

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16КВ (5.5К х 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16ka302-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Data Address Space

The PIC24F core has a separate, 16-bit wide data memory space, addressable as a single linear range. The data space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The data space memory map is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV) area (see Section 4.3.3 "Reading Data from Program Memory Using Program Space Visibility"). PIC24FV32KA304 family devices implement a total of 1024 words of data memory. If an EA points to a location outside of this area, an all zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all the data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

FIGURE 4-3: DATA SPACE MEMORY MAP FOR PIC24FV32KA304 FAMILY DEVICES

R/W-0, H	S R/W-0, HS	R/W-0	R/W-0	U-0	R/C-0, HS	R/W-0	R/W-0		
TRAPR	IOPUWR	SBOREN	RETEN ⁽³⁾	—	DPSLP	СМ	PMSLP		
bit 15							bit 8		
R/W-0, H	S R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS		
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR		
bit 7							bit 0		
Legend:		C = Clearable	bit	HS = Hardwa	re Settable bit				
R = Read	able bit	W = Writable b	bit	U = Unimplen	nented bit, read	as '0'			
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15	TRAPR: Trap	Reset Flag bit							
	1 = A Trap Co 0 = A Trap Co	onflict Reset has	s occurred						
bit 14		gal Opcode or l	Jninitialized W	Access Reset	Flag bit				
	1 = An illegal	opcode detecti	on, an illegal a	ddress mode o	or Uninitialized V	V register used	as an Address		
	Pointer c	aused a Reset				-			
	0 = An illegal	l opcode or Unir	itialized W Re	eset has not oc	curred				
bit 13	SBOREN: So	oftware Enable/L	Disable of BOF	Rbit					
	1 = BOR is tu 0 = BOR is tu	rned on in softw rned off in softw	are are						
bit 12	RETEN: Rete	ention Sleep Mo	de control bit ⁽³	3)					
	1 = Regulate	d voltage supply	provided sole	ely by the Rete	ntion Regulator	(RETEN) during	g Sleep		
	0 = Regulate	d voltage supply	provided by	the main Voltag	ge Regulator (VF	REG) during Sle	eep		
bit 11	Unimplemen	ted: Read as '0	,						
bit 10	DPSLP: Deep	o Sleep Mode F	lag bit						
	1 = Deep Slee 0 = Deep Slee	ep has occurred ep has not occu	l rred						
bit 9	CM: Configura	ation Word Misr	natch Reset F	lag bit					
	1 = A Configu	ration Word Mis	match Reset	has occurred					
	0 = A Configu	Iration Word Mis	smatch Reset	has not occurre	ed				
bit 8	PMSLP: Prog	gram Memory Po	ower During S	leep bit					
	1 = Program	memory bias vo	oltage remains	s powered durin rered down du	ig Sleep	the Voltage Re	aulator enters		
	Standby	mode	ollage lo poli			and voltage re	gulator entere		
bit 7	EXTR: Extern	nal Reset (MCLF	R) Pin bit						
	1 = A Master	1 = A Master Clear (pin) Reset has occurred							
bit 6	SWR: Softwa	U - A master Clear (piii) Reset has not occurred							
	1 = A RESET	instruction has I	been executed	1					
	$0 = \mathbf{A} \text{ RESET}$	instruction has i	not been exec	uted					
Note 1.	All of the Reset	status hite may l	he set or clear	ed in software	Setting one of th	nese hite in soft	ware does not		
1015 1.	cause a device l	Reset.							
2:	If the FWDTEN	c Configuration I tting.	oit is '1' (unpro	ogrammed), the	e WDT is always	enabled regard	dless of the		
3:	This is impleme	nted on PIC24F	V32KA3XX pa	arts only; not us	ed on PIC24F3	2KA3XX device	es.		

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	_	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—			TUN<	5:0>(1)		
bit 7		•					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-6	Unimplemen	ted: Read as 'd	כי				
bit 5-0	TUN<5:0>: FI	RC Oscillator T	uning bits ⁽¹⁾				
	011111 = Ma	ximum frequen	icy deviation				
	011110						
	•						
	•						
	000001 = Ce	nter frequency	oscillator is ru	nning at factor	v calibrated free	nuency	
	111111	inter inequency,		initing at lactory		queriey	
	•						
	•						
	100001						
	100000 = Mi r	nimum frequen	cy deviation				

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

10.4 Voltage Regulator-Based Power-Saving Features

The PIC24FV32KA304 series devices have a Voltage Regulator that has the ability to alter functionality to provide power savings. The on-board regulator is made up of two basic modules: the Voltage Regulator (VREG) and the Retention Regulator (RETREG). With the combination of VREG and RETREG, the following power modes are available:

10.4.1 RUN MODE

In Run mode, the main VREG is providing a regulated voltage with enough current to supply a device running at full speed, and the device is not in Sleep or Deep Sleep Mode. The Retention Regulator may or may not be running, but is unused.

10.4.2 SLEEP (STANDBY) MODE

In Sleep mode, the device is in Sleep and the main VREG is providing a regulated voltage at a reduced (standby) supply current. This mode provides for limited functionality due to the reduced supply current. It requires a longer time to wake-up from Sleep.

10.4.3 RETENTION SLEEP MODE

In Retention Sleep mode, the device is in Sleep and all regulated voltage is provided solely by the Retention Regulator. Consequently, this mode has lower power consumption than regular Sleep mode, but is also limited in terms of how much functionality can be enabled. Retention Sleep wake-up time is longer than Sleep mode due to the extra time required to raise the VCORE supply rail back to normal regulated levels.

Note:	PIC24F32KA30X family devices do not						
	use an On-Chip Voltage Regulator, so						
	they do not support Retention Sleep						
	mode.						

10.4.4 DEEP SLEEP MODE

In Deep Sleep mode, both the main Voltage Regulator and Retention Regulator are shut down, providing the lowest possible device power consumption. However, this mode provides no retention or functionality of the device and has the longest wake-up time.

	FAMILY DE	VICES		
RETCGF Bit (FPOR<2>)	RETEN Bit (RCON<12>	PMSLP Bit (RCON<8>)	Power Mode During Sleep	Description
0	0	1	Sleep	VREG mode (normal) is unchanged during Sleep. RETREG is unused.
0	0	0	Sleep (Standby)	VREG goes to Low-Power Standby mode during Sleep. RETREG is unused.
0	1	0	Retention Sleep	VREG is off during Sleep. RETREG is enabled and provides Sleep voltage regulation.
1	х	1	Sleep	VREG mode (normal) is unchanged during Sleep. RETREG is disabled at all times.
1	x	0	Sleep (Standby)	VREG goes to Low-Power Standby mode during Sleep. RETREG is disabled at all times

TABLE 10-1: VOLTAGE REGULATION CONFIGURATION SETTINGS FOR PIC24FV32KA304 FAMILY DEVICES FAMILY DEVICES

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on OCx
 - 110 = Edge-Aligned PWM mode on OCx
 - 101 = Double Compare Continuous Pulse mode: Initialize OCx pin low; toggle OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize OCx pin low; toggle OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- **Note 1:** The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

REGISTER 16-1: SPIX STAT: SPIX STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	
SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	
bit 15							bit 8	
R-0, HSC	R/C-0, HS	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC	
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	
bit 7				•			bit 0	
Legend:		C = Clearable	bit	HS = Hardwa	re Settable bit	HSC = Hardware S	ettable/Clearable bit	
R = Readab	ole bit	W = Writable	oit	U = Unimplen	nented bit, read	l as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15	SPIEN: SP	Ix Enable bit						
	1 = Enable	s module and	configures S	SCKx, SDOx, S	SDIx and SSx	as serial port pins		
bit 14		ented: Road a	e '0'					
bit 13		Ply Stop in Id	la Mode bit					
DIL 15	1 = Discont	tinues module	operation w	hen device er	nters Idle mode	2		
	0 = Continu	les module op	eration in Id	lle mode				
bit 12-11	Unimplem	ented: Read a	is '0'					
bit 10-8	SPIBEC<2	:0>: SPIx Buff	er Element	Count bits (val	id in Enhance	d Buffer mode)		
	Master mod Number of	<u>de:</u> SPI transfers _I	pending.					
	Slave mode Number of	<u>e:</u> SPI transfers (unread.					
bit 7	SRMPT: SI	Plx Shift Regis	ter (SPIxSR	R) Empty bit (va	alid in Enhance	ed Buffer mode)		
	1 = SPIx S	Shift register is	empty and	ready to send	or receive			
1.11.0	0 = SPIx S	Shift register is	not empty					
DIT 6	SPIROV: S	PIX Receive C	Verflow Flag	g bit	a a and a d (the a su		t read the province	
	$\perp = A hew$ data in 0 = No over	the SPI1BUF	register)		scarded (the u	ser sonware has no	ot read the previous	
bit 5	SRXMPT: S	SPIx Receive I	FIFO Empty	bit (valid in Fi	nhanced Buffe	r mode)		
	1 = Receiv	e FIFO is emp	oty					
	0 = Receiv	e FIFO is not	empty					
bit 4-2	SISEL<2:0	>: SPIx Buffer	Interrupt M	ode bits (valid	in Enhanced B	Buffer mode)		
	111 = Inte	rrupt when SP	Ix transmit I	ouffer is full (S	PITBF bit is se	et)		
	110 = Interrupt when last bit is shifted into SPIxSR; as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR; now the transmit is complete							
	100 = Interrupt when one data byte is shifted into the SPIXSR; as a result, the TX FIFO has one open spot							
	011 = Inte	rrupt when SP	Ix receive b	uffer is full (SF	PIRBF bit is se	t)		
	010 = Inte	rrupt when SP	ix receive b	uner is 3/4 or l le in receive b	Inore full	bit is set)		
	000 = Inte	rrupt when the	last data in	the receive b	uffer is read; as	s a result, the buffer	is empty (SRXMPT	
	bit is set)							

REGISTER 18-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	
UARTEN	<u> </u>	USIDL	IREN ⁽¹⁾	RTSMD		UEN1	UEN0	
bit 15							bit 8	
R/C-0, H	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	
bit 7							bit 0	
Logondi			-it		ra Claarabla bi	4		
R - Reada	ble bit	W = Writable b	ul it		ented bit read	ι 1 as 'Ω'		
n = Value		'1' = Bit is set		$0^{\circ} = \text{Bit is clear}$	ared	v = Bitis unkn	own	
	atron							
bit 15	UARTEN: UA	ARTx Enable bit						
	1 = UARTx is	s enabled: All UA	ARTx pins are	e controlled by L	JARTx, as defi	ned by UEN<1:	0>	
	0 = UARTx is minimal	s disabled: All U	ARTx pins a	re controlled by	port latches; L	JARTx power c	onsumption is	
bit 14	Unimplemen	ted: Read as '0						
bit 13	USIDL: UAR	Tx Stop in Idle M	ode bit					
	1 = Discontir	nues module ope	eration when	the device enter	s Idle mode			
hit 10		s module operation	ion in Iale m	ode s hit(1)				
DIL 12	1 = IrDA enc	coder and decode	r are enable					
	0 = IrDA enc	oder and decode	er are disable	ed				
bit 11	RTSMD: Mod	de Selection for $\overline{\mathfrak{l}}$	JxRTS Pin b	it				
	$1 = \frac{\text{UxRTS}}{\text{UxRTS}} p$ $0 = \frac{\text{UxRTS}}{\text{UxRTS}} p$	oin is in Simplex oin is in Flow Cor	mode ntrol mode					
bit 10	Unimplemen	ted: Read as '0						
bit 9-8	UEN<1:0>: L	JARTx Enable bi	ts ⁽²⁾					
	11 = UxTX, U	JxRX and UxBC	LK pins are e	enabled and use	d; UxCTS pin i	s controlled by	port latches	
	10 = UxTX, U	JxRX, UxCTS an	Id UxRTS pir	ns are enabled a	Ind used	controlled by n	ort latches	
	00 = UxTX ar	nd UxRX pins are	enabled and	used; UxCTS an	d UxRTS/UxB	CLK pins are co	ntrolled by port	
	latches							
bit 7	WAKE: Wake	e-up on Start Bit	Detect Durin	g Sleep Mode E	nable bit			
	1 = UARIX \ cleared i	vill continue to s n hardware on th	sample the l ne following r	JxRX pin; interr ising edge	upt is generate	ed on the fallir	ig edge, bit is	
	0 = No wake	-up is enabled	ie ieliewing i	lonig eage				
bit 6	LPBACK: UA	ARTx Loopback I	Mode Select	bit				
	1 = Enables	1 = Enables Loopback mode						
	0 = Loopbac	k mode is disabl	ed					
DIT 5	ABAUD: Auto	o-Baud Enable b	ut vromont on t	ho novt characte		contion of a Su	(no field (EEb))	
	cleared i	n hardware upor	n completion		ei – requires re	ception of a Sy	nic lielu (5511),	
	0 = Baud rat	e measurement	is disabled o	r completed				
bit 4	RXINV: Rece	ive Polarity Inve	rsion bit					
	1 = UxRX Idl	le state is '0'						
	U = UXRA IQI							
Note 1:	This feature is is	only available fo	r the 16x BR	G mode (BRGH	= 0).			

2: The bit availability depends on the pin availability.

19.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "dsPIC33/PIC24 Family Reference Manual", "RTCC with External Power Control" (DS39745).

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.

Key features of the RTCC module are:

- Operates in Deep Sleep mode
- Selectable clock source
- Provides hours, minutes and seconds using 24-hour format
- · Visibility of one half second period
- Provides calendar weekday, date, month and year
- Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat chime
- Year 2000 to 2099 leap year correction

- · BCD format for smaller software overhead
- Optimized for long-term battery operation
- User calibration of the 32.768 kHz clock crystal/32K INTRC frequency with periodic auto-adjust
- · Optimized for long-term battery operation
- Fractional second synchronization
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Ability to periodically wake-up external devices without CPU intervention (external power control)
- · Power control output for external circuit control
- · Calibration takes effect every 15 seconds
- · Runs from any one of the following:
 - External Real-Time Clock of 32.768 kHz
 - Internal 31.25 kHz LPRC Clock
 - 50 Hz or 60 Hz External Input

19.1 RTCC Source Clock

The user can select between the SOSC crystal oscillator, LPRC internal oscillator or an external 50 Hz/60 Hz power line input as the clock reference for the RTCC module. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs.

FIGURE 19-1: RTCC BLOCK DIAGRAM

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0		
bit 15				·	•		bit 8		
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
_	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable bit		U = Unimplemented bit, read a		l as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15	Unimplement	ted: Read as '0	3						
bit 14-12	MINTEN<2:0	>: Binary Code	d Decimal Valu	ue of Minute's T	ens Digit bits				
	Contains a va	alue from 0 to 5							
bit 11-8	MINONE<3:0	>: Binary Code	ed Decimal Val	ue of Minute's (Ones Digit bits				
	Contains a va	alue from 0 to 9							
bit 7	Unimplemen	ted: Read as '	0'						
bit 6-4	SECTEN<2:0	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits							
	Contains a va	Contains a value from 0 to 5.							
bit 3-0	SECONE<3:0	0>: Binary Cod	ed Decimal Va	lue of Second's	Ones Digit bits	6			
	Contains a va	alue from 0 to 9							

REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

22.1 A/D Control Registers

The 12-bit A/D Converter module uses up to 43 registers for its operation. All registers are mapped in the data memory space.

22.1.1 CONTROL REGISTERS

Depending on the specific device, the module has up to eleven control and status registers:

- AD1CON1: A/D Control Register 1
- AD1CON2: A/D Control Register 2
- AD1CON3: A/D Control Register 3
- AD1CON5: A/D Control Register 5
- AD1CHS: A/D Sample Select Register
- AD1CHITH and AD1CHITL: A/D Scan Compare Hit Registers
- AD1CSSL and AD1CSSH: A/D Input Scan Select Registers
- AD1CTMUENH and AD1CTMUENL: CTMU Enable Registers

The AD1CON1, AD1CON2 and AD1CON3 registers (Register 22-1, Register 22-2 and Register 22-3) control the overall operation of the A/D module. This includes enabling the module, configuring the conversion clock and voltage reference sources, selecting the sampling and conversion triggers, and manually controlling the sample/convert sequences. The AD1CON5 register (Register 22-4) specifically controls features of the Threshold Detect operation, including its function in power-saving modes.

The AD1CHS register (Register 22-5) selects the input channels to be connected to the S/H amplifier. It also allows the choice of input multiplexers and the selection of a reference source for differential sampling.

The AD1CHITH and AD1CHITL registers (Register 22-6 and Register 22-7) are semaphore registers used with Threshold Detect operations. The status of individual bits, or bit pairs in some cases,

indicate if a match condition has occurred. AD1CHITL is always implemented, whereas AD1CHITH may not be implemented in devices with 16 or fewer channels.

The AD1CSSH/L registers (Register 22-8 and Register 22-9) select the channels to be included for sequential scanning.

The AD1CTMUENH/L registers (Register 22-10 and Register 22-11) select the channel(s) to be used by the CTMU during conversions. Selecting a particular channel allows the A/D Converter to control the CTMU (particularly, its current source) and read its data through that channel. AD1CTMUENL is always implemented, whereas AD1CTMUENH may not be implemented in devices with 16 or fewer channels.

22.1.2 A/D RESULT BUFFERS

The module incorporates a multi-word, dual port RAM, called ADC1BUF. The buffer is composed of at least the same number of word locations as there are external analog channels for a particular device, with a maximum number of 32. The number of buffer addresses is always even. Each of the locations is mapped into the data memory space and is separately addressable. The buffer locations are referred to as ADC1BUF0 through ADC1BUFn (up to 31).

The A/D result buffers are both readable and writable. When the module is active (AD1CON<15> = 1), the buffers are read-only, and store the results of A/D conversions. When the module is inactive (AD1CON<15> = 0), the buffers are both readable and writable. In this state, writing to a buffer location programs a conversion threshold for Threshold Detect operations.

Buffer contents are not cleared when the module is deactivated with the ADON bit (AD1CON1<15>). Conversion results and any programmed threshold values are maintained when ADON is set or cleared.

REGISTER 23-1: CMxCON: COMPARATOR x CONTROL REGISTERS (CONTINUED)

bit 4	CREF: Comparator x Reference Select bits (non-inverting input)
	1 = Non-inverting input connects to the internal CVREF voltage
	0 = Non-inverting input connects to the CxINA pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Comparator x Channel Select bits
	11 = Inverting input of the comparator connects to VBG
	10 = Inverting input of the comparator connects to the CxIND pin
	01 = Inverting input of the comparator connects to the CxINC pin
	00 = Inverting input of the comparator connects to the CxINB pin

REGISTER 23-2: CMSTAT: COMPARATOR x MODULE STATUS REGISTER							
R/W-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
CMIDL	—	—	—	—	C3EVT	C2EVT	C1EVT
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	C3OUT	C2OUT	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	CMIDL: Comparator x Stop in Idle Mode bit
	 1 = Comparator interrupts are disabled in Idle mode; enabled comparators remain operational 0 = Continues operation of all enabled comparators in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only)
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only)
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).

FIGURE 25-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

25.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 25-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.

FIGURE 25-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

REGISTER 26-8: FDS: DEEP SLEEP CONFIGURATION REGISTER

R/P-1	R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1		
DSWDTEN	DSBOREN	—	DSWDTOSC	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0		
bit 7				•			bit 0		
Legend:									
R = Readab	e bit	P = Programmable bit		U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 7	DSWDTEN: De	eep Sleep Wat	chdog Timer Ei	nable bit					
	1 = DSWDT is 0 = DSWDT is	enabled disabled							
bit 6	DSBOREN: De (does not affect	eep Sleep/Low- t operation in n	Power BOR Er	able bit modes)					
	1 = Deep Sleep 0 = Deep Sleep	p BOR is enab p BOR is disat	led in Deep Sle bled in Deep Sle	ep ep					
bit 5	Unimplemente	ed: Read as '0	,						
bit 4	DSWDTOSC:	DSWDT Refer	ence Clock Sel	ect bit					
	1 = DSWDT us	ses LPRC as th	ne reference clo	ock					
	0 = DSWDT us	ses SOSC as t	he reference cl	ock					
bit 3-0	DSWDTPS<3:	0>: Deep Slee	p Watchdog Tir	ner Postscale	Select bits				
	The DSWDT p	rescaler is 32;	this creates an	approximate b	ase time unit o	f 1 ms.			
	1111 = 1:2,147	7,483,648 (25.	7 days) nomina	I					
	1110 = 1:536,8	370,912 (6.4 d	ays) nominal						
	1101 = 1:134,2	217,728 (38.5	hours) nominal						
	1100 = 1:33,55	54,432 (9.6 ho	urs) nominal						
	1011 = 1.0,300	5,000 (2.4 1100 7 152 (36 minu	itos) nominal						
	1010 = 1.2,097 1001 = 1.524	288 (9 minutes	a) nominal						
1000 = 1.131072 (135 seconds) nominal									
0111 = 1:32.768 (34 seconds) nominal									
0110 = 1:8,192 (8.5 seconds) nominal									
0101 = 1:2,048 (2.1 seconds) nominal									
0100 = 1:512 (528 ms) nominal									
	0011 = 1:128 ((132 ms) nomi	nal						
	0010 = 1:32 (3	3 ms) nominal							
	0001 = 1:8 (8.3	3 ms) nominal							
	0000 = 1:2 (2.1	1 ms) nominal							

26.2 On-Chip Voltage Regulator

All of the PIC24FV32KA304 family devices power their core digital logic at a nominal 3.0V. This may create an issue for designs that are required to operate at a higher typical voltage, as high as 5.0V. To simplify system design, all devices in the "FV" family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is always enabled and provides power to the core from the other VDD pins. A low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 26-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is discussed in Section 2.4 "Voltage Regulator Pin (VCAP)", and in Section 29.1 "DC Characteristics".

For "F" devices, the regulator is disabled. Instead, core logic is powered directly from VDD. This allows the devices to operate at an overall lower allowable voltage range (1.8V-3.6V).

26.2.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION

For all PIC24FV32KA304 devices, the on-chip regulator provides a constant voltage of 3.2V nominal to the digital core logic. The regulator can provide this level from a VDD of about 3.2V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 3.2V. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD with a typical voltage drop of 150 mV.

When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip regulator includes a simple, High/Low-Voltage Detect (HLVD) circuit. When VDD drops below full-speed operating voltage, the circuit sets the High/Low-Voltage Detect Interrupt Flag, HLVDIF (IFS4<8>). This can be used to generate an interrupt and put the application into a low-power operational mode or trigger an orderly shutdown. Maximum device speeds as a function of VDD are shown in **Section 29.1 "DC Characteristics"**, in Figure 29-1 and Figure 29-1.

26.2.2 ON-CHIP REGULATOR AND POR

For PIC24FV32KA304 devices, it takes a brief time, designated as TPM, for the Voltage Regulator to generate a stable output. During this time, code execution is disabled. TPM (DC Specification SY71) is applied every time the device resumes operation after any power-down, including Sleep mode.

FIGURE 26-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

26.3 Watchdog Timer (WDT)

For the PIC24FV32KA304 family of devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the Configuration bits, WDTPS<3:0> (FWDT<3:0>), which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranging from 1 ms to 131 seconds, can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

27.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

			Standard Operating Conditions: 1.8V to 3.6V PIC24F32KA3XX						
DC CH	ARACT	ERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
	1		-40°C \leq TA \leq +125°C for Extended						
Param No. Sym Characteristic			Min	Тур ⁽¹⁾	Max	Units	Conditions		
	VIL	Input Low Voltage ⁽⁴⁾							
DI10		I/O Pins	Vss	—	0.2 Vdd	V			
DI15		MCLR	Vss	—	0.2 Vdd	V			
DI16		OSCI (XT mode)	Vss	—	0.2 Vdd	V			
DI17		OSCI (HS mode)	Vss	—	0.2 Vdd	V			
DI18		I/O Pins with I ² C Buffer	Vss	—	0.3 Vdd	V	SMBus is disabled		
DI19		I/O Pins with SMBus Buffer	Vss	—	0.8	V	SMBus is enabled		
Vi∺ Input High Voltage ⁽⁴⁾									
DI20		I/O Pins:							
		with Analog Functions		—					
DI25				_	VDD	V			
0120		OSCI (XT mode)		_	VDD	V			
DI20		OSCI (XT mode)			VDD	V			
2127		I/O Pins with I ² C Buffer	0.7 000	_	VDD	v			
0120		with Analog Functions	0.7 VDD	_	Vdd	V			
		Digital Only	0.7 Vdd	—	Vdd	V			
DI29		I/O Pins with SMBus	2.1	—	Vdd	V	$2.5V \le V\text{PIN} \le V\text{DD}$		
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS		
	lı∟	Input Leakage Current ^(2,3)							
DI50		I/O Ports	—	0.05	0.1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance		
DI55		MCLR	—	—	0.1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$		
DI56 OSCI		_	—	5	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and }H{\sf S} \text{ modes} \end{split}$			

TABLE 29-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-3 for I/O pin buffer types.

TABLE 29-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)									
Param No. Symbol Characteristics		Min	Тур	Max	Units	Comments			
DVR10	Vbg	Band Gap Reference Voltage	0.973	1.024	1.075	V			
DVR11	Tbg	Band Gap Reference Start-up Time		1	_	ms			
DVR20	Vrgout	Regulator Output Voltage	3.1	3.3	3.6	V	-40°C < TA < +85°C		
			3.0	3.19	3.6	V	-40°C < TA < +125°C		
DVR21	CEFC	External Filter Capacitor Value	4.7	10	_	μF	Series resistance < 3 Ohm recommended; < 5 Ohm is required.		
DVR30	Vlvr	Retention Regulator Output Voltage	_	2.6	—	V			

TABLE 29-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Comments	Conditions		
DCT10	IOUT1	CTMU Current Source, Base Range	-	550	—	nA	CTMUICON<9:8> = 01			
DCT11	IOUT2	CTMU Current Source, 10x Range	-	5.5	—	μA	CTMUICON<9:8> = 10	- 2.5V < VDD < VDDMAX		
DCT12	IOUT3	CTMU Current Source, 100x Range	-	55	_	μA	CTMUICON<9:8> = 11			
DCT13	IOUT4	CTMU Current Source, 1000x Range	—	550	—	μA	CTMUICON<9:8> = 00 (Note 2)			
DCT20	VF	Temperature Diode Forward Voltage	-	.76	—	V				
DCT21	VΔ	Voltage Change per Degree Celsius	—	1.6	—	mV/°C				

Note 1: Nominal value at the center point of the current trim range (CTMUICON<7:2> = 000000). On PIC24F32KA parts, the current output is limited to the typical current value when IOUT4 is chosen.

2: Do not use this current range with a temperature sensing diode.

FIGURE 30-48: TYPICAL AIHLVD vs. VDD

∆Ін∟∨р (µA)

Vdd

FIGURE 30-49: TYPICAL Vol vs. Iol (GENERAL I/O, $2.0V \le VDD \le 5.5V$)

