E·XFL

NXP USA Inc. - MCL908LJ12CFUE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	IRSCI, SPI
Peripherals	LCD, LVD, POR, PWM
Number of I/O	32
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcl908lj12cfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section 20. Computer Operating Properly (COP)	.371
Section 21. Low-Voltage Inhibit (LVI)	.377
Section 22. Break Module (BRK)	. 383
Section 23. Electrical Specifications	. 391
Section 24. Mechanical Specifications	.407
Section 25. Ordering Information	.411

Technical Data

Random-Access Memory (RAM)

During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.

NOTE: Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.

Technical Data

Central Processor Unit (CPU)

Source	Operation	Description		Description			Effect on CCR			Effect on CCR				ress e	ode	rand	les
Form				V H I N Z C			Add Mod	Opc	Ope	Cycl							
BRCLR n,opr,rel	Branch if Bit <i>n</i> in M Clear	PC ← (PC) + 3 + <i>rel</i> ? (Mn) = 0	_	_	_	_		¢	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	01 03 05 07 09 0B 0D 0F	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	5 5 5 5 5 5 5 5 5 5 5					
BRN rel	Branch Never	$PC \leftarrow (PC) + 2$	-	-	-	-	-	-	REL	21	rr	3					
BRSET n,opr,rel	Branch if Bit <i>n</i> in M Set	PC ← (PC) + 3 + <i>rel</i> ? (Mn) = 1	_	_	_	_		⊅	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	00 02 04 06 08 0A 0C 0E	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	5 5 5 5 5 5 5 5 5					
BSET n,opr	Set Bit <i>n</i> in M	Mn ← 1	_	_	_	_	_	_	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b5) DIR (b7)	10 12 14 16 18 1A 1C 1E	dd dd dd dd dd dd dd dd	4 4 4 4 4 4 4					
BSR rel	Branch to Subroutine	$\begin{array}{l} PC \leftarrow (PC) + 2; push (PCL) \\ SP \leftarrow (SP) - 1; push (PCH) \\ SP \leftarrow (SP) - 1 \\ PC \leftarrow (PC) + \mathit{rel} \end{array}$	_	-	_	_	_	_	REL	AD	rr	4					
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel	Compare and Branch if Equal	$\begin{array}{l} PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (X) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 2 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 4 + rel ? (A) - (M) = \$00 \end{array}$	_	_	_	_	_	_	DIR IMM IMM IX1+ IX+ SP1	31 41 51 61 71 9E61	dd rr ii rr ii rr ff rr rr ff rr	5 4 4 5 4 6					
CLC	Clear Carry Bit	C ← 0	-	-	-	-	-	0	INH	98		1					
CLI	Clear Interrupt Mask	l ← 0	-	-	0	-	-	-	INH	9A		2					
CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP	Clear	$\begin{array}{c} M \leftarrow \$00\\ A \leftarrow \$00\\ X \leftarrow \$00\\ H \leftarrow \$00\\ M \leftarrow \$00\\ \end{array}$	0	_	_	0	1	_	DIR INH INH IX1 IX SP1	3F 4F 5F 8C 6F 7F 9E6F	dd ff ff	3 1 1 3 2 4					

Table 6-1. Instruction Set Summary (Sheet 3 of 8)

Central Processor Unit (CPU)

Source	Operation	Description Effect on CCR		Description	Effect on CCR			Effect on CCR			ress e	ode	rand	les
Form	•	•	۷	Н	I	Ν	z	С	Add	Opc	Ope	Cycl		
INC opr INCA INCX INC opr,X INC ,X INC opr,SP	Increment	$\begin{array}{l} M \leftarrow (M) + 1 \\ A \leftarrow (A) + 1 \\ X \leftarrow (X) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \end{array}$	\$	_	_	\$	\$	_	DIR INH INH IX1 IX SP1	3C 4C 5C 6C 7C 9E6C	dd ff ff	4 1 4 3 5		
JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X	Jump	PC ← Jump Address	_	_	_	_	_	_	DIR EXT IX2 IX1 IX	BC CC DC EC FC	dd hh ll ee ff ff	2 3 4 3 2		
JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X	Jump to Subroutine	PC ← (PC) + $n (n = 1, 2, \text{ or } 3)$ Push (PCL); SP ← (SP) – 1 Push (PCH); SP ← (SP) – 1 PC ← Unconditional Address	_	_	_	_	_	_	DIR EXT IX2 IX1 IX	BD CD DD ED FD	dd hh ll ee ff ff	4 5 6 5 4		
LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP	Load A from M	A ← (M)	0	_	_	¢	¢	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A6 B6 C6 D6 E6 F6 9EE6 9ED6	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5		
LDHX #opr LDHX opr	Load H:X from M	H:X ← (M:M + 1)	0	_	_	\$	\$	-	IMM DIR	45 55	ii jj dd	3 4		
LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP	Load X from M	X ← (M)	0	_	_	\$	\$	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	AE BE CE DE EE FE 9EEE 9EDE	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5		
LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP	Logical Shift Left (Same as ASL)	C - 0 b7 b0	\$	_	_	\$	\$	\$	DIR INH INH IX1 IX SP1	38 48 58 68 78 9E68	dd ff ff	4 1 4 3 5		
LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP	Logical Shift Right	$0 \rightarrow \boxed[b7]{b0} b0$	€	_	_	0	\$	\$	DIR INH INH IX1 IX SP1	34 44 54 64 74 9E64	dd ff ff	4 1 4 3 5		

Table 6-1. Instruction Set Summary (Sheet 5 of 8)

8.3 Features

Features of the CGM include:

- Phase-locked loop with output frequency in integer multiples of an integer dividend of the crystal reference
- Low-frequency crystal operation with low-power operation and high-output frequency resolution
- Programmable prescaler for power-of-two increases in frequency
- Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation
- Automatic bandwidth control mode for low-jitter operation
- Automatic frequency lock detector
- CPU interrupt on entry or exit from locked condition
- Configuration register bit to allow oscillator operation during stop mode

8.4 Functional Description

The CGM consists of three major sub-modules:

- Oscillator module The oscillator module generates the constant reference frequency clock, CGMRCLK (buffered CGMXCLK).
- Phase-locked loop (PLL) The PLL generates the programmable VCO frequency clock, CGMVCLK, and the divided, CGMPCLK. The CGMPCLK is one of the reference clocks to the base clock selector circuit.
- Base clock selector circuit This software-controlled circuit selects the one of three clocks as the base clock, CGMOUT: CGMXCLK, CGMXCLK divided by two, or CGMPCLK divided by two.

Figure 8-1 shows the structure of the CGM.

Figure 8-2 is a summary of the CGM registers.

NP

Clock Generator Module (CGM)

Figure 8-1. CGM Block Diagram

Technical Data

System Integration Module (SIM)

9.6.4	Status Flag Protection in Break Mode
9.7 9.7.1 9.7.2	Low-Power Modes.149Wait Mode.149Stop Mode.150
9.8 9.8.1 9.8.2 9.8.3	SIM Registers.151SIM Break Status Register.152SIM Reset Status Register.153SIM Break Flag Control Register.154

9.2 Introduction

This section describes the system integration module (SIM). Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in **Figure 9-1**. **Table 9-1** is a summary of the SIM input/output (I/O) registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for:

- Bus clock generation and control for CPU and peripherals:
 - Stop/wait/reset/break entry and recovery
 - Internal clock control
- Master reset control, including power-on reset (POR) and COP timeout
- Interrupt control:
 - Acknowledge timing
 - Arbitration control timing
 - Vector address generation
- CPU enable/disable timing
- Modular architecture expandable to 128 interrupt sources

 Table 9-1 shows the internal signal names used in this section.

9.4.1 External Pin Reset

The RST pin circuit includes an internal pull-up device. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a minimum of 67 ICLK cycles, assuming that neither the POR nor the LVI was the source of the reset. See Table 9-2 for details. Figure 9-4 shows the relative timing.

Figure 9-4. External Reset Timing

9.4.2 Active Resets from Internal Sources

All internal reset sources actively pull the RST pin low for 32 ICLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles (see Figure 9-5). An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI, or POR (see Figure 9-6).

NOTE: For LVI or POR resets, the SIM cycles through 4096 + 32 ICLK cycles during which the SIM forces the \overline{RST} pin low. The internal reset signal then follows the sequence from the falling edge of \overline{RST} shown in **Figure 9-5**.

MC68HC908LJ12 - Rev. 2.1

9.6 Exception Control

Normal, sequential program execution can be changed in three different ways:

- Interrupts:
 - Maskable hardware CPU interrupts
 - Non-maskable software interrupt instruction (SWI)
- Reset
- Break interrupts

9.6.1 Interrupts

At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. **Figure 9-8** shows interrupt entry timing, and **Figure 9-9** shows interrupt recovery timing.

9.8.1 SIM Break Status Register

The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from stop mode or wait mode.

Figure 9-20. SIM Break Status Register (SBSR)

SBSW — Break Wait Bit

This status bit is set when a break interrupt causes an exit from wait mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears SBSW.

- 1 = Stop mode or wait mode was exited by break interrupt
- 0 = Stop mode or wait mode was not exited by break interrupt

SBSW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting 1 from it. The following code is an example.

This code works if the H register has been pushed onto the stack in the break service routine software. This code should be executed at the end of the break service routine software.

LOBYTE	EQU		
	If not	SBSW, do RTI	
	BRCLR	SBSW,SBSR, RETURN	;See if wait mode or stop mode was exited by ;break.
	TST	LOBYTE, SP	;If RETURNLO is not zero,
	BNE	DOLO	; then just decrement low byte.
	DEC	HIBYTE, SP	;Else deal with high byte, too.
DOLO	DEC	LOBYTE, SP	;Point to WAIT/STOP opcode.
RETURN	PULH RTI		;Restore H register.

Technical Data

Mon	itor R	OM	(M	ON)
				_

Decemption	Executes PULH and RTI instructions					
Operand	None					
Data Returned	None					
Opcode	\$28					
Command Sequence						
FROM HOST						

Table 10-9. RUN (Run User Program) Command

The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can modify the stacked CPU registers to prepare to run the host program. The READSP command returns the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at addresses SP + 5 and SP + 6.

	SP
HIGH BYTE OF INDEX REGISTER	SP + 1
CONDITION CODE REGISTER	SP + 2
ACCUMULATOR	SP + 3
LOW BYTE OF INDEX REGISTER	SP + 4
HIGH BYTE OF PROGRAM COUNTER	SP + 5
LOW BYTE OF PROGRAM COUNTER	SP + 6
	SP + 7

Figure 10-7. Stack Pointer at Monitor Mode Entry

Technical Data

10.5 Security

A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations \$FFF6-\$FFFD. Locations \$FFF6-\$FFFD contain user-defined data.

NOTE: Do not leave locations \$FFF6–\$FFFD blank. For security reasons, program locations \$FFF6–\$FFFD even if they are not used for vectors.

During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTA0. If the received bytes match those at locations \$FFF6–\$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. (See Figure 10-8.)

Figure 10-8. Monitor Mode Entry Timing

Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:

- When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value.
- When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period.
- **NOTE:** In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.

11.5.4.2 Buffered PWM Signal Generation

Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output.

Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.

The SCI allows full-duplex, asynchronous, NRZ serial communication between the MCU and remote devices, including other MCUs. The transmitter and receiver of the SCI operate independently, although they use the same baud rate generator. During normal operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes received data.

- **NOTE:** For SCI operations, the IR sub-module is transparent to the SCI module. Data at going out of the SCI transmitter and data going into the SCI receiver is always in SCI format. It makes no difference to the SCI module whether the IR sub-module is enabled or disabled.
- **NOTE:** This SCI module is a standard HC08 SCI module with the following modifications:
 - A control bit, CKS, is added to the SCI baud rate control register to select between two input clocks for baud rate clock generation
 - The TXINV bit is removed from the SCI control register 1

13.7.1 Data Format

The SCI uses the standard non-return-to-zero mark/space data format illustrated in **Figure 13-6**.

Figure 13-6. SCI Data Formats

13.7.3.2 Character Reception

During an SCI reception, the receive shift register shifts characters in from the RxD pin. The SCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register.

After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request.

13.7.3.3 Data Sampling

The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at the following times (see **Figure 13-9**):

- After every start bit
- After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0)

Figure 13-9. Receiver Data Sampling

MC68HC908LJ12 - Rev. 2.1

Infrared Serial Communications

To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.

To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. **Table 13-2** summarizes the results of the start bit verification samples.

RT3, RT5, and RT7 Samples	Start Bit Verification	Noise Flag
000	Yes	0
001	Yes	1
010	Yes	1
011	No	0
100	Yes	1
101	No	0
110	No	0
111	No	0

Table 13-2. Start Bit Verification

If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. **Table 13-3** summarizes the results of the data bit samples.

Table 13-3. Data Bit Re	covery
-------------------------	--------

RT8, RT9, and RT10 Samples	Data Bit Determination	Noise Flag	
000	0	0	
001	0	1	
010	0	1	
011	1	1	
100	0	1	
101	1	1	
110	1	1	
111	1	0	

13.11.5 SCI Status Register 2 (SCS2)

SCI status register 2 contains flags to signal the following conditions:

- Break character detected
- Incoming data

BKF — Break Flag Bit

This clearable, read-only bit is set when the SCI detects a break character on the RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the RxD pin followed by another break character. Reset clears the BKF bit.

- 1 = Break character detected
- 0 = No break character detected

RPF — Reception in Progress Flag Bit

This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits (usually from noise or a baud rate mismatch) or when the receiver detects an idle character. Polling RPF before disabling the SCI module or entering stop mode can show whether a reception is in progress.

1 = Reception in progress

0 = No reception in progress

20.8.1 Wait Mode

The COP remains active during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine.

20.8.2 Stop Mode

Stop mode turns off the ICLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode.

To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available that disables the STOP instruction. When the STOP bit in the configuration register has the STOP instruction is disabled, execution of a STOP instruction results in an illegal opcode reset.

20.9 COP Module During Break Mode

The COP is disabled during a break interrupt when V_{TST} is present on the \overline{RST} pin.

Technical Data

23.7 3.3V DC Electrical Characteristics

Table 23-5. 3.3 V DC Electrical Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Тур ⁽²⁾	Max	Unit
Output high voltage (I _{LOAD} = -1.0 mA) All ports	V _{OH}	V _{DD} -0.4	_	_	V
Output low voltage $(I_{LOAD} = 0.8mA)$ All ports $(I_{LOAD} = 4.0 mA)$ PTB2–PTB5 $(I_{LOAD} = 10.0 mA)$ PTB0/TxD–PTB1	V _{OL}	_	_	0.4	V
Input high voltage All ports, RST, IRQ, OSC1	V _{IH}	$0.7 imes V_{DD}$		V _{DD}	V
Input low voltage All ports, RST, IRQ, OSC1	V _{IL}	V _{SS}	_	$0.3 \times V_{DD}$	V
$ \begin{array}{l} V_{\text{DD}} \text{ supply current} \\ \text{Run}^{(3)}, f_{\text{OP}} = 4 \ \text{MHz} \\ \text{with all modules on} \\ \text{with ADC on} \\ \text{with ADC off} \\ \text{Wait}^{(4)}, f_{\text{OP}} = 4 \ \text{MHz} \ (\text{all modules off}) \\ \text{Stop, } f_{\text{OP}} = 8 \ \text{kHz}^{(5)} \\ \text{25°C} \ (\text{with OSC, RTC, LCD}^{(6)}, \ \text{LVI on}) \\ \text{25°C} \ (\text{with OSC, RTC, LCD}^{(6)} \ \text{on}) \\ \text{25°C} \ (\text{with OSC, RTC on}) \\ \text{25°C} \ (\text{all modules off}) \\ \end{array} $	I _{DD}			8 6 5 3.5 280 38 25 1	mA mA mA μA μA μA
Digital I/O ports Hi-Z leakage current All ports, RST	Ι _{ΙL}	_	_	± 10	μΑ
Input current IRQ	I _{IN}	_		± 1	μΑ
Capacitance Ports (as input or output)	C _{OUT} C _{IN}	_	_	12 8	pF
POR re-arm voltage ⁽⁷⁾	V _{POR}	0	_	100	mV
POR rise-time ramp rate ⁽⁸⁾	R _{POR}	0.02	_	—	V/ms
Monitor mode entry voltage (at IRQ pin)	V _{HI}	$1.5 \times V_{DD}$		$2 \times V_{DD}$	V
Pullup resistors ⁽⁹⁾ PTA0–PTA3, PTD4–PTD7 configured as KBI0–KBI7 RST, IRQ	R _{PU1} R _{PU2}		26 28		kΩ kΩ
Low-voltage inhibit, trip falling voltage	V _{TRIPF}	2.40	2.57	2.88	V
Low-voltage inhibit, trip rising voltage	V _{TRIPR}	2.46	2.63	2.97	V

