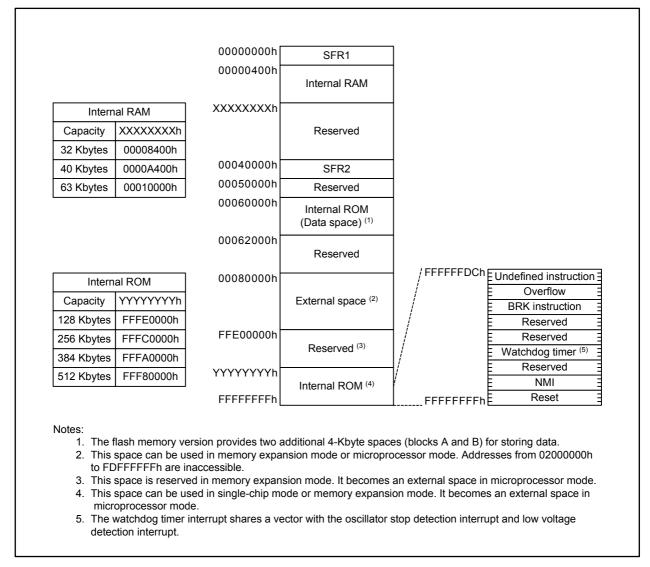
2.1.8.14 Reserved

Only set this bit to 0. The read value is undefined.

3. Memory

Figure 3.1 shows the memory map of the R32C/111 Group.

The R32C/111 Group provides a 4-Gbyte address space from 00000000h to FFFFFFFh.


The internal ROM is mapped from address FFFFFFFh in the inferior direction. For example, the 512-Kbyte internal ROM is mapped from FFF80000h to FFFFFFFh.

The fixed interrupt vector table contains the start address of interrupt handlers and is mapped from FFFFFDCh to FFFFFFFh.

The internal RAM is mapped from address 00000400h in the superior direction. For example, the 63-Kbyte internal RAM is mapped from 00000400h to 0000FFFFh. Besides being used for data storage, the internal RAM functions as a stack(s) for subroutine calls and/or interrupt handlers.

Special function registers (SFRs), which are control registers for peripheral functions, are mapped from 00000000h to 000003FFh, and from 00040000h to 0004FFFFh. Unoccupied SFR locations are reserved, and no access is allowed.

In memory expansion mode or microprocessor mode, some spaces are reserved for internal use and should not be accessed.

RENESAS

Figure 3.1 Memory Map

Table 4.19	SFR List (19)
------------	---------------

Address	Register	Symbol	Reset Value
040030h to			
04003Fh			
040040h			
040041h			
040042h			
040043h			
040044h	Processor Mode Register 0 ⁽¹⁾	PM0	1000 0000b (CNVSS pin = Low) 0000 0011b (CNVSS pin = High)
040045h			
040046h	System Clock Control Register 0	CM0	0000 1000b
040047h	System Clock Control Register 1	CM1	0010 0000b
040048h	Processor Mode Register 3	PM3	00h
040049h	5		
04004Ah	Protect Register	PRCR	XXXX X000b
04004Bh	•		
	Protect Register 3	PRCR3	0000 0000b
	Oscillator Stop Detection Register	CM2	00h
04004Eh		0.112	
04004Fh			
040050h			
040051h			
0400511			
	Processor Mode Register 2	PM2	00h
		CSOP0	1000 XXXXb
	Chip Select Output Pin Setting Register 0	CSOP0 CSOP1	
	Chip Select Output Pin Setting Register 1	CSOP1	01X0 XXXXb
040056h			
040057h			
040058h			
040059h			
	Low Speed Mode Clock Control Register	CM3	XXXX XX00b
04005Bh			
04005Ch			
04005Dh			
04005Eh			
04005Fh			
040060h	Voltage Regulator Control Register	VRCR	0000 0000b
040061h			
040062h	Low Voltage Detector Control Register	LVDC	0000 XX00b
040063h			
040064h	Detection Voltage Configuration Register	DVCR	0000 XXXXb
040065h	5 5 5		
040066h			
040067h			
040068h to			
040093h			
X: Undefine		I	<u> </u>

X: Undefined

Blanks are reserved. No access is allowed.

Note:

1. The value in the PM0 register is retained even after a software reset or watchdog timer reset.

Table 4.20	SFR List (20)
------------	---------------

Address	Register	Symbol	Reset Value
040094h			
040095h			
040096h			
	Three-phase Output Buffer Control Register	IOBC	0XXX XXXXb
040098h	Input Function Select Register 0	IFS0	X000 0000b (1)
040099h			
04009Ah	Input Function Select Register 2	IFS2	0000 00X0b ⁽²⁾
04009Bh	Input Function Select Register 3	IFS3	XXXX XX00b
04009Ch			
04009Dh			
04009Eh			
04009Fh	Input Function Select Register 7 ⁽³⁾	IFS7	XXXX XX0Xb
0400A0h	Port P0_0 Function Select Register	P0_0S	0XXX X000b
	Port P1_0 Function Select Register	P1_0S	XXXX X000b
	Port P0_1 Function Select Register	P0_1S	0XXX X000b
0400A3h	Port P1_1 Function Select Register	P1_1S	XXXX X000b
	Port P0_2 Function Select Register	P0_2S	0XXX X000b
	Port P1_2 Function Select Register	P1_2S	XXXX X000b
	Port P0_3 Function Select Register	P0_3S	0XXX X000b
	Port P1_3 Function Select Register	P1_3S	XXXX X000b
	Port P0_4 Function Select Register	P0_4S	0XXX X000b
0400A9h	Port P1_4 Function Select Register	P1_4S	XXXX X000b
0400AAh	Port P0_5 Function Select Register	P0_5S	0XXX X000b
	Port P1_5 Function Select Register	P1_5S	XXXX X000b
	Port P0_6 Function Select Register	P0_6S	0XXX X000b
	Port P1_6 Function Select Register	P1_6S	XXXX X000b
	Port P0_7 Function Select Register	P0_7S	0XXX X000b
	Port P1_7 Function Select Register	P1_7S	XXXX X000b
	Port P2_0 Function Select Register	P2_0S	0XXX X000b
	Port P3_0 Function Select Register	P3_0S	XXXX X000b
	Port P2_1 Function Select Register	P2_1S	0XXX X000b
	Port P3_1 Function Select Register	P3_1S	XXXX X000b
	Port P2_2 Function Select Register	P2_2S	0XXX X000b
	Port P3_2 Function Select Register	P3_2S	XXXX X000b
	Port P2_3 Function Select Register	P2_3S	0XXX X000b
	Port P3_3 Function Select Register	P3_3S	XXXX X000b
	Port P2_4 Function Select Register	P2_4S	0XXX X000b
	Port P3_4 Function Select Register	P3_4S	XXXX X000b
	Port P2_5 Function Select Register	P2_5S	0XXX X000b
	Port P3_5 Function Select Register	P3_5S	XXXX X000b
	Port P2_6 Function Select Register	P2_6S	0XXX X000b
	Port P3_6 Function Select Register	P3_6S	XXXX X000b
	Port P2_7 Function Select Register	P2_7S	0XXX X000b
0400BFh	Port P3_7 Function Select Register	P3_7S	XXXX X000b

X: Undefined

Blanks are reserved. No access is allowed.

Notes:

- 1. The reset value is 0000 0000b in the 64-pin package.
- 2. The reset value is 0000 000Xb in the 64-pin package.
- 3. This register is provided for the 64-pin package only. No access is allowed in the 100-pin package.

5. Electrical Characteristics

Symbol		Characteristic	Condition	Value ⁽²⁾	Unit
$V_{CC1,}V_{CC2}$	Supply volta	ge	$V_{CC1} = AV_{CC}$	-0.3 to 6.0	V
V _{CC2}	Supply volta	ige	_	-0.3 to V _{CC1}	V
AV _{CC}	Analog supp	bly voltage	$V_{CC1} = AV_{CC}$	-0.3 to 6.0	V
VI	Input voltage	XIN, RESET, CNVSS, NSD, V _{REF} , P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_1, P9_3 to P9_7, P10_0 to P10_7 ⁽³⁾		-0.3 to V _{CC1} + 0.3	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7 ⁽³⁾		-0.3 to V _{CC2} + 0.3	V
		P7_0, P7_1		-0.3 to 6.0	V
V _O	Output voltage	XOUT, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 ⁽³⁾		-0.3 to V _{CC1} + 0.3	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7 ⁽³⁾		-0.3 to V _{CC2} + 0.3	V
		P7_0, P7_1		-0.3 to 6.0	V
P _d	Power cons	umption	T _a = 25°C	500	mW
—	Operating te	emperature range		-40 to 85	°C
T _{stg}	Storage tem	perature range		-65 to 150	°C

 Table 5.1
 Absolute Maximum Ratings ⁽¹⁾

Notes:

- 1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. The V_{CC2} pin is available in the 100-pin package only. It should be considered as V_{CC1} in the 64-pin package.
- 3. Ports P0_4 to P0_7, P1_0 to P1_4, P3_4 to P3_7, P4, P5, P9_1, and P9_4 to P9_7 are available in the 100-pin package only.

Symbol	Characteristic			Value ⁽²⁾			
Symbol		Charac	lensuc	Min.	Тур.	Max.	Unit
V _{CC1,} V _{CC2}	Digital supply	v voltage (V _{CC1} \ge V	/ _{CC2})	3.0	5.0	5.5	V
AV _{CC}	Analog suppl	ly voltage			V _{CC1}		V
V _{REF}	Reference vo	oltage		3.0		V _{CC1}	V
V _{SS}	Digital groun	d voltage			0		V
AV _{SS}	Analog grour	nd voltage			0		V
dV _{CC1} / dt	V _{CC1} ramp u	p rate (V _{CC1} < 2.0	V)	0.05			V/ms
V _{IH}	High level input	P5_0 to P5_7 ⁽⁴⁾	_0 to P3_7, P4_0 to P4_7,	0.8 × V _{CC2}		V _{CC2}	V
	voltage		/SS, NSD, P6_0 to P6_7, _0 to P8_7 ⁽³⁾ , P9_1, 0_0 to P10_7 ⁽⁴⁾	0.8 × V _{CC1}		V _{CC1}	v
		P7_0, P7_1		0.8 × V _{CC1}		6.0	V
		P0_0 to P0_7, P1_0 to P1_7 ⁽⁴⁾	in single-chip mode	0.8 × V _{CC2}		V _{CC2}	V
			in memory expansion mode or microprocessor mode ⁽⁵⁾	0.5 × V _{CC2}		V _{CC2}	V
V _{IL}	Low level input	P5_0 to P5_7 ⁽⁴⁾	_0 to P3_7, P4_0 to P4_7,	0		$0.2 \times V_{CC2}$	V
	voltage		/SS, NSD, P6_0 to P6_7, _0 to P8_7 ⁽³⁾ , P9_1, 0_0 to P10_7 ⁽⁴⁾	0		0.2 × V _{CC1}	V
			in single-chip mode	0		$0.2 \times V_{CC2}$	V
			in memory expansion mode or microprocessor mode ⁽⁵⁾	0		0.16 × V _{CC2}	V
T _{opr}	Operating	N version		-20		85	°C
	temperature range	D version		-40		85	°C

Table 5.2	Operating Conditions (1/5) ⁽¹⁾
-----------	---

Notes:

- 1. The device is operationally guaranteed under these operating conditions.
- 2. The V_{CC2} pin is available in the 100-pin package only. It should be considered as V_{CC1} in the 64-pin package.
- 3. V_{IH} and V_{IL} for P8_7 are specified for P8_7 as a programmable port. These values are not applicable for P8_7 as XCIN.
- 4. Ports P0_4 to P0_7, P1_0 to P1_4, P3_4 to P3_7, P4, P5, P9_1, and P9_4 to P9_7 are available in the 100-pin package only.
- 5. Memory expansion mode and microprocessor mode are available in the 100-pin package only.

(V _{CC1} = V _{CC2} = 3.0 to 5.5 V, V _{SS} = 0 V, and $T_a = T_{opr}$, unless otherwise noted) ⁽¹⁾							
Symbol		Characteristic		Value			
Symbol		Characteristic	Min.	Тур.	Max.	Unit	
I _{OH(peak)}	peak output	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 ⁽³⁾			-10.0	mA	
I _{OH(avg)}	average output	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 ⁽³⁾			-5.0	mA	
I _{OL} (peak)	peak output	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 ⁽³⁾			10.0	mA	
I _{OL(avg)}	average output	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 ⁽³⁾			5.0	mA	

Table 5.4 **Operating Conditions (3/5)**

Notes:

1. The device is operationally guaranteed under these operating conditions.

- The following conditions should be satisfied: 2.
 - The sum of $I_{OL(peak)}$ of ports P0, P1, P2, P8_6, P8_7, P9, and P10 is 80 mA or less.
 - The sum of I_{OL(peak)} of ports P3, P4, P5, P6, P7, and P8_0 to P8_4 is 80 mA or less.
 - The sum of I_{OH(peak)} of ports P0, P1, and P2 is -40 mA or less.
 - The sum of $I_{OH(peak)}$ of ports P8_6, P8_7, P9, and P10 is -40 mA or less.
 - The sum of $I_{OH(peak)}$ of ports P3, P4, and P5 is -40 mA or less.
 - The sum of I_{OH(peak)} of ports P6, P7, and P8_0 to P8_4 is -40 mA or less.
- 3. Ports P0_4 to P0_7, P1_0 to P1_4, P3_4 to P3_7, P4, P5, and P9_4 to P9_7 are available in the 100-pin package only.
- 4. Average value within 100 ms.

Table 5.6Operating Conditions (5/5) $(V_{CC1} = V_{CC2} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } T_a = T_{opr}, \text{ unless otherwise noted})$ ⁽¹⁾

Symbol	Characteristic		Value			Unit
Symbol	Characteristic		Min.	Тур.	Max.	Unit
V _{r(VCC1)}	Allowable ripple voltage	V _{CC1} = 5.0 V			0.5	Vp-р
		V _{CC1} = 3.0 V			0.3	Vp-p
V _{r(VCC2)}	Allowable ripple voltage	V _{CC2} = 5.0 V			0.5	Vp-р
		V _{CC2} = 3.0 V			0.3	Vp-р
dV _{r(VCC1)} /dt	Ripple voltage gradient	V _{CC1} = 5.0 V			±0.3	V/ms
		V _{CC1} = 3.0 V			±0.3	V/ms
dV _{r(VCC2)} /dt	Ripple voltage gradient	V _{CC2} = 5.0 V			±0.3	V/ms
		V _{CC2} = 3.0 V			±0.3	V/ms
f _{r(VCC1)}	Allowable ripple frequency				10	kHz
f _{r(VCC2)}	Allowable ripple frequency				10	kHz

Note:

1. The device is operationally guaranteed under these operating conditions.

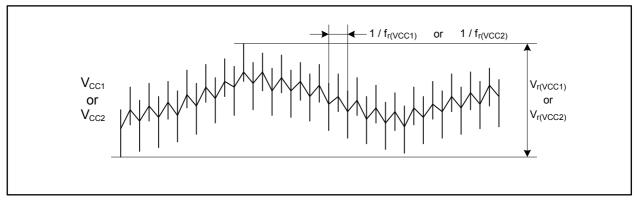


Figure 5.2 Ripple Waveform

Table 5.7 Electrical Characteristics of RAM

 $(V_{CC1} = V_{CC2} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ and } \text{Ta} = T_{opr}, \text{ unless otherwise noted})$

Symbol	Characteristic	Measurement	Value			Unit
Symbol	Characteristic	Condition	Min.	Тур.	Max.	Onit
V _{RDR}	RAM data retention voltage ⁽¹⁾	In stop mode	2.0			V

Note:

1. The value listed in the table is the minimum V_{CC1} to retain RAM data.

Table 5.8Electrical Characteristics of Flash Memory
(V_{CC1} = V_{CC2} = 3.0 to 5.5 V, V_{SS} = 0 V, and Ta = T_{opr}, unless otherwise noted)

Symbol	characteristic			Value		Unit
Symbol	Characteristic	Characteristic		Тур.	Max.	Onit
—	Program/erase cycles ⁽¹⁾	Program area	1000			Cycles
		Data area	10000			Cycles
—	4-word program time	Program area		150	900	μs
		Data area		300	1700	μs
—	Lock bit program time	Program area		70	500	μs
		Data area		140	1000	μs
—	Block erasure time	4-Kbyte block		0.12	3.0	S
		32-Kbyte block		0.17	3.0	S
		64-Kbyte block		0.20	3.0	S
—	Data retention ⁽²⁾	$T_a = 55^{\circ}C^{(3)}$	10			Years

Notes:

1. Program/erase definition

This value represents the number of erasures per block.

When the number of program/erase cycles is n, each block can be erased n times.

For example, if a 4-word write is performed in 512 different addresses in the 4-Kbyte block A and then the block is erased, this is counted as a single program/erase operation.

However, the same address cannot be written to more than once per erasure (overwrite disabled).

- 2. Data retention includes periods when no supply voltage is applied and no clock is provided.
- 3. Contact a Renesas Electronics sales office for data retention times other than the above condition.

Table 5.15Electrical Characteristics (1/3)
(V_{CC1} = V_{CC2} = 4.2 to 5.5 V, V_{SS} = 0 V, T_a = T_{opr}, and f_(CPU) = 50 MHz, unless otherwise
noted)

Symbol	Characteristic		Measurement	Value ⁽²⁾			Unit
Cymbol			Condition	Min.	Тур.	Max.	Onic
V _{OH}	High level output	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7 (1)	I _{OH} = -5 mA	V _{CC2} -2.0		V _{CC2}	V
	voltage	P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 (1)		V _{CC1} -2.0		V _{CC1}	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7 (1)	I _{OH} = -200 μA	V _{CC2} -0.3		V _{CC2}	V
		P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 (1)		V _{CC1} -0.3		V _{CC1}	V
V _{OL}	Low level output voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 (1)				2.0	v
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_3 to P9_7, P10_0 to P10_7 (1)				0.45	v

Notes:

1. Ports P0_4 to P0_7, P1_0 to P1_4, P3_4 to P3_7, P4, P5, and P9_4 to P9_7 are available in the 100-pin package only.

2. The V_{CC2} pin is available in the 100-pin package only. It should be considered as V_{CC1} in the 64-pin package.

Table 5.19D/A Conversion Characteristics ($V_{CC1} = V_{CC2} = AV_{CC} = V_{REF} = 4.2$ to 5.5 V, $V_{SS} = AV_{SS} = 0$ V, and $T_a = T_{opr}$, unless otherwise noted)

Symbol	Characteristic	Measurement Condition		Value			
Symbol	Characteristic			Тур.	Max.	Unit	
—	Resolution				8	Bits	
—	Absolute precision				1.0	%	
t _S	Settling time				3	μs	
R _O	Output resistance		4	10	20	kΩ	
I _{VREF}	Reference input current	See Note 1			1.5	mA	

Note:

1. One D/A converter is used. The DAi register (i = 0, 1) of the other unused converter is set to 00h. The resistor ladder for the A/D converter is not considered.

Even when the VCUT bit in the AD0CON1 register is set to 0 (V_{REF} disconnected), I_{VREF} is supplied.

Timing Requirements ($V_{CC1} = V_{CC2} = 4.2$ to 5.5 V, $V_{SS} = 0$ V, and $T_a = T_{opr}$, unless otherwise noted)

Symbol	Characteristic		Value	
Symbol			Max.	Unit
t _{c(TB)}	TBiIN input clock cycle time (one edge counting)			ns
t _{w(TBH)}	TBiIN input high level pulse width (one edge counting)	80		ns
t _{w(TBL)}	TBiIN input low level pulse width (one edge counting)	80		ns
t _{C(TB)}	TBiIN input clock cycle time (both edges counting)	200		ns
t _{w(TBH)}	TBiIN input high level pulse width (both edges counting)	80		ns
t _{w(TBL)}	TBiIN input low level pulse width (both edges counting)	80		ns

Table 5.27 Timer B Input (counting input in event counter mode)

Table 5.28 Timer B Input (pulse period measure mode)

Symbol	Characteristic		Value		
Symbol			Max.	Unit	
t _{c(TB)}	TBiIN input clock cycle time	400		ns	
t _{w(TBH)}	TBiIN input high level pulse width			ns	
t _{w(TBL)}	TBiIN input low level pulse width	180		ns	

Table 5.29 Timer B Input (pulse-width measure mode)

Symbol	Characteristic		Value		
Symbol			Max.	Unit	
t _{c(TB)}	TBilN input clock cycle time			ns	
t _{w(TBH)}	TBiIN input high level pulse width			ns	
t _{w(TBL)}	TBiIN input low level pulse width	180		ns	

Switching Characteristics ($V_{CC1} = V_{CC2} = 4.2$ to 5.5 V, $V_{SS} = 0$ V, and $T_a = T_{opr}$, unless otherwise noted)

Symbol	Characteristic	Measurement	Va	Unit		
Symbol	Characteristic	Condition	Min.	Max.	Unit	
t _{d(C-Q)}	TXDi output delay time	Refer to		80	ns	
t _{h(C-Q)}	TXDi output hold time	Figure 5.6	0		ns	

Table 5.36Serial Interface

Table 5.37 Intelligent I/O

Symbol	Characteristic	Measurement	Va	Unit	
Symbol	Characteristic	Condition	Min.	Max.	Offic
t _{d(ISCLK2-TXD)}	ISTXD2 output delay time	Refer to		180	ns
t _{h(ISCLK2-RXD)}	ISTXD2 output hold time	Figure 5.6	0		ns

$$V_{CC1} = V_{CC2} = 3.3 V$$

Table 5.40	Electrical Characteristics (3/3)
	($V_{CC1} = V_{CC2} = 3.0$ to 3.6 V, $V_{SS} = 0$ V, and $T_a = T_{opr}$, unless otherwise noted)

Symbol	Characte	Ma	Measurement Condition		Value		Unit
Symbol	ristic			Min.	Тур.	Max.	Onic
I _{CC}	Power supply current	In single-chip mode, output pins are left open and others are connected to V _{SS}	$f_{(CPU)} = 50 \text{ MHz}, f_{(BCLK)} = 25 \text{ MHz},$ $f_{(XIN)} = 8 \text{ MHz},$ Active: XIN, PLL, Stopped: XCIN, OCO		28	40	mA
		XIN-XOUT Drive strength: low	f _(CPU) = f _{SO(PLL)} /24 MHz, Active: PLL (self-oscillation), Stopped: XIN, XCIN, OCO		7		mA
		XCIN-XCOUT Drive strength: low	$ f_{(CPU)} = f_{(BCLK)} = f_{(XIN)}/256 \text{ MHz}, $ $f_{(XIN)} = 8 \text{ MHz}, $ Active: XIN, Stopped: PLL, XCIN, OCO		670		μΑ
			f _(CPU) = f _(BCLK) = 32.768 kHz, Active: XCIN, Stopped: XIN, PLL, OCO, Main regulator: shutdown		180		μΑ
			f _(CPU) = f _(BCLK) = f _(OCO) /4 kHz, Active: OCO, Stopped: XIN, PLL, XCIN, Main regulator: shutdown		190		μΑ
			$\begin{split} f_{(CPU)} &= f_{(BCLK)} = f_{(XIN)}/256 \text{ MHz}, \\ f_{(XIN)} &= 8 \text{ MHz}, \\ \text{Active: XIN,} \\ \text{Stopped: PLL, XCIN, OCO,} \\ T_a &= 25^{\circ}\text{C, Wait mode} \end{split}$		500	900	μΑ
			$f_{(CPU)} = f_{(BCLK)} = 32.768 \text{ kHz},$ Active: XCIN, Stopped: XIN, PLL, OCO, Main regulator: shutdown, T _a = 25°C, Wait mode		8	140	μA
			$f_{(CPU)} = f_{(BCLK)} = f_{(OCO)}/4 \text{ kHz},$ Active: OCO, Stopped: XIN, PLL, XCIN, Main regulator: shutdown, T _a = 25°C, Wait mode		10	150	μA
			Stopped: all clocks, Main regulator: shutdown, T _a = 25°C		5	70	μΑ

Switching Characteristics ($V_{CC1} = V_{CC2} = 3.0$ to 3.6 V, $V_{SS} = 0$ V, and $T_a = T_{opr}$, unless otherwise noted)

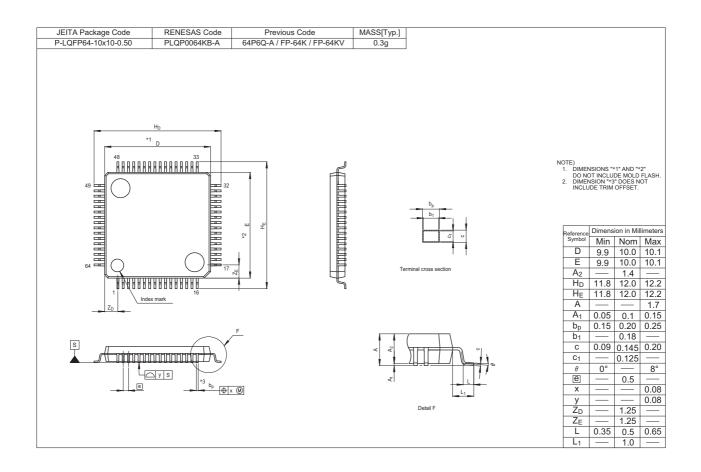

Symbol	Characteristic	Measurement	Va	Unit		
Symbol	Characteristic	Condition	Min.	Max.	Unit	
t _{d(C-Q)}	TXDi output delay time	Refer to		80	ns	
t _{h(C-Q)}	TXDi output hold time	Figure 5.6	0		ns	

Table 5.59Serial Interface

Table 5.60 Intelligent I/O

Symbol	Characteristic	Measurement	Va	Unit		
Symbol	Characteristic	Condition	Min.	Max.	Unit	
t _{d(ISCLK2-TXD)}	ISTXD2 output delay time	Refer to		180	ns	
t _{h(ISCLK2-RXD)}	ISTXD2 output hold time	Figure 5.6	0		ns	

Revision	History
----------	---------

R32C/111 Group Datasheet

Rev.	Date	Description	
		Page	Summary
0.03	Oct 17, 2007		Initial release
0.30	Aug 19, 2008		Second edition released
		_	The manual in general • Maximum operating frequency changed from 48 MHz to 50 MHz • Specification of on-chip oscillator disclosed • Microprocessor mode becomes optional • "memory-expanded mode" changed to "memory expansion mode" Chapter 1
		1	 "(MCUs)" added to line 1 of 1.1 Applications in 1.1.1 revised and modified "Attention Users" below 1.1.1 modified to "Notes to users"; "The specification" in this box changed to "Specifications"
		2 3	 "instructions" in "CPU" of Table 1.1 deleted Minimum instruction execution time in "CPU" of Table 1.1 changed Microprocessor mode in CPU" of Table 1.1 changed to optional "TBD" for "Voltage Detection" in Table 1.1 deleted "3 circuits" for "Clock" in Table 1.1 changed to "4 circuits" "Total interrupt vectors" in Table 1.1 changed to "Interrupt vectors" Trigger sources" for DMA in Table 1.1 modified to "Request sources"; Request sources for "DMA" defined as 51 Scribal error: "peripheral interrupt sources" for "DMACII" in Table 1.1 corrected to "peripheral interrupt source" Unit names in Table 1.2 sorted in chapter order Description for "A/D Converter" in Table 1.2 changed "Operating frequency" in Table 1.2 changed from "48 MHz" to "50 MHz" "version N" and "version D" added to "Operating Temperature" in Table 1.2; "optional" deleted
		4	 Values for "Current Consumption" in Table 1.2 added "version N" and "version D" added to Table 1.3
		e	• All "version N"s in Table 1.3 become on planning phase
		6 7	Figure 1.2 modified Note 2 for Figure 1.3 modified
		8	Scribal error: "CLK5/" (pin No. 21) in Table 1.4 corrected to "CLK5"
		o 11	 Description for "Connecting pins for decoupling capacitor", "CNVSS", and "Debug port" in Table 1.7 modified
		12	 Some descriptions for "WR0/WR1/WR/BC0/BC1/RD" of "Bus control pins" in Table 1.8 modified
		13, 14	Functional category items in Tables 1.9 and 1.10 sorted in chapter order; Descriptions modified
		— 15	 Chapter 2 Descriptions for this chapter modified; Expression "DMAC-related registers"s modified to "DMAC-associated registers"s "Data register" and "Address register" in Figure 2.1 pluralized;
		10	Explanation in Notes 1 and 2 for this figure revised

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.