
STMicroelectronics - ST72F561R9TCS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ST7

Core Size 8-Bit

Speed 8MHz

Connectivity CANbus, LINbusSCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 48

Program Memory Size 60KB (60K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 3.8V ~ 5.5V

Data Converters A/D 16x10b

Oscillator Type External

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/st72f561r9tcs

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/st72f561r9tcs-4434913
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ST72561-Auto Contents

Doc ID 12370 Rev 8 3/324

5.5.2 Asynchronous external RESET pin . 44

5.5.3 External power-on reset . 44

5.5.4 Internal low voltage detector (LVD) reset . 44

5.5.5 Internal watchdog reset . 45

5.6 System integrity management (SI) . 45

5.6.1 Low voltage detector (LVD) . 45

5.6.2 Auxiliary voltage detector (AVD) . 46

5.6.3 Low power modes . 47

5.6.4 Interrupts . 47

5.6.5 Register description . 48

6 Interrupts . 50

6.1 Introduction . 50

6.2 Masking and processing flow . 50

6.3 Interrupts and low power modes . 53

6.4 Concurrent & nested management . 53

6.5 Interrupt register description . 54

6.5.1 CPU CC register interrupt bits . 54

6.5.2 Interrupt software priority registers (ISPRX) . 55

6.6 External interrupts . 58

6.6.1 I/O port interrupt sensitivity . 58

6.6.2 Register description . 60

7 Power saving modes . 63

7.1 Introduction . 63

7.2 Slow mode . 63

7.3 Wait mode . 64

7.4 Halt mode . 65

7.5 Active halt mode . 67

7.6 Auto wake-up from halt mode . 68

7.6.1 Register description . 71

8 I/O ports . 73

8.1 Introduction . 73

8.2 Functional description . 73

8.2.1 Input modes . 73

Supply, reset and clock management ST72561-Auto

44/324 Doc ID 12370 Rev 8

The reset vector fetch phase duration is two clock cycles.

Figure 12. RESET sequence phases

5.5.2 Asynchronous external RESET pin

The RESET pin is both an input and an open-drain output with integrated RON weak pull-up
resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It
can be pulled low by external circuitry to reset the device. See Chapter 20: Electrical
characteristics for more details.

A reset signal originating from an external source must have a duration of at least th(RSTL)in
in order to be recognized (see Figure 14). This detection is asynchronous and therefore the
MCU can enter reset state even in HALT mode.

Figure 13. Reset block diagram

The RESET pin is an asynchronous signal which plays a major role in EMS performance. In
a noisy environment, it is recommended to follow the guidelines mentioned in the electrical
characteristics section.

5.5.3 External power-on reset

If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must
ensure by means of an external reset circuit that the reset signal is held low until VDD is over
the minimum level specified for the selected fOSC frequency.

A proper reset signal for a slow rising VDD supply can generally be provided by an external
RC network connected to the RESET pin.

5.5.4 Internal low voltage detector (LVD) reset

Two different reset sequences caused by the internal LVD circuitry can be distinguished:

● Power-on reset

● Voltage drop reset

RESET

Active Phase INTERNAL RESET
256 or 4096 CLOCK CYCLES

FETCH
VECTOR

RESET

RON

VDD

WATCHDOG RESET

LVD RESET

INTERNAL
RESET

PULSE
GENERATOR

Filter

Interrupts ST72561-Auto

58/324 Doc ID 12370 Rev 8

6.6 External interrupts

6.6.1 I/O port interrupt sensitivity

The external interrupt sensitivity is controlled by the ISxx bits in the EICR register
(Figure 21). This control allows up to four fully independent external interrupt source
sensitivities.

Each external interrupt source can be generated on four (or five) different events on the pin:

● Falling edge

● Rising edge

● Falling and rising edge

● Falling edge and low level

To guarantee correct functionality, the sensitivity bits in the EICR register can be modified
only when the I1 and I0 bits of the CC register are both set to 1 (level 3). This means that
interrupts must be disabled before changing sensitivity.

The pending interrupts are cleared by writing a different value in the ISx[1:0] of the EICR.

ST72561-Auto Power saving modes

Doc ID 12370 Rev 8 67/324

Halt mode recommendations

● Make sure that an external event is available to wake up the microcontroller from Halt
mode.

● When using an external interrupt to wake up the microcontroller, reinitialize the
corresponding I/O as “Input Pull-up with Interrupt” before executing the HALT
instruction. The main reason for this is that the I/O may be wrongly configured due to
external interference or by an unforeseen logical condition.

● For the same reason, reinitialize the level sensitiveness of each external interrupt as a
precautionary measure.

● The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction
due to a program counter failure, it is advised to clear all occurrences of the data value
0x8E from memory. For example, avoid defining a constant in ROM with the value
0x8E.

● As the HALT instruction clears the interrupt mask in the CC register to allow interrupts,
the user may choose to clear all pending interrupt bits before executing the HALT
instruction. This avoids entering other peripheral interrupt routines after executing the
external interrupt routine corresponding to the wake-up event (reset or external
interrupt).

7.5 Active halt mode
ACTIVE HALT mode is the lowest power consumption mode of the MCU with a real time
clock available. It is entered by executing the ‘HALT’ instruction when MCC/RTC interrupt
enable flag (OIE bit in MCCSR register) is set and when the AWUEN bit in the AWUCSR
register is cleared (Section 7.6.1: Register description)

The MCU can exit ACTIVE HALT mode on reception of the RTC interrupt and some specific
interrupts (see Table 16) or a RESET. When exiting ACTIVE HALT mode by means of a
RESET a 4096 or 256 CPU cycle delay occurs (depending on the option byte). After the
start up delay, the CPU resumes operation by servicing the interrupt or by fetching the reset
vector which woke it up (see Figure 28).

When entering ACTIVE HALT mode, the I[1:0] bits in the CC register are are forced to ‘10b’
to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.

In ACTIVE HALT mode, only the main oscillator and its associated counter (MCC/RTC) are
running to keep a wake-up time base. All other peripherals are not clocked except those
which get their clock supply from another clock generator (such as external or auxiliary
oscillator).

The safeguard against staying locked in ACTIVE HALT mode is provided by the oscillator
interrupt.

Table 22. MCC/RTC low power mode selection

MCCSR
OIE bit

 Power saving mode entered when HALT instruction is executed

0 HALT mode

1 ACTIVE HALT mode

ST72561-Auto I/O ports

Doc ID 12370 Rev 8 77/324

Warning: The analog input voltage level must be within the limits
stated in the absolute maximum ratings.

8.3 I/O port implementation
The hardware implementation on each I/O port depends on the settings in the DDR and OR
registers and specific feature of the I/O port such as ADC Input or true open drain.

Switching these I/O ports from one state to another should be done in a sequence that
prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 33.
Other transitions are potentially risky and should be avoided, since they are likely to present
unwanted side-effects such as spurious interrupt generation.

Figure 33. Interrupt I/O port state transitions

8.4 I/O port register configurations
The I/O port register configurations are summarized as follows.

8.4.1 Standard ports

01

floating/pull-up
interrupt

INPUT

00

floating
(reset state)

INPUT

10

open-drain
OUTPUT

11

push-pull
OUTPUT

XX = DDR, OR

Table 28. Configuration of PB7:6, PC0, PC3, PC7:5, PD3:2, PD5, PE7:0, PF7:0

Mode DDR OR

Floating input
0

0

Pull-up input 1

Open drain output
1

0

Push-pull output 1

Window watchdog (WWDG) ST72561-Auto

84/324 Doc ID 12370 Rev 8

9.4 Using halt mode with the WDG
If Halt mode with Watchdog is enabled by option byte (no watchdog reset on HALT
instruction), it is recommended before executing the HALT instruction to refresh the WDG
counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller.

9.5 How to program the watchdog timeout
Figure 35 shows the linear relationship between the 6-bit value to be loaded in the
Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be
used for a quick calculation without taking the timing variations into account. If more
precision is needed, use the formulae in Figure 36.

Caution: When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an
immediate reset.

Figure 35. Approximate timeout duration

C
N

T
 V

al
u

e
(h

ex
.)

Watchdog timeout (ms) @ 8 MHz fOSC2

3F

00

38

1281.5 65

30

28

20

18

10

08

503418 82 98 114

8-bit timer (TIM8) ST72561-Auto

130/324 Doc ID 12370 Rev 8

13.3.2 Input capture

In this section, the index, i, may be 1 or 2 because there are two input capture functions in
the 8-bit timer.

The two 8-bit input capture registers (IC1R and IC2R) are used to latch the value of the free
running counter after a transition is detected on the ICAPi pin (see Figure 63).

ICiR register is a read-only register.

The active transition is software programmable through the IEDGi bit of Control Registers
(CRi).

Timing resolution is one count of the free running counter (see Table 55).

Procedure

To use the input capture function select the following in the CR2 register:

● Select the timer clock (CC[1:0]) (see Table 55).

● Select the edge of the active transition on the ICAP2 pin with the IEDG2 bit (the ICAP2
pin must be configured as floating input or input with pull-up without interrupt if this
configuration is available).

And select the following in the CR1 register:

● Set the ICIE bit to generate an interrupt after an input capture coming from either the
ICAP1 pin or the ICAP2 pin

● Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the ICAP1
pin must be configured as floating input or input with pull-up without interrupt if this
configuration is available).

When an input capture occurs:

● ICFi bit is set.

● The ICiR register contains the value of the free running counter on the active transition
on the ICAPi pin (see Figure 64).

● A timer interrupt is generated if the ICIE bit is set and the interrupt mask is cleared in
the CC register. Otherwise, the interrupt remains pending until both conditions become
true.

Clearing the Input Capture interrupt request (that is, clearing the ICFi bit) is done in two
steps:

1. Reading the SR register while the ICFi bit is set.

2. An access (read or write) to the ICiR register.

Note: 1 The ICiR register contains the free running counter value which corresponds to the most
recent input capture.

2 The two input capture functions can be used together even if the timer also uses the two
output compare functions.

3 Once the ICIE bit is set both input capture features may trigger interrupt requests. If only
one is needed in the application, the interrupt routine software needs to discard the
unwanted capture interrupt. This can be done by checking the ICF1 and ICF2 flags and
resetting them both.

4 In One pulse Mode and PWM mode only Input Capture 2 can be used.

5 The alternate inputs (ICAP1 and ICAP2) are always directly connected to the timer. So any
transitions on these pins activates the input capture function.

8-bit timer (TIM8) ST72561-Auto

136/324 Doc ID 12370 Rev 8

Figure 68. One pulse mode timing example

Figure 69. Pulse width modulation mode timing example

13.3.6 Pulse width modulation mode

Pulse Width Modulation (PWM) mode enables the generation of a signal with a frequency
and pulse length determined by the value of the OC1R and OC2R registers.

Pulse Width Modulation mode uses the complete Output Compare 1 function plus the
OC2R register, and so this functionality can not be used when PWM mode is activated.

In PWM mode, double buffering is implemented on the output compare registers. Any new
values written in the OC1R and OC2R registers are taken into account only at the end of the
PWM period (OC2) to avoid spikes on the PWM output pin (OCMP1).

Procedure

To use pulse width modulation mode:

COUNTER FC FD FE D0 D1 D2

D3

FC FD

OLVL2 OLVL2OLVL1

ICAP1

OCMP1
compare1

Note: IEDG1 = 1, OC1R = D0h, OLVL1 = 0, OLVL2 = 1

F8

F8 D3IC1R

COUNTER E2 E2 FC

OLVL2 OLVL2OLVL1OCMP1

compare2 compare1 compare2

Note: OC1R = D0h, OC2R = E2, OLVL1 = 0, OLVL2 = 1

FC FD FE D0 D1 D2

8-bit timer (TIM8) ST72561-Auto

138/324 Doc ID 12370 Rev 8

set and IC2R can be loaded) but the user must take care that the counter is reset each
period and ICF1 can also generates interrupt if ICIE is set.

4 When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the
PWM mode is the only active one.

13.4 Low power modes

13.5 Interrupts

Note: The 8-bit Timer interrupt events are connected to the same interrupt vector (see Interrupts
chapter). These events generate an interrupt if the corresponding Enable Control Bit is set
and the interrupt mask in the CC register is reset (RIM instruction).

Table 52. Effect of low power modes on TIM8

Mode Description

WAIT
No effect on 8-bit Timer.
Timer interrupts cause the device to exit from WAIT mode.

HALT

8-bit Timer registers are frozen.

In HALT mode, the counter stops counting until Halt mode is exited. Counting resumes
from the previous count when the MCU is woken up by an interrupt with “exit from HALT
mode” capability or from the counter reset value when the MCU is woken up by a RESET.

If an input capture event occurs on the ICAPi pin, the input capture detection circuitry is
armed. Consequently, when the MCU is woken up by an interrupt with “exit from HALT
mode” capability, the ICFi bit is set, and the counter value present when exiting from HALT
mode is captured into the ICiR register.

Table 53. TIM8 interrupt control and wake-up capability

Interrupt event
Event
flag

Enable
control

bit

Exit
from
wait

Exit
from
halt

Input Capture 1 event/Counter reset in PWM mode ICF1
ICIE

Yes No

Input Capture 2 event ICF2

Output Compare 1 event (not available in PWM mode) OCF1
OCIE

Output Compare 2 event (not available in PWM mode) OCF2

Timer Overflow event TOF TOIE

ST72561-Auto Serial peripheral interface (SPI)

Doc ID 12370 Rev 8 147/324

Figure 71. Single master/ single slave application

14.3.2 Slave select management

As an alternative to using the SS pin to control the Slave Select signal, the application can
choose to manage the Slave Select signal by software. This is configured by the SSM bit in
the SPICSR register (see Figure 73).

In software management, the external SS pin is free for other application uses and the
internal SS signal level is driven by writing to the SSI bit in the SPICSR register.

In Master mode:

● SS internal must be held high continuously

In Slave Mode:

There are two cases depending on the data/clock timing relationship (see Figure 72):

If CPHA = 1 (data latched on second clock edge):

● SS internal must be held low during the entire transmission. This implies that in single
slave applications the SS pin either can be tied to VSS, or made free for standard I/O by
managing the SS function by software (SSM = 1 and SSI = 0 in the in the SPICSR
register)

If CPHA = 0 (data latched on first clock edge):

● SS internal must be held low during byte transmission and pulled high between each
byte to allow the slave to write to the shift register. If SS is not pulled high, a Write
Collision error will occur when the slave writes to the shift register (see Write collision
error (WCOL)).

Figure 72. Generic SS timing diagram

8-BIT SHIFT REGISTER

SPI
CLOCK

GENERATOR

8-BIT SHIFT REGISTER
MISO

MOSI MOSI

MISO

SCK SCK

SLAVEMASTER

SS SS+5V

MSBit LSBit MSBit LSBit

Not used if SS is managed
 by software

MOSI/MISO

Master SS

Slave SS

(if CPHA = 0)

Slave SS

(if CPHA = 1)

Byte 1 Byte 2 Byte 3

LINSCI serial communication interface (LIN master/slave) ST72561-Auto

188/324 Doc ID 12370 Rev 8

15.10.4 Control register 3 (SCICR3)

Read/ write

Reset value: 0000 0000 (00h)

Bit 7 = LDUM LIN Divider Update Method.
This bit is set and cleared by software and is also cleared by hardware (when RDRF = 1). It
is only used in LIN Slave mode. It determines how the LIN Divider can be updated by
software.

0: LDIV is updated as soon as LPR is written (if no auto synchronization update occurs
at the same time).
1: LDIV is updated at the next received character (when RDRF = 1) after a write to the
LPR register

Note: If no write to LPR is performed between the setting of LDUM bit and the reception of the
next character, LDIV will be updated with the old value.

After LDUM has been set, it is possible to reset the LDUM bit by software. In this case, LDIV
can be modified by writing into LPR / LPFR registers.

Bits 6:5 = LINE, LSLV LIN Mode Enable Bits.
These bits configure the LIN mode:

The LIN master configuration enables:

The capability to send LIN synch breaks (13 low bits) using the SBK bit in the SCICR2
register.

The LIN slave configuration enables:

● The LIN slave baud rate generator. The LIN Divider (LDIV) is then represented by the
LPR and LPFR registers. The LPR and LPFR registers are read/write accessible at the
address of the SCIBRR register and the address of the SCIETPR register

● Management of LIN headers.

● LIN synch break detection (11-bit dominant).

● LIN wake-up method (see LHDM bit) instead of the normal SCI Wake-Up method.

● Inhibition of break transmission capability (SBK has no effect)

● LIN parity checking (in conjunction with the PCE bit)

7 0

LDUM LINE LSLV LASE LHDM LHIE LHDF LSF

Table 66. LIN mode configuration

LINE LSLV Meaning

0 x LIN mode disabled

1
0 LIN Master Mode

1 LIN Slave Mode

beCAN controller (beCAN) ST72561-Auto

216/324 Doc ID 12370 Rev 8

17 beCAN controller (beCAN)

The beCAN controller (Basic Enhanced CAN), interfaces the CAN network and supports the
CAN protocol version 2.0A and B. It has been designed to manage high number of incoming
messages efficiently with a minimum CPU load. It also meets the priority requirements for
transmit messages.

17.1 Main features
● Supports CAN protocol version 2.0 A, B Active

● Bit rates up to 1Mbit/s

Transmission

● 2 transmit mailboxes

● Configurable transmit priority

Reception

● 1 receive FIFO with three stages

● 6 scalable filter banks

● Identifier list feature

● Configurable FIFO overrun

Management

● Maskable interrupts

● Software-efficient mailbox mapping at a unique address space

17.2 General description
In today’s CAN applications, the number of nodes in a network is increasing and often
several networks are linked together via gateways. Typically the number of messages in the
system (and thus to be handled by each node) has significantly increased. In addition to the
application messages, network management and diagnostic messages have been
introduced.

● An enhanced filtering mechanism is required to handle each type of message.

Furthermore, application tasks require more CPU time, therefore real-time constraints
caused by message reception have to be reduced.

● A receive FIFO scheme allows the CPU to be dedicated to application tasks for a long
time period without losing messages.

The standard HLP (Higher Layer Protocol) based on standard CAN drivers requires an
efficient interface to the CAN controller.

● All mailboxes and registers are organized in 16-byte pages mapped at the same
address and selected via a page select register.

ST72561-Auto beCAN controller (beCAN)

Doc ID 12370 Rev 8 219/324

Normal mode. Before entering Normal mode beCAN always has to synchronize on the CAN
bus. To synchronize, beCAN waits until the CAN bus is idle, this means 11 consecutive
recessive bits have been monitored on CANRX.

Initialization mode

The software initialization can be done while the hardware is in Initialization mode. To enter
this mode the software sets the INRQ bit in the CMCR register and waits until the hardware
has confirmed the request by setting the INAK bit in the CMSR register.

To leave initialization mode, the software clears the INQR bit. beCAN has left initialization
mode once the INAK bit has been cleared by hardware.

While in Initialization mode, all message transfers to and from the CAN bus are stopped and
the status of the CAN bus output CANTX is recessive (high).

Entering initialization mode does not change any of the configuration registers.

To initialize the CAN controller, software has to set up the bit timing registers and the filter
banks. If a filter bank is not used, it is recommended to leave it non active (leave the
corresponding FACT bit cleared).

Normal mode

Once the initialization has been done, the software must request the hardware to enter
Normal mode, to synchronize on the CAN bus and start reception and transmission.
Entering normal mode is done by clearing the INRQ bit in the CMCR register and waiting
until the hardware has confirmed the request by clearing the INAK bit in the CMSR register.
Afterwards, the beCAN synchronizes with the data transfer on the CAN bus by waiting for
the occurrence of a sequence of 11 consecutive recessive bits (≡ bus idle) before it can take
part in bus activities and start message transfer.

The initialization of the filter values is independent from Initialization mode but must be done
while the filter bank is not active (corresponding FACTx bit cleared). The filter bank scale
and mode configuration must be configured in initialization mode.

Low power mode (Sleep)

To reduce power consumption, beCAN has a low power mode called Sleep mode. This
mode is entered on software request by setting the SLEEP bit in the CMCR register. In this
mode, the beCAN clock is stopped. Consequently, software can still access the beCAN
registers and mailboxes but the beCAN will not update the status bits.

Example 1: If software requests entry to initialization mode by setting the INRQ bit while
beCAN is in sleep mode, it will not be acknowledged by the hardware, INAK stays cleared.

beCAN can be woken up (exit Sleep mode) either by software clearing the SLEEP bit or on
detection of CAN bus activity.

On CAN bus activity detection, hardware automatically performs the wake-up sequence by
clearing the SLEEP bit if the AWUM bit in the CMCR register is set. If the AWUM bit is
cleared, software has to clear the SLEEP bit when a wake-up interrupt occurs, in order to
exit from sleep mode.

Note: If the wake-up interrupt is enabled (WKUIE bit set in CIER register) a wake-up interrupt will
be generated on detection of CAN bus activity, even if the beCAN automatically performs
the wake-up sequence.

ST72561-Auto beCAN controller (beCAN)

Doc ID 12370 Rev 8 229/324

Figure 104. CAN error state diagram

17.4.5 Error management

The error management as described in the CAN protocol is handled entirely by hardware
using a Transmit Error Counter (TECR register) and a Receive Error Counter (RECR
register), which get incremented or decremented according to the error condition. For
detailed information about TEC and REC management, please refer to the CAN standard.

Both of them may be read by software to determine the stability of the network.
Furthermore, the CAN hardware provides detailed information on the current error status in
CESR register. By means of CEIER register and ERRIE bit in CIER register, the software
can configure the interrupt generation on error detection in a very flexible way.

Bus-off recovery

The Bus-Off state is reached when TECR is greater then 255, this state is indicated by
BOFF bit in CESR register. In Bus-Off state, the beCAN acts as disconnected from the CAN
bus, hence it is no longer able to transmit and receive messages.

Depending on the ABOM bit in the CMCR register beCAN will recover from Bus-Off
(become error active again) either automatically or on software request. But in both cases
the beCAN has to wait at least for the recovery sequence specified in the CAN standard
(128 x 11 consecutive recessive bits monitored on CANRX).

10 MDAR4

11 MDAR5

12 MDAR6

13 MDAR7

14 Reserved

15 Reserved

Table 83. Receive mailbox mapping (continued)

Offset to receive mailbox base
address (bytes)

Register Name

ERROR PASSIVE

When TEC or REC > 127

When TEC and REC < 128,

ERROR ACTIVE

BUS OFF

 When TEC > 255When 128 * 11 recessive bits occur:

ST72561-Auto beCAN controller (beCAN)

Doc ID 12370 Rev 8 237/324

critical period. But the application may lose additional time waiting in the while loop as we
are no longer able to guarantee a maximum of 6 CAN bit times spent in the workaround.

In this particular case the time the application can spend in the workaround may increase up
to a full CAN frame, depending of the frame contents. This case is very rare but happens
when a specific sequence is present on in the CAN frame.

The example in Figure 113 shows reception at maximum CAN baud rate: In this case tCAN is
8/fCPU and the sampling time is 10/fCPU.

If the application is using the maximum baud rate and the possible delay caused by the
workaround is not acceptable, there is another workaround which reduces the Rx pin
sampling time.

Workaround 2 (see Figure 114) first tests that FMP = 2 and the CAN cell is receiving, if not
the FIFO can be released immediately. If yes, the program goes through a sequence of test
instructions on the RX pin that last longer than the time between the acknowledge dominant
bit and the critical time slot. If the Rx pin is in recessive state for more than 8 CAN bit times,
it means we are now after the acknowledge and the critical slot. If a dominant bit is read on
the bus, we can release the FIFO immediately. This workaround has to be written in
assembly language to avoid the compiler optimizing the test sequence.

The implementation shown here is for the CAN bus maximum speed (1 Mbaud @ 8 MHz
CPU clock).

Figure 113. Reception at maximum CAN baud rate

Figure 114. Workaround 2

R DCAN Bus signal

Sampling of Rx pin

D D D DRRR R RRRR RRRR RRRR RRR

Ld a, CRFR
And a,#3
Cp a,#2 ; test FMP=2 ?
Jrne _RELEASE ; if not release

Btjf CMSR,#5,_RELEASE ; test if reception on going.
; if not release

Btjf CDGR,#3,_RELEASE ; sample RX pin for 8 CAN bit time
Btjf CDGR,#3,_RELEASE
Btjf CDGR,#3,_RELEASE
btjf CDGR,#3,_RELEASE
btjf CDGR,#3,_RELEASE
btjf CDGR,#3,_RELEASE
btjf CDGR,#3,_RELEASE
btjf CDGR,#3,_RELEASE
btjf CDGR,#3,_RELEASE
btjf CDGR,#3,_RELEASE
btjf CDGR,#3,_RELEASE
btjf CDGR,#3,_RELEASE
btjf CDGR,#3,_RELEASE
btjf CDGR,#3,_RELEASE

_RELEASE:
bset CRFR,#5

beCAN controller (beCAN) ST72561-Auto

250/324 Doc ID 12370 Rev 8

MIDR1

Bits 7:2 = STID[5:0] Standard Identifier
6 least significant bits of the standard part of the identifier.

Bits 1:0 = EXID[17:16] Extended Identifier
2 most significant bits of the extended part of the identifier.

MIDR2

Bits 7:0 = EXID[15:8] Extended Identifier

Bits 15 to 8 of the extended part of the identifier.

MIDR3

Bits 7:1 = EXID[6:0] Extended Identifier
6 least significant bits of the extended part of the identifier.

Mailbox data length control register (MDLC)

Read / write

Reset value: xxxx xxxx (xxh)

Note: All bits of this register is write protected when the mailbox is not in empty state.

Bit 7 = Reserved, must be kept cleared.

Bits 6:4 = Reserved, forced to 0 by hardware.

Bits 3:0 = DLC[3:0] Data Length Code
This field defines the number of data bytes a data frame contains or a remote frame request.

Mailbox data registers (MDAR[7:0])

Read / Write

Reset value: Undefined

Note: All bits of this register are write protected when the mailbox is not in empty state.

7 0

STID5 STID4 STID3 STID2 STID1 STID0 EXID17 EXID16

7 0

EXID15 EXID14 EXID13 EXID12 EXID11 EXID10 EXID9 EXID8

7 0

EXID7 EXID6 EXID5 EXID4 EXID3 EXID2 EXID1 EXID0

7 0

0 0 0 0 DLC3 DLC2 DLC1 DLC0

7 0

DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0

beCAN controller (beCAN) ST72561-Auto

256/324 Doc ID 12370 Rev 8

Figure 116. Page mapping for CAN

70h

71h

72h

73h

74h

75h

76h

77h

78h

79h

7Ah

7Bh

7Ch

7Dh

7Eh

7Fh

PAGE 0 PAGE 1 PAGE 2 PAGE 3

Tx Mailbox 0 Tx Mailbox 1 Acceptance Filter 0:1 Acceptance Filter 2:3

MCSR

MDLC

MTSLR

MTSHR

MIDR0

MIDR1

MIDR2

MIDR3

MDAR0

MDAR1

MDAR2

MDAR3

MDAR4

MDAR5

MDAR6

MDAR7

MCSR

MDLC

MTSLR

MTSHR

MIDR0

MIDR1

MIDR2

MIDR3

MDAR0

MDAR1

MDAR2

MDAR3

MDAR4

MDAR5

MDAR6

MDAR7

CF0R0

CF0R1

CF0R2

CF0R3

CF0R4

CF0R5

CF0R6

CF0R7

CF1R0

CF1R1

CF1R2

CF1R3

CF1R4

CF1R5

CF1R6

CF1R7

CF2R0

CF2R1

CF2R2

CF2R3

CF2R4

CF2R5

CF2R6

CF2R7

CF3R0

CF3R1

CF3R2

CF3R3

CF3R4

CF3R5

CF3R6

CF3R7

MFMI

MDLC

MTSLR

MTSHR

PAGE 7

Receive FIFO

MIDR0

MIDR1

MIDR2

MIDR3

MDAR0

MDAR1

MDAR2

MDAR3

MDAR4

MDAR5

MDAR6

MDAR7

PAGE 6

Configuration/Diagnosis

CESR

CEIER

Reserved

Reserved

TECR

RECR

BTCR0

BTCR1

Reserved

Reserved

CFMR0

CFMR1

CFCR0

CFCR1

CFCR2

Reserved

PAGE 4

Acceptance Filter 4:5

CF4R0

CF4R1

CF4R2

CF4R3

CF4R4

CF4R5

CF4R6

CF4R7

CF5R0

CF5R1

CF5R2

CF5R3

CF5R4

CF5R5

CF5R6

CF5R7

70h

71h

72h

73h

74h

75h

76h

77h

78h

79h

7Ah

7Bh

7Ch

7Dh

7Eh

7Fh

Electrical characteristics ST72561-Auto

280/324 Doc ID 12370 Rev 8

20.5.1 Crystal and ceramic resonator oscillators

The ST7 internal clock can be supplied with four different crystal/ ceramic resonator
oscillators. All the information given in this paragraph is based on characterization results
with specified typical external components. In the application, the resonator and the load
capacitors have to be placed as close as possible to the oscillator pins in order to minimize
output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator
manufacturer for more details (frequency, package, accuracy...)(a)(b).

Figure 123. Typical application with a crystal or ceramic resonator

a. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

b. tSU(OSC) is the typical oscillator start-up time measured between VDD = 2.8V and the fetch of the first instruction
(with a quick VDD ramp-up from 0 to 5V (< 50μs).

Table 104. Oscillator characteristics

Symbol Parameter Conditions Min Max Unit

fOSC Oscillator Frequency(1)

1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with
small RS value. Refer to crystal/ceramic resonator manufacturer for more details.

LP: Low power oscillator
MP: Medium power oscillator
MS: Medium speed oscillator
HS: High speed oscillator

1
>2
>4
>8

2
4
8

16

MHz

RF Feedback resistor 20 40 kΩ

CL1

CL2

Recommended load capacitance
versus equivalent serial
resistance of the crystal or
ceramic resonator (RS)

RS = 200Ω LP oscillator
RS = 200Ω MP oscillator
RS = 200Ω MS oscillator
RS = 100Ω HS oscillator

22
22
18
15

56
46
33
33

pF

i2 OSC2 driving current

VDD = 5V LP oscillator
VIN = VSS MP oscillator
MS oscillator
HS oscillator

80
160
310
610

150
250
460
910

µA

OSC2

OSC1
fOSC

CL1

CL2

i2

RF

ST72XXX

RESONATOR

WHEN RESONATOR WITH
INTEGRATED CAPACITORS

ST72561-Auto Electrical characteristics

Doc ID 12370 Rev 8 281/324

20.5.2 PLL characteristics

Operating conditions: VDD 3.8 to 5.5V @ TA 0 to 70°C(a) or VDD 4.5 to 5.5V @ TA -40 to
125°C

Figure 124. PLL jitter vs signal frequency(1)

1. Measurement conditions: fCPU = 4 MHz, TA = 25°C

The user must take the PLL jitter into account in the application (for example in serial
communication or sampling of high frequency signals). The PLL jitter is a periodic effect,
which is integrated over several CPU cycles. Therefore, the longer the period of the
application signal, the less it is impacted by the PLL jitter.

Figure 124 shows the PLL jitter integrated on application signals in the range 125 kHz to
2 MHz. At frequencies of less than 125 kHz, the jitter is negligible.

a. Data characterized but not tested

Table 105. PLL characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDD(PLL) PLL Voltage Range
TA = 0 to +70°C 3.8

5.5
TA = -40 to +125°C 4.5

fOSC
PLL input frequency
range

2 4 MHz

Δ fCPU/fCPU PLL jitter(1)

1. Data characterized but not tested.

fOSC = 4 MHz, VDD = 4.5 to
5.5V

See note(2)

2. Under characterization.

%
fOSC = 2 MHz, VDD = 4.5 to
5.5V

0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8

2000 1000 500 250 125
Application Signal Frequency (KHz)

+/
-J

itt
er

 (%
)

PLL ON
PLL OFF

ST72561-Auto Device configuration and ordering information

Doc ID 12370 Rev 8 311/324

22.3 Transfer of customer code
Customer code is made up of the ROM/FASTROM contents and the list of the selected
options (if any). The ROM/FASTROM contents are to be sent on diskette, or by electronic
means, with the S19 hexadecimal file generated by the development tool. All unused bytes
must be set to FFh.

The selected options are communicated to STMicroelectronics using the correctly
completed OPTION LIST appended.

Refer to application note AN1635 for information on the counter listing returned by ST after
code has been transferred.

The STMicroelectronics sales organization is pleased to provide detailed information on
contractual points.

The following Figure 153 serves as a guide for ordering.

Figure 153. ST72P561xxx-Auto FastROM commercial product structure

ST72 P 561 T A /xxx X S

Product class

ST72 microcontroller

Package type

T = LQFP

Example:

Sub-family type

561 = 561 sub-family

Family type

P = FastROM

Temperature range

A = -40 °C to 85 °C

C = -40 °C to 125 °C

Tape and Reel conditioning options (left blank if Tray)

TR or R = Pin 1 left-oriented
TX or X = Pin 1 right-oriented (EIA 481-C compliant)

ECOPACK/Fab code

Blank or E = Lead-free ECOPACK® Phoenix Fab

S = Lead-free ECOPACK® Catania Fab

Code name

Defined by
STMicroelectronics.
Denotes ROM code, pinout
and program memory size.

