

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

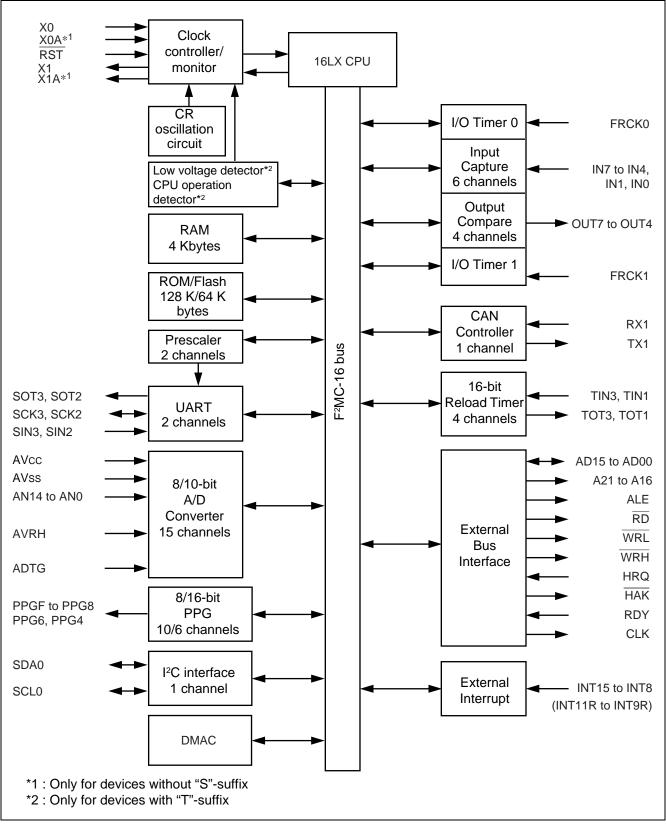
E·XFI

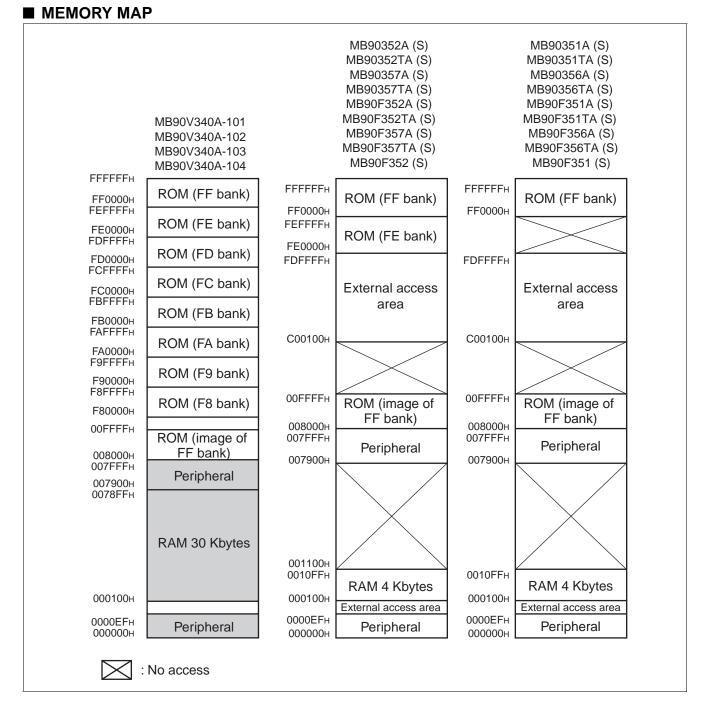
Details	
Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	24MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 15x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-QFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f352spfm-gs-114e1

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■ PRODUCT LINEUP 1

Part Number	MD005254	MD0052540	MD005254.4	MDOOF254TA	MD00F2F4AC				
Parameter	MB90F351, MB90F352	MB90F351S, MB90F352S	MB90F351A, MB90F352A	MB90F351TA, MB90F352TA	MB90F351AS, MB90F352AS	MB90F351TAS, MB90F352TAS			
CPU	F ² MC-16LX CPU								
System clock			×1, ×2, ×3, ×4, n time : 42 ns (6)			
ROM									
RAM			4 Kb	oytes					
Emulator-specific power supply*1			_	_					
Sub clock pin (X0A, X1A) (Max 100 kHz)	Yes	No	Y	es	N	0			
Clock monitor function			N	lo					
Low voltage/CPU operation detection reset	N	lo	No	Yes	No	Yes			
Operating voltage range	4.0 V to 5.5 V	 3.5 V to 5.5 V : at normal operating (not using A/D converter) 4.0 V to 5.5 V : at using A/D converter/Flash programming 4.5 V to 5.5 V : at using external bus 							
Operating temperature range	-40 °C to +10 up to 16 MHz r	5 °C (+125 °C machine clock)		–40 °C to	o +125 °C				
Package			LQF	P-64					
UART	Special synch	ronous options	2 cha ngs using a deo for adapting to er as master or	different synch	ronous serial pr	otocols			
I ² C (400 Kbps)			1 cha	annel					
			15 cha	annels					
A/D Converter	10-bit or 8-bit Conversion tin		cludes sample	time (per one o	channel)				
16-bit Reload Timer (4 channels)		k frequency : f rnal Event Cou	sys/2¹, fsys/2³, f nt function.	fsys/2⁵ (fsys =	Machine clock f	requency)			
	I/O Timer 0 (cl I/O Timer 1 (cl	ock input FRCI ock input FRCI	 corresponds corresponds 	s to ICU 0/1. s to ICU 4/5/6/7	7, OCU 4/5/6/7.				
16-bit I/O Timer (2 channels)	Supports Time Operation cloc	Signals an interrupt when overflowing. Supports Timer Clear when a match with Output Compare (Channel 0, 4) . Operation clock frequency : fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ , fsys/2 ⁵ , fsys/2 ⁶ , fsys/2 ⁷ (fsys = Machine clock frequency)							
16-bit Output			4 cha	innels					
Compare			bit I/O Timer m an be used to g			gisters.			


(Continued)


Part Number Parameter	MB90F356A, MB90F357A	MB90F356TA, MB90F357TA	MB90F356AS, MB90F357AS	MB90F356TAS, MB90F357TAS				
Farameter		6 cha	nnels					
16-bit Input Capture	Retains freerun timer v interrupt.	value by (rising edge, fa		Illing edge), signals an				
8/16-bit		6 channels (16-bit) 8-bit reload c 8-bit reload registers 8-bit reload registers	counters \times 12 for L pulse width \times 12					
Programmable Pulse Generator	Supports 8-bit and 16-bit operation modes. A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler + 8-bit reload counter. Operation clock frequency : fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ or 128 µs@fosc = 4 MHz (fsys = Machine clock frequency, fosc = Oscillation clock frequency)							
		1 cha	annel	-				
CAN Interface	Conforms to CAN Specification Version 2.0 Part A and B. Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID Supports multiple messages. Flexible configuration of acceptance filtering : Full bit compare/Full bit mask/Two partial bit masks Supports up to 1 Mbps.							
		8 cha	nnels					
External Interrupt		lge, falling edge, startin O services (El²OS) and		t, external interrupt,				
D/A converter		_	_					
I/O Ports	All push-pull outputs Bit-wise settable as in Settable as CMOS sc	Virtually all external pins can be used as general purpose I/O port. All push-pull outputs Bit-wise settable as input/output or peripheral module signal Settable as CMOS schmitt trigger/ automotive inputs TTL input level settable for external bus (only for external bus pin)						
Flash Memory	Supports automatic programming, Embedded Algorithm ^{™*2} Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of erase cycles : 10,000 times Data retention time : 10 years Boot block configuration Erase can be performed on each block. Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash (MB90F357x only)							
Corresponding EVA name	-	40A-104		340A-103				

*1: It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the Emulator hardware manual about details.

*2 : Embedded Algorithm is a trademark of Advanced Micro Devices Inc.

MB90F357A (S), MB90F357TA (S), MB90F356A (S), MB90F356TA (S), MB90357TA (S), MB90357TA (S), MB90356A (S), MB90356TA (S)

Note : The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referenced without using the far specification in the pointer declaration.

For example, an attempt to access 00C000H accesses the value at FFC000H in ROM.

The ROM area in bank FF exceeds 32 Kbytes, and its entire image cannot be shown in bank 00.

The image between FF8000 μ and FFFFF μ is visible in bank 00, while the image between FF0000 μ and FF7FFF μ is visible only in bank FF.

Address	Register	Abbrevia- tion	Access	Resource name	Initial value
3Сн	PPG 6 Operation Mode Control Register	PPGC6	W, R/W		0Х000ХХ1в
3D н	PPG 7 Operation Mode Control Register	PPGC7	W, R/W	16-bit Programmable Pulse Generator 6/7	0Х00001в
3Ен	PPG 6/7 Count Clock Select Register	PPG67	R/W		000000Х0в
3Fн		Reserve	ed		
40н	PPG 8 Operation Mode Control Register	PPGC8	W, R/W		0Х000ХХ1в
41н	PPG 9 Operation Mode Control Register	PPGC9	W, R/W	16-bit Programmable Pulse Generator 8/9	0Х00001в
42н	PPG 8/9 Count Clock Select Register	PPG89	R/W		000000Х0в
43 H		Reserve	ed	•	
44 H	PPG A Operation Mode Control Register	PPGCA	W, R/W		0Х000ХХ1в
45 H	PPG B Operation Mode Control Register	PPGCB	W, R/W	16-bit Programmable Pulse Generator A/B	0Х00001в
46 H	PPG A/B Count Clock Select Register	PPGAB	R/W		000000Х0в
47 н		Reserve	ed	1	L
48 H	PPG C Operation Mode Control Register	PPGCC	W,R/W		0Х000ХХ1в
49 н	PPG D Operation Mode Control Register	PPGCD	W,R/W	16-bit Programmable Pulse Generator C/D	0Х00001в
4Ан	PPG C/D Count Clock Select Register	PPGCD	R/W		000000Х0в
4 Вн		Reserve	ed		
4С н	PPG E Operation Mode Control Register	PPGCE	W,R/W		0X000XX1 _B
4Dн	PPG F Operation Mode Control Register	PPGCF	W,R/W	16-bit Programmable Pulse Generator E/F	0Х00001в
4 Ен	PPG E/F Count Clock Select Register	PPGEF	R/W		000000Х0в
4F _H		Reserve	ed		•
50н	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	0000000в
51н	Input Capture Edge Register 0/1	ICE01	R/W, R		XXX0X0XX _B
52н, 53н		Reserve	ed	L	
54н	Input Capture Control Status Register 4/5	ICS45	R/W	Input Capture 4/5	0000000в
55н	Input Capture Edge Register 4/5	ICE45	R		XXXXXXXAB
56 н	Input Capture Control Status Register 6/7	ICS67	R/W	Input Capture 6/7	0000000в
57 н	Input Capture Edge Register 6/7	ICE67	R/W, R		XXX000XX _B
58н to 5Вн		Reserve	ed		
5Сн	Output Compare Control Status Register 4	OCS4	R/W		0000XX00 _B
5Dн	Output Compare Control Status Register 5	OCS5	R/W	Output Compare 4/5	0ХХ00000в

Address	Register	Abbrevia- tion	Access	Resource name	Initial value
792С н	Input Capture Register 6	IPCP6	R		XXXXXXXX
792D н	Input Capture Register 6	IPCP6	R		XXXXXXXX
792Е н	Input Capture Register 7	IPCP7	R	Input Capture 6/7	XXXXXXXX
792F н	Input Capture Register 7	IPCP7	R		XXXXXXXX
7930н to 7937н		Reserve	ed		
7938 н	Output Compare Register 4	OCCP4	R/W		XXXXXXXX
7939 н	Output Compare Register 4	OCCP4	R/W	Output Compore 4/5	XXXXXXXX
793Ан	Output Compare Register 5	OCCP5	R/W	Output Compare 4/5	XXXXXXXX
793В н	Output Compare Register 5	OCCP5	R/W		XXXXXXXX
793Сн	Output Compare Register 6	OCCP6	R/W		XXXXXXXX
793D н	Output Compare Register 6	OCCP6	R/W		XXXXXXXX
793Е н	Output Compare Register 7	OCCP7	R/W	Output Compare 6/7	XXXXXXXX
793F н	Output Compare Register 7	OCCP7	R/W		XXXXXXXX
7940 н	Timer Data Register 0	TCDT0	R/W		0000000в
7941 н	Timer Data Register 0	TCDT0	R/W	I/O Timer 0	0000000в
7942 н	Timer Control Status Register 0	TCCSL0	R/W		0000000в
7943н	Timer Control Status Register 0	TCCSH0	R/W		0XXXXXXX
7944 н	Timer Data Register 1	TCDT1	R/W		0000000в
7945 н	Timer Data Register 1	TCDT1	R/W	I/O Timer 1	0000000в
7946 н	Timer Control Status Register 1	TCCSL1	R/W		0000000в
7947 н	Timer Control Status Register 1	TCCSH1	R/W		0XXXXXXXB
7948 н	Timer Degister 0/Delead Degister 0	TMR0/	R/W	16-bit Reload	XXXXXXXX
7949 н	- Timer Register 0/Reload Register 0	TMRLR0	R/W	Timer 0	XXXXXXXX
794Ан	Timer Degister 1/Delead Degister 1	TMR1/	R/W	16-bit Reload	XXXXXXXX
794В н	- Timer Register 1/Reload Register 1	TMRLR1	R/W	Timer 1	XXXXXXXX
794С н	Timer Degister 2/Delead Degister 2	TMR2/	R/W	16-bit Reload	XXXXXXXX
794D н	- Timer Register 2/Reload Register 2	TMRLR2	R/W	Timer 2	XXXXXXXX
794Е н	Timer Degister 2/Delead Degister 2	TMR3/	R/W	16-bit Reload	XXXXXXXX
794F н	- Limer Redister 3/Reload Redister 3		R/W	Timer 3	XXXXXXXX

(Continued)

Address	Register	Abbrevia- tion	Access	Resource name	Initial value					
79С2 н		Setting Pro	hibited							
79С3н to 79DFн	Reserved									
79E0 н	Detect Address Setting Register 0	XXXXXXXXB								
79E1 н	Detect Address Setting Register 0	PADR0	R/W		XXXXXXXXB					
79E2 н	Detect Address Setting Register 0	PADR0	R/W		XXXXXXXXB					
79E3 н	Detect Address Setting Register 1	PADR1	R/W		XXXXXXXXB					
79E4 н	Detect Address Setting Register 1	PADR1	R/W	Address Match Detection 0	XXXXXXXXB					
79E5 н	Detect Address Setting Register 1	PADR1	R/W	Deteotion o	XXXXXXXXB					
79E6 н	Detect Address Setting Register 2	PADR2	R/W		XXXXXXXXB					
79E7 н	Detect Address Setting Register 2	PADR2	R/W		XXXXXXXX					
79E8 н	Detect Address Setting Register 2	PADR2	R/W		XXXXXXXX					
79E9н to 79EFн		Reserve	ed		•					
79F0 н	Detect Address Setting Register 3	PADR3	R/W		XXXXXXXXB					
79F1 н	Detect Address Setting Register 3	PADR3	R/W		XXXXXXXXB					
79F2 н	Detect Address Setting Register 3	PADR3	R/W		XXXXXXXXB					
79F3 н	Detect Address Setting Register 4	PADR4	R/W		XXXXXXXXB					
79F4 н	Detect Address Setting Register 4	PADR4	R/W	Address Match Detection 1	XXXXXXXXB					
79F5 н	Detect Address Setting Register 4	PADR4	R/W	Deteotion	XXXXXXXXB					
79F6 н	Detect Address Setting Register 5	PADR5	R/W		XXXXXXXXB					
79F7 н	Detect Address Setting Register 5	PADR5	R/W		XXXXXXXXB					
79F8⊦	Detect Address Setting Register 5	PADR5	R/W		XXXXXXXXB					
79F9н to 7BFFн		Reserve	ed							
7C00н to 7CFFн	Reserved for CAN Interface 1. Refer to "■ CAN CONTROLLERS"									
7D00н to 7DFFн	Reserved for CAN In	terface 1. Refe	er to "∎ CAN	N CONTROLLERS"						
7E00н to 7FFFн	Reserved									

Notes : • Initial value of "X" represents unknown value.

 Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results reading "X".

Address	Pogister	Abbreviation	Access	Initial Value	
CAN1	- Register	Abbreviation	Access	Initial value	
007С00н				XXXXXXXXB	
to 007C1F⊦	General-purpose RAM		R/W	to XXXXXXXB	
007C20н				XXXXXXXXB	
007C21 н			XXXXXXXXB		
007С22 н	- ID register 0	IDR0	R/W –	XXXXXXXXB	
007С23н			XXXXXXXXB		
007C24н			1	XXXXXXXXB	
007C25н				XXXXXXXXB	
007C26н	- ID register 1	IDR1	R/W –	XXXXXXXXB	
007С27 н				XXXXXXXXB	
007C28н			1 1	XXXXXXXXB	
007С29 н				XXXXXXXXB	
007С2Ан	- ID register 2	IDR2	R/W –	XXXXXXXXB	
007C2Bн				XXXXXXXXB	
007С2Сн				XXXXXXXXB	
007C2Dн	ID register 3			XXXXXXXXB	
007C2Eн		IDR3	R/W –	XXXXXXXXB	
007C2Fн				XXXXXXXXB	
007С30 н				XXXXXXXXB	
007C31н				XXXXXXXXB	
007С32н	- ID register 4	IDR4	R/W –	XXXXXXXXB	
007С33н				XXXXXXXXB	
007С34 н				XXXXXXXXB	
007С35 н			R/W –	XXXXXXXXB	
007С36н	ID register 5	ID register 5 IDR5		XXXXXXXXB	
007С37 н				XXXXXXXXB	
007C38н			1 1	XXXXXXXXB	
007С39 н			DAA	XXXXXXXXB	
007СЗАн	ID register 6	IDR6	R/W –	XXXXXXXXB	
007С3Вн	1				
007С3Сн					
007C3Dн		DAA	XXXXXXXX _B		
007С3Ен	ID register 7	IDR7 R/W		XXXXXXXXB	
007C3Fн]			XXXXXXXXB	

List of Message Buffers (ID Registers)

Address	Dogistar		A	Initial Value	
CAN1	Register	Abbreviation	Access	Initial Value	
007С60н	DLC register 0	DLC register 0 DLCR0		XXXXXXXXB	
007C61н	DLC register 0	DLCRU	R/W	ллллллв	
007С62н	DLC register 1	DLCR1	R/W	XXXXXXXXB	
007С63 н	DEC legister 1	DEGICI	10/00	ЛЛЛЛЛЛВ	
007C64н	DLC register 2	DLCR2	R/W	XXXXXXXX _B	
007С65 н	DEC legister 2	DEGIZ	10/00	ЛЛЛЛЛЛВ	
007С66 н	DLC register 3	DLCR3	R/W	XXXXXXXX _B	
007С67 н	DEC legister 5	DEGRO	10/00	ЛЛЛЛЛЛВ	
007С68 н	DLC register 4	DLCR4	R/W	XXXXXXXX _B	
007C69н	DLC Tegister 4	DLCR4		ллллллв	
007С6Ан	DLC register 5	DLCR5	R/W	VVVVVVV ₂	
007C6Bн	DLC register 5	DLOKS		XXXXXXXXB	
007С6Сн	DLC register 6	DLCR6	R/W	XXXXXXXXB	
007C6Dн	DEC legister o	DEGRO	10/00	ХХХХХХХХХВ	
007С6Ен	DLC register 7	DLCR7	R/W	XXXXXXXX	
007C6Fн	DLC Tegister 7	DLCKI			
007С70н	DLC register 8	DLCR8	R/W	XXXXXXXX _B	
007C71 н	DLC register o	DLCRO		λλλλλλλβ	
007С72н	DLC register 9	DLCR9	R/W	XXXXXXXXB	
007С73н	DLC register 9	DLONG	10/00	лллллллв	
007C74н	DLC register 10	DLCR10	R/W	XXXXXXXXB	
007C75н	DEC legister 10	DECKIO		VVVVVVV R	
007С76н	DLC register 11	DLCR11	R/W	XXXXXXXX	
007С77 н	DLC register 11	DLOKTI		VVVVVVV R	
007С78н	DLC register 12	DLCR12	R/W	XXXXXXXXB	
007С79 н	DEC register 12	DEGITZ	10/00	лллллллв	
007С7Ан	DLC register 13	DLCR13	R/W	XXXXXXXXB	
007С7Вн		DEGRIS	11/10	AAAAAAAAB	
007С7Сн	DLC register 14	DLCR14	R/W	XXXXXXXXB	
007C7Dн	DEC TEGISIEL 14	DLGR14	FX/ V V	лллллллв	
007С7Ен	DLC register 15		R/W	YYYYYYYY ₂	
007C7Fн	DLC register 15	DLCR15	r./ VV	XXXXXXXXB	

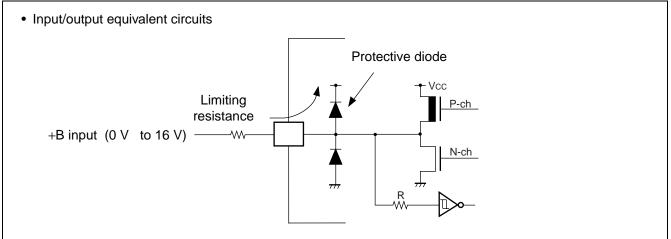
List of Message Buffers (DLC Registers and Data Registers)

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Paramatar	Symbol	Rating			Domorko
Parameter	Symbol	Min	Max	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 6.0	V	
Power supply voltage*1	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2
	AVRH	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH*2
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3
Maximum Clamp Current		-4.0	+4.0	mA	*5
Total Maximum Clamp Current	Σ		40	mA	*5
"L" level maximum output current	loι		15	mA	*4
"L" level average output current	OLAV		4	mA	*4
"L" level maximum overall output current	ΣΙοι		100	mA	*4
"L" level average overall output current	Σ Iolav	—	50	mA	*4
"H" level maximum output current	Іон	—	-15	mA	*4
"H" level average output current	Іонач		-4	mA	*4
"H" level maximum overall output current	ΣІон	—	-100	mA	*4
"H" level average overall output current	ΣΙοήαν	—	-50	mA	*4
			240	mW	$\begin{array}{l} MB90F351(S),\ MB90F352(S)\\ +105\ ^{\circ}C < T_A \leq +125\ ^{\circ}C,\\ Normal\ operation\ :\ maximum\\ frequency\ 16\ MHz \end{array}$
Power consumption	PD		320	mW	$\begin{array}{l} MB90F351(S),\ MB90F352(S)\\ -40\ ^{\circ}C < T_{A} \leq +105\ ^{\circ}C,\\ Normal\ operation\ :\ maximum\\ frequency\ 24\ MHz \end{array}$
			320	mW	Device other than above
	TA	-40	+105	°C	
Operating temperature	IA	-40	+125	°C	*6
Storage temperature	Tstg	-55	+150	°C	

(Continued)

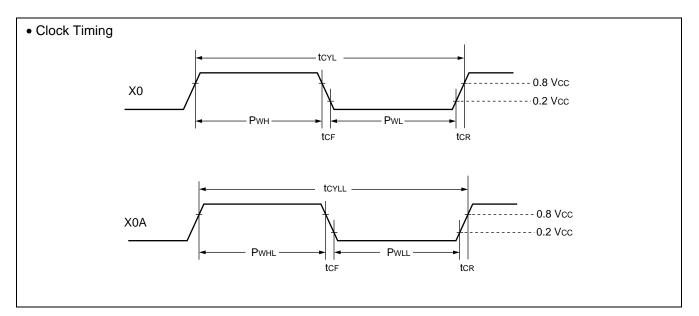

- *1: This parameter is based on $V_{SS} = AV_{SS} = 0 V$
- *2: Set AVcc and Vcc to the same voltage. Make sure that AVcc does not exceed Vcc and that the voltage at the analog inputs does not exceed AVcc when the power is switched on.
- *3: V_I and V_O should not exceed V_{CC} + 0.3 V. V_I should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.

*4: Applicable to pins: P00 to P07, P10 to P17, P20 to P25, P30 to P37, P40 to P45, P50 to P56, P60 to P67

*5: • Applicable to pins: P00 to P07, P10 to P17, P20 to P25, P30 to P37, P40 to P45,

P50 to P56 (for evaluation device : P50 to P55) , P60 to P67

- Use within recommended operating conditions.
- Use at DC voltage (current)
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Sample recommended circuits:

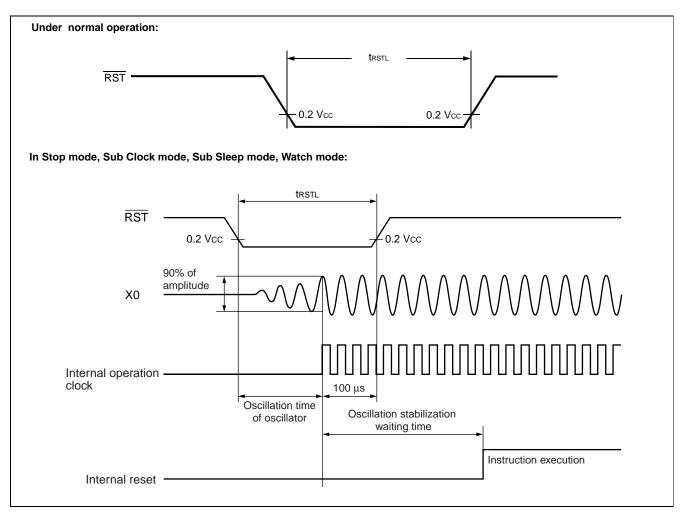

*6 : If used exceeding $T_A = +105 \text{ °C}$, be sure to contact Fujitsu for reliability limitations.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

(Continued)

 $\begin{array}{l} (MB90F352(S)/MB90F351(S): T_{A} = -40 \ ^{\circ}C \ to +105 \ ^{\circ}C, \ V_{Cc} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (MB90F352(S)/MB90F351(S): T_{A} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{Cc} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 16 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_{A} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{Cc} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ \end{array}$

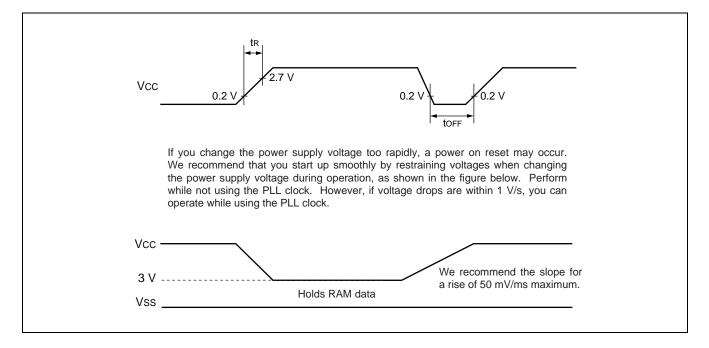
Parameter	Symbol	Pin		Value		Unit	Remarks		
Farameter	Symbol	E III	Min	Тур	Мах	Unit	itemarks		
			1.5		24	MHz	$\begin{array}{l} MB90F352/(S), \ MB90F351/(S)\\ When \ using \ main \ clock\\ (T_A \leq +105 \ ^\circ C) \end{array}$		
Internal operating clock frequency (machine clock)	fср	—	1.5		16		$\begin{array}{l} MB90F352/(S),\ MB90F351/(S)\\ When \ using \ main \ clock\\ (T_A \leq +125 \ ^{\circ}C) \end{array}$		
			1.5		24	MHz	Device other than above, When using main clock		
	fcpl			8.192	50	kHz	When using sub clock		
	tcp —		41.67		666	ns	$\begin{array}{l} MB90F352/(S),\ MB90F351/(S)\\ When\ using\ main\ clock\\ (T_A \leq +105\ ^{\circ}C) \end{array}$		
Internal operating clock cycle time (machine clock)		_	_	_	- 62.5	62.5		000	115
			41.67		666	ns	Device other than above, When using main clock		
	t CPL		20	122.1	—	μs	When using sub clock		



(2) Reset Standby Input

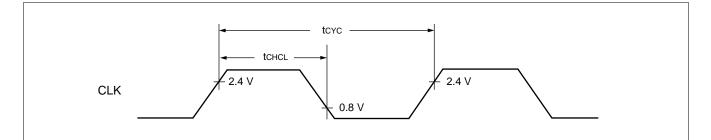
 $(MB90F352(S)/MB90F351(S): T_A = -40 \ ^{\circ}C \ to +105 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (MB90F352(S)/MB90F351(S): T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 16 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \ V_{SS} = AV_{SS} = 0 \ V) \ V_{SS} = AV_{SS} = 0 \ V \ V_{SS} = AV_{SS} = 0 \ V_{SS} = 0 \ V_{SS}$

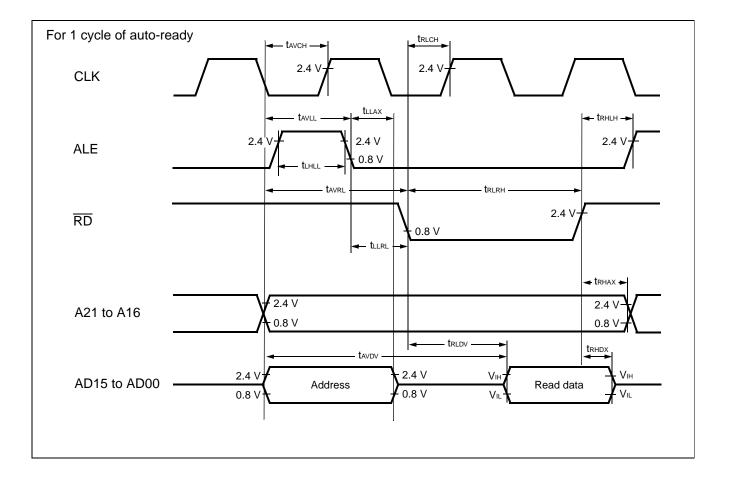
Parameter	Symbol	Dim	Value		Unit	Remarks
Farameter			Max	Unit	Rellidiks	
			500		ns	Under normal operation
Reset input time	t rstl	RST	Oscillation time of oscillator* + 100 μs		μs	In Stop mode, Sub Clock mode, Sub Sleep mode and Watch mode
			100		μs	In Main timer mode and PLL timer mode

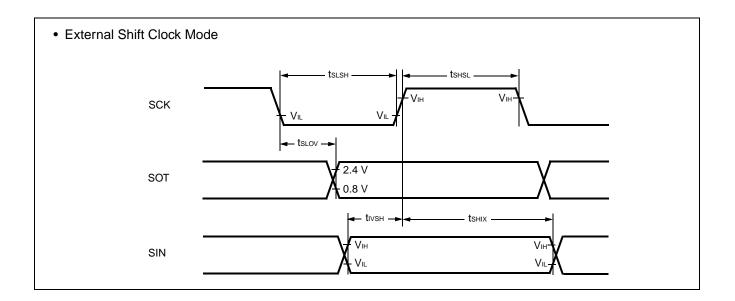

* : Oscillation time of oscillator is the time that the amplitude reaches 90%.
 In the crystal oscillator, the oscillation time is between several ms to tens of ms. In FAR / ceramic oscillators, the oscillation time is between hundreds of μs to several ms. With an external clock, the oscillation time is 0 ms.

(3) Power On Reset

 $\begin{array}{l} (MB90F352(S)/MB90F351(S): \ T_{A} = -40 \ ^{\circ}C \ to \ +105 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (MB90F352(S)/MB90F351(S): \ T_{A} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 16 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: \ T_{A} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ \end{array}$

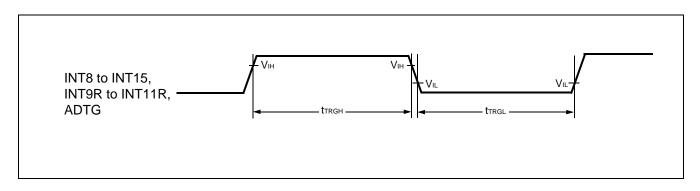

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	EIII	Condition	Min	Max	Unit	iteliidi ka
Power on rise time	tR	Vcc		0.05	30	ms	
Power off time	toff	Vcc		1		ms	Due to repetitive operation




(4) Clock Output Timing

 $(T_A = -40 \text{ °C to } +105 \text{ °C}, V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, f_{CP} \le 24 \text{ MHz})$

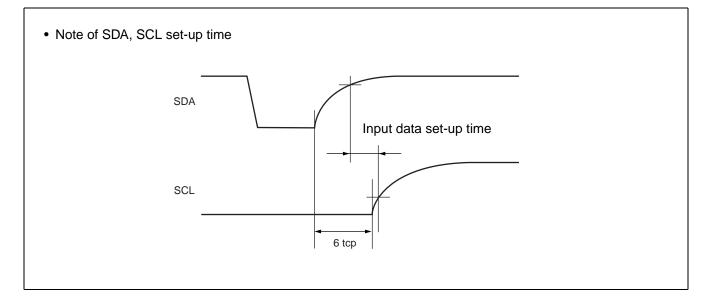
Parameter	Symbol	Pin	Condition	Value		Unit	Remarks	
				Min	Max	Unit	iteliidi kS	
Cycle time	tcyc	CLK	_	62.5	_	ns	fcp = 16 MHz	
				41.76	_	ns	fcp = 24 MHz	
$CLK \uparrow \rightarrow CLK \downarrow$	taura	CLK	20 ns fcp = 16 MHz 13 ns fcp = 24 MHz	20	_	ns	fcp = 16 MHz	
	t cHc∟	OLK		fcp = 24 MHz				



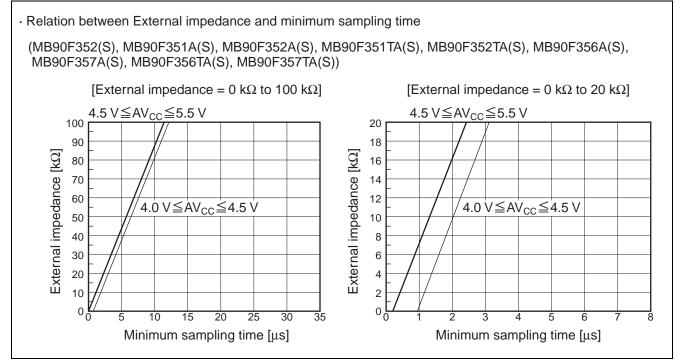
(10) Trigger Input Timing

 $\begin{array}{l} (MB90F352(S)/MB90F351(S): T_{A} = -40 \ ^{\circ}C \ to \ +105 \ ^{\circ}C, \ Vcc = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ Vss = AV_{SS} = 0 \ V) \\ (MB90F352(S)/MB90F351(S): T_{A} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C, \ Vcc = 5.0 \ V \pm 10\%, \ f_{CP} \leq 16 \ MHz, \ Vss = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_{A} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C, \ Vcc = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ Vss = AV_{SS} = 0 \ V) \\ \end{array}$

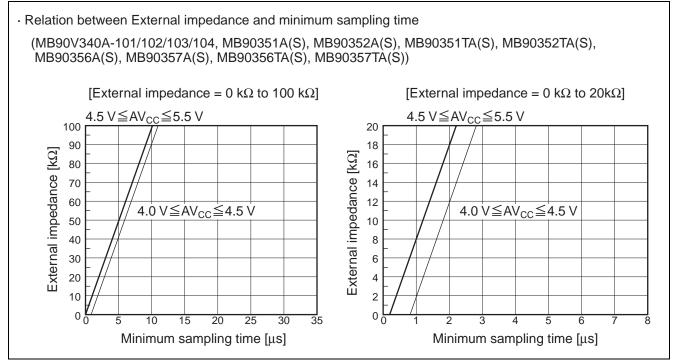
Parameter	Symbol	Pin	Condition	Val	ue	Unit	Remarks	
Farameter	Symbol	FIII	Condition	Min	Max	Unit		
Input pulse width	ttrgh ttrgl	INT8 to INT15, INT9R to INT11R, ADTG		5 tcp		ns		


(13) I²C Timing

 $(MB90F352(S)/MB90F351(S): T_A = -40 \ ^{\circ}C \ to +105 \ ^{\circ}C, \ V_{CC} = AV_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (MB90F352(S)/MB90F351(S): T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = AV_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 16 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = AV_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = AV_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = AV_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = AV_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = AV_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = AV_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = AV_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = AV_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V)$


Parameter	Symbol	Condition	Standar	d-mode	Fast-mode*4		Unit
Faiameter	Symbol	Condition	Min	Max	Min	Max	Unit
SCL clock frequency	fsc∟		0	100	0	400	kHz
Hold time for (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	t hdsta	DSTA		_	0.6	_	μs
"L" width of the SCL clock	tLOW		4.7		1.3	—	μs
"H" width of the SCL clock	t high		4.0		0.6	—	μs
Set-up time for a repeated START condition SCL $\uparrow \rightarrow$ SDA \downarrow	t susta	SUSTA $\mathbf{R} = 1.7 \ \mathbf{k}\Omega$,			0.6		μs
Data hold time SCL↓→SDA↓↑	t hddat	$C = 50 \text{ pF}^{*1}$	0	3.45* ²	0	0.9* ³	μs
Data set-up time SDA↓↑→SCL↑	t sudat		250*5	_	100*5	_	ns
Set-up time for STOP condition SCL↑→SDA↑	t susto		4.0	_	0.6	_	μs
Bus free time between STOP condition and START condition	t BUS		4.7		1.3		μs

*1 : R,C : Pull-up resistor and load capacitor of the SCL and SDA lines.


- *2 : The maximum thodat has only to be met if the device does not stretch the "L" width (tLow) of the SCL signal.
- *3 : A Fast-mode l²C -bus device can be used in a Standard-mode l²C-bus system, but the requirement $t_{SUDAT} \ge 250$ ns must then be met.
- *4 : For use at over 100 kHz, set the machine clock to at least 6 MHz.
- *5 : Refer to "• Note of SDA, SCL set-up time".

• Flash memory device

MASK ROM device

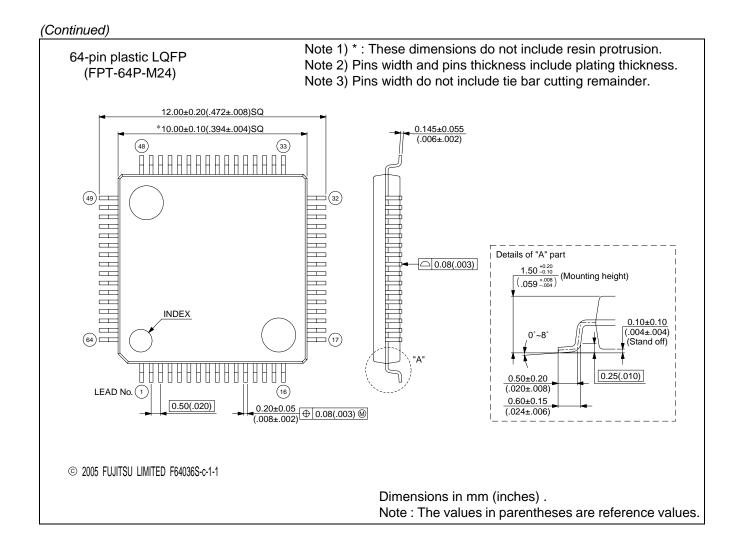
• About the error

Values of relative errors grow larger, as |AVRH - AVss| becomes smaller.

7. Flash Memory Program/Erase Characteristics

Flash Memory

Parameter	Conditions		Value		Unit	Remarks	
		Min	Тур	Max	Onit		
Sector erase time		_	1	15	S	Excludes programming prior to erasure	
Chip erase time	$\begin{array}{l} T_{\text{A}}=+25~^{\circ}C\\ V_{\text{CC}}=5.0~V \end{array}$	_	9	—	S	Excludes programming prior to erasure	
Word (16-bit width) programming time		_	16	3,600	μs	Except for the overhead time of the system level	
Program/Erase cycle		10,000	_		cycle		
Flash Memory Data Retention Time	Average T _A = +85 °C	20			year	*	


 * : This value comes from the technology qualification. (Using Arrhenius equation to translate high temperature measurements into normalized value at +85 °C)

Dual Operation Flash Memory

Parameter	Conditions		Value		Unit	Remarks	
	Conditions	Min	Тур	Max	Unit	Reliidiks	
Sector erase time (4 Kbytes sector)		_	0.2	0.5	S	Excludes programming prior to erasure	
Sector erase time (16 Kbytes sector)	T _A = +25 °C	_	0.5	7.5	S	Excludes programming prior to erasure	
Chip erase time	Vcc = 5.0 V	_	4.6		S	Excludes programming prior to erasure	
Word (16-bit width) programming time		_	64	3,600	μs	Except for the overhead time of the system level	
Program/Erase cycle		10,000			cycle		
Flash Memory Data Retention Time	Average T _A = +85 °C	20			year	*	

* : This value comes from the technology qualification.

(Using Arrhenius equation to translate high temperature measurements into normalized value at +85 °C)

