

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	24MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 15x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-QFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f352spfm-gs-121e1

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(Continued)

Part Number	MB90F351, MB90F352	MB90F351S, MB90F352S	MB90F351A, MB90F352A	MB90F351TA, MB90F352TA	MB90F351AS, MB90F352AS	MB90F351TAS, MB90F352TAS		
Parameter			MBOOL COEX					
			6 cha	innels				
16-bit Input Capture	Retains freerui interrupt.							
8/16-bit		8-bit r	nannels (16-bit) 8-bit reload o eload registers eload registers	counters \times 12 for L pulse wide	th \times 12			
Programmable Pulse Generator	8-bit prescaler Operation cloc	reload counters + 8-bit reload o k frequency : fs	s can be configu counter.	s/2², fsys/2³, fsy	bit reload coun /s/2 ⁴ or 128 μs(equency)			
			-	annel	,			
CAN Interface	Conforms to CAN Specification Version 2.0 Part A and B. Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID Supports multiple messages. Flexible configuration of acceptance filtering : Full bit compare/Full bit mask/Two partial bit masks Supports up to 1 Mbps.							
	8 channels							
External Interrupt			ng edge, startir ces (El²OS) and		vel input, extern	al interrupt,		
D/A converter			_	_				
I/O Ports	Virtually all external pins can be used as general purpose I/O port. All push-pull outputs Bit-wise settable as input/output or peripheral signal Settable as CMOS schmitt trigger/ automotive inputs TTL input level settable for external bus (only for external bus pin)							
Flash Memory	Supports automatic programming, Embedded Algorithm ^{TM*2} Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of erase cycles : 10,000 times Data retention time : 10 years Boot block configuration Erase can be performed on each block. Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash (MB90F352x only)							
Corresponding EVA name	MB90V340A- 102	MB90V340A- 101	MB90V3	40A-102	MB90V3	340A-101		

*1 : It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the Emulator hardware manual about details.

*2 : Embedded Algorithm is a trademark of Advanced Micro Devices Inc.

(Continued)

Part Number Parameter	MB90356A, MB90357A	MB90356TA, MB90357TA	MB90356AS, MB90357AS	MB90356TAS, MB90357TAS	MB90V340A- 103	MB90V340A- 104	
		4 cha	innels		8 cha	annels	
16-bit Output Compare				atches with out enerate an out		egisters.	
		6 cha	innels		8 cha	annels	
16-bit Input Capture	Retains freerui interrupt.	n timer value by	/ (rising edge, fa	alling edge or ris	sing & falling ed	ge), signals an	
8/16-bit Programmable Pulse Generator	8-bit re	8-bit reload of eload registers	/10 channels (8 counters × 12 for L pulse wid for H pulse wid	th \times 12	nels 8-bit reload (8-bit reload L pulse v 8-bit reload	6-bit)/16 chan- (8-bit) counters \times 16 registers for vidth \times 16 registers for width \times 16	
Generator	Supports 8-bit and 16-bit operation modes. A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler + 8-bit reload counter. Operation clock frequency : fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ or 128 μs@fosc = 4 MHz (fsys = Machine clock frequency, fosc = Oscillation clock frequency)						
		1 cha	annel		3 cha	annels	
CAN Interface	Conforms to CAN Specification Version 2.0 Part A and B. Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID Supports multiple messages. Flexible configuration of acceptance filtering : Full bit compare/Full bit mask/Two partial bit masks Supports up to 1 Mbps.						
		8 cha	innels		16 ch	annels	
External Interrupt		0 0	ng edge, startir ces (El²OS) and	ng up by H/L lev I DMA.	vel input, extern	al interrupt,	
D/A converter		-	_		2 cha	annels	
I/O Ports	Virtually all external pins can be used as general purpose I/O port. All push-pull outputs Bit-wise settable as input/output or peripheral module signal Settable as CMOS schmitt trigger/ automotive inputs TTL input level settable for external bus (only for external bus pin)						
Flash Memory				_			
Corresponding EVA name	MB90V3	40A-104	MB90V3	40A-103	_		

*: It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the Emulator hardware manual about details.

Pin No.		Circuit					
LQFP64*	Pin name	type	Function				
	P00 to P07		General purpose I/O ports. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.				
24 to 31	AD00 to AD07	G	Input/output pins of external address data bus lower 8 bits. This function is enabled when the external bus is enabled.				
	INT8 to INT15		External interrupt request input pins for INT8 to INT15				
	P10		General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.				
32	AD08	G	Input/output pin for external bus address data bus bit 8. This function is enabled when external bus is enabled.				
	TIN1		Event input pin for reload timer1				
	P11		General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.				
33	33 AD09		Input/output pin for external bus address data bus bit 9. This function is enabled when external bus is enabled.				
	TOT1		Output pin for reload timer1				
	P12		General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.				
34	AD10	Ν	Input/output pin for external bus address data bus bit 10. This function is enabled when external bus is enabled.				
SIN3			Serial data input pin for UART3				
	INT11R		External interrupt request input pin for INT11				
	P13		General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.				
35			Input/output pin for external bus address data bus bit 11. This function is enabled when external bus is enabled.				
	SOT3		Serial data output pin for UART3				
	P14		General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.				
36	AD12	G	Input/output pin for external bus address data bus bit 12. This function is enabled when external bus is enabled.				
	SCK3		Clock input/output pin for UART3				
37	P15	N	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.				
37 AD13			Input/output pin for external bus address data bus bit 13. This function is enabled when external bus is enabled.				
38	P16	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.				
30	AD14	9	Input/output pin for external bus address data bus bit 14. This function is enabled when external bus is enabled.				

HANDLING DEVICES

Special care is required for the following when handling the device :

- Preventing latch-up
- Treatment of unused pins
- Using external clock
- Precautions for when not using a sub clock signal
- Notes on during operation of PLL clock mode
- Power supply pins (Vcc/Vss)
- Pull-up/down resistors
- Crystal Oscillator Circuit
- Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs
- Connection of Unused Pins of A/D Converter
- Notes on Energization
- Stabilization of power supply voltage
- Initialization
- Port0 to port3 output during Power-on (External-bus mode)
- Notes on using CAN Function
- Flash security Function
- Correspondence with $T_{A}=~+$ 105 $^{\circ}C$ or more
- Low voltage/CPU operation detection reset circuit
- Internal CR oscillation circuit

1. Preventing latch-up

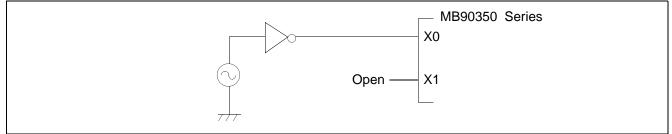
CMOS IC chips may suffer latch-up under the following conditions :

- A voltage higher than $V_{\mbox{\scriptsize CC}}$ or lower than $V_{\mbox{\scriptsize SS}}$ is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{CC} pin and V_{SS} pin.
- The AV cc power supply is applied before the V vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

In using the devices, take sufficient care to avoid exceeding maximum ratings.

For the same reason, also be careful not to let the analog power-supply voltage (AVcc, AVRH) exceed the digital power-supply voltage.


2. Handling unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefore they must be pulled up or pulled down through resistors. In this case those resistors should be more than 2 k Ω .

Unused I/O pins should be set to the output state and can be left open, or the input state with the above described connection.

3. Using external clock

To use external clock, drive the X0 pin and leave X1 pin open.

16. Flash security Function

The security byte is located in the area of the flash memory.

If protection code 01_{H} is written in the security byte, the flash memory is in the protected state by security. Therefore please do not write 01_{H} in this address if you do not use the security function. Please refer to following table for the address of the security byte.

	Flash memory size	Address for security bit
MB90F352(S) MB90F352A(S) MB90F352TA(S) MB90F357A(S) MB90F357TA(S)	Embedded 1 Mbit Flash Memory	FE0001н

17. Correspondence with $T_A = +105 \ ^\circ C$ or more

If used exceeding T_A = +105 °C, please contact Fujitsu sales representatives for reliability limitations.

18. Low voltage/CPU operation reset circuit

The low voltage detection reset circuit is a function that monitors power supply voltage in order to detect when a voltage drops below a given voltage level. When a low voltage condition is detected, an internal reset signal is generated.

The CPU operation detection reset circuit is a 20-bit counter that uses oscillation as a count clock and generates an internal reset signal if not cleared within a given time after startup.

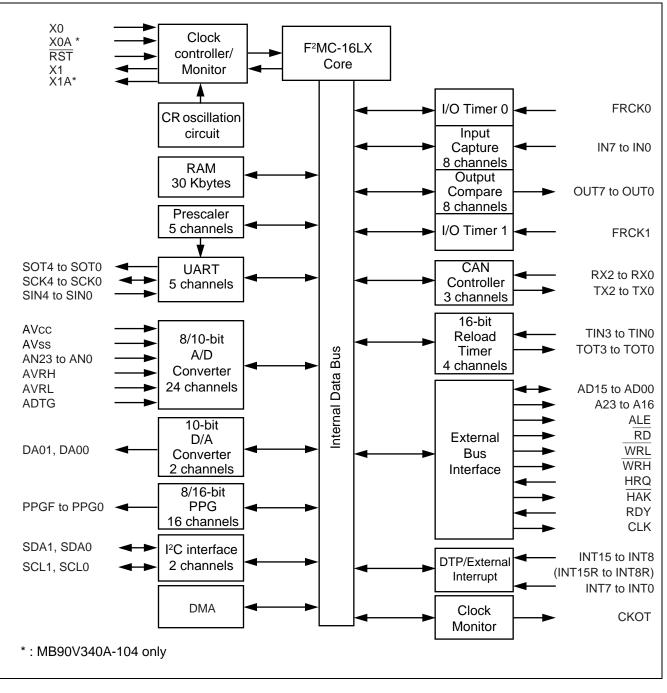
(1) Low voltage detection reset circuit

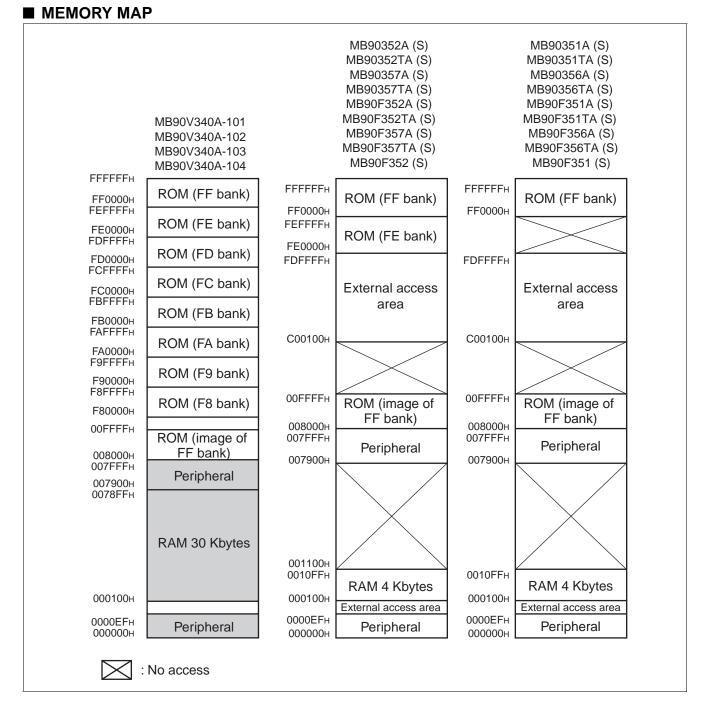
Detection voltage	÷
$4.0~\text{V}\pm0.3~\text{V}$	

When a low voltage condition is detected, the low voltage detection flag (LVRC : LVRF) is set to "1" and an internal reset signal is output.

Because the low voltage detection reset circuit continues to operate even in stop mode, detection of a low voltage condition generates an internal reset and releases stop mode.

During an internal RAM write cycle, low voltage reset is generated after the completion of writing. During the output of this internal reset, the reset output from the low voltage detection reset circuit is suppressed.


(2) CPU operation detection reset circuit


The CPU operation detection reset circuit is a counter that prevents program runaway. The counter starts automatically after a power-on reset, and must be continually cleared within a given time. If the given time interval elapses and the counter has not been cleared, a cause such as infinite program looping is assumed and an internal reset signal is generated. The internal reset generated from the CPU operation detection circuit has a width of 5 machine cycles.

Interval time				
220/Fc (approx. 262 ms*)				

 * : This value assumes the interval time at an oscillation clock frequency of 4 MHz. During recovery from standby mode, the detection period is the maximum interval plus 20 μs.

• MB90V340A-103/104

Note : The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referenced without using the far specification in the pointer declaration.

For example, an attempt to access 00C000H accesses the value at FFC000H in ROM.

The ROM area in bank FF exceeds 32 Kbytes, and its entire image cannot be shown in bank 00.

The image between FF8000 μ and FFFFF μ is visible in bank 00, while the image between FF0000 μ and FF7FFF μ is visible only in bank FF.

Address	Register	Abbrevia- tion	Access	Resource name	Initial value
7908 н	Reload Register L4	PRLL4	R/W		XXXXXXXXB
7909 н	Reload Register H4	PRLH4	R/W	16-bit Programmable	XXXXXXXXB
790А н	Reload Register L5	PRLL5	R/W	Pulse Generator 4/5	XXXXXXXXB
7 90Вн	Reload Register H5	PRLH5	R/W		XXXXXXXXB
790С н	Reload Register L6	PRLL6	R/W		XXXXXXXXB
790D н	Reload Register H6	PRLH6	R/W	16-bit Programmable Pulse	XXXXXXXXB
790Е н	Reload Register L7	PRLL7	R/W	Generator 6/7	XXXXXXXXB
790F н	Reload Register H7	PRLH7	R/W		XXXXXXXXB
7910 н	Reload Register L8	PRLL8	R/W		XXXXXXXAB
7911 н	Reload Register H8	PRLH8	R/W	16-bit Programmable	XXXXXXXXB
7912н	Reload Register L9	PRLL9	R/W	Pulse Generator 8/9	XXXXXXXXB
7913н	Reload Register H9	PRLH9	R/W		XXXXXXXXB
7914 н	Reload Register LA	PRLLA	R/W		XXXXXXXXB
7915 н	Reload Register HA	PRLHA	R/W	16-bit Programmable	XXXXXXXXB
7916 н	Reload Register LB	PRLLB	R/W	Pulse Generator A/B	XXXXXXXXB
7917 н	Reload Register HB	PRLHB	R/W		XXXXXXXXB
7918 н	Reload Register LC	PRLLC	R/W		XXXXXXXAB
7919 н	Reload Register HC	PRLHC	R/W	16-bit Programmable	XXXXXXXXB
791А н	Reload Register LD	PRLLD	R/W	Pulse Generator C/D	XXXXXXXXB
791B н	Reload Register HD	PRLHD	R/W		XXXXXXXXB
791C н	Reload Register LE	PRLLE	R/W		XXXXXXXXB
791D н	Reload Register HE	PRLHE	R/W	16-bit Programmable	XXXXXXXXB
791Е н	Reload Register LF	PRLLF	R/W	Pulse Generator E/F	XXXXXXXXB
791F⊦	Reload Register HF	PRLHF	R/W		XXXXXXXXB
7920 н	Input Capture Register 0	IPCP0	R		XXXXXXXXB
7921 н	Input Capture Register 0	IPCP0	R		XXXXXXXXB
7922 н	Input Capture Register 1	IPCP1	R	Input Capture 0/1	XXXXXXXXB
7923н	Input Capture Register 1	IPCP1	R		XXXXXXXXB
7924н to 7927н		Reserv	red	1	ł
7928 н	Input Capture Register 4	IPCP4	R		XXXXXXXXB
7929н	Input Capture Register 4	IPCP4	R		XXXXXXXXB
792А н	Input Capture Register 5	IPCP5	R	Input Capture 4/5	XXXXXXX
7 92Вн	Input Capture Register 5	IPCP5	R	1	XXXXXXXXB

Address	Register	Abbrevia- tion	Access	Resource name	Initial value
792С н	Input Capture Register 6	IPCP6	R		XXXXXXXX
792D н	Input Capture Register 6	IPCP6	R	Input Conturo 6/7	XXXXXXXX
792Е н	Input Capture Register 7	IPCP7	R	Input Capture 6/7	XXXXXXXX
792F н	Input Capture Register 7	IPCP7	R		XXXXXXXX
7930н to 7937н		Reserve	ed		
7938 н	Output Compare Register 4	OCCP4	R/W		XXXXXXXX
7939 н	Output Compare Register 4	OCCP4	R/W	Output Compore 4/5	XXXXXXXX
793Ан	Output Compare Register 5	OCCP5	R/W	Output Compare 4/5	XXXXXXXX
793В н	Output Compare Register 5	OCCP5	R/W		XXXXXXXX
793Сн	Output Compare Register 6	OCCP6	R/W		XXXXXXXX
793D н	Output Compare Register 6	OCCP6	R/W	Output Compore 6/7	XXXXXXXX
793Е н	Output Compare Register 7	OCCP7	R/W	Output Compare 6/7	XXXXXXXX
793F н	Output Compare Register 7	OCCP7	R/W		XXXXXXXX
7940 н	Timer Data Register 0	TCDT0	R/W		0000000в
7941 н	Timer Data Register 0	TCDT0	R/W	I/O Timer 0	0000000в
7942 н	Timer Control Status Register 0	TCCSL0	R/W		0000000в
7943н	Timer Control Status Register 0	TCCSH0	R/W		0XXXXXXX
7944 н	Timer Data Register 1	TCDT1	R/W		0000000в
7945 н	Timer Data Register 1	TCDT1	R/W	I/O Timer 1	0000000в
7946 н	Timer Control Status Register 1	TCCSL1	R/W		0000000в
7947 н	Timer Control Status Register 1	TCCSH1	R/W		0XXXXXXXB
7948 н	Timer Degister 0/Delead Degister 0	TMR0/	R/W	16-bit Reload	XXXXXXXX
7949 н	- Timer Register 0/Reload Register 0	TMRLR0	R/W	Timer 0	XXXXXXXX
794Ан	Timer Degister 1/Delead Degister 1	TMR1/	R/W	16-bit Reload	XXXXXXXX
794В н	- Timer Register 1/Reload Register 1	TMRLR1	R/W	Timer 1	XXXXXXXX
794С н	Timer Degister 2/Delead Degister 2	TMR2/	R/W	16-bit Reload	XXXXXXXX
794D н	- Timer Register 2/Reload Register 2	TMRLR2	R/W	Timer 2	XXXXXXXX
794Е н	Timer Degister 2/Delead Degister 2	TMR3/	R/W	16-bit Reload	XXXXXXXX
794F н	Timer Register 3/Reload Register 3	TMRLR3	R/W	Timer 3	XXXXXXXX

■ CAN CONTROLLERS

The CAN controller has the following features :

- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- · Supports transmitting of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
 - 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
 - Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 Kbps to 2 Mbps (when input clock is at 16 MHz)

Address	Persister	Abbreviation	Access	Initial Value	
CAN1	Register	Appreviation	Access		
000080н	Message buffer enable register	BVALR	R/W	0000000в	
000081н	message builer enable register	DVALIN	12/ 77	0000000в	
000082н	Transmit request register	TREQR	R/W	0000000в	
000083н	Transmit request register	INEQN	12/00	0000000в	
000084н	Transmit cancel register	TCANR	W	0000000в	
000085н	Hansmit cancer register	TOAIN	vv	0000000в	
000086н	Transmission complete register	TCR	R/W	0000000в	
000087н	Tansmission complete register	TOR	10/00	0000000в	
000088н	Receive complete register	Receive complete register RCR	R/W	0000000в	
000089н		Kok		0000000в	
00008Ан	Remote request receiving register	RRTRR	R/W	0000000в	
00008Вн	Remote request receiving register			0000000в	
00008Сн	Receive overrun register	ROVRR	R/W	0000000в	
00008Dн	Receive overfull register	NOVIN		0000000в	
00008Eн	Reception interrupt	RIER	R/W	0000000в	
00008Fн	enable register		10,00	0000000в	

List of Control Registers

Address	Dogistar		A	In Heal Malue	
CAN1	Register	Abbreviation	Access	Initial Value	
007С60н	DLC register 0	DLCR0	R/W	XXXXXXXXB	
007C61н	DLC register 0	DLCRU		ллллллв	
007С62н	DLC register 1	DLCR1	R/W	XXXXXXXXB	
007С63 н	DEC legister 1	DEGICI	10/00	ЛЛЛЛЛЛВ	
007C64н	DLC register 2	DLCR2	R/W	XXXXXXXX _B	
007С65 н	DEC legister 2	DEGIZ	10/00	ЛЛЛЛЛЛВ	
007С66 н	DLC register 3	DLCR3	R/W	XXXXXXXX _B	
007С67 н	DEC legister 5	DEGRO	10/00	ЛЛЛЛЛЛВ	
007С68 н	DLC register 4	DLCR4	R/W	XXXXXXXX _B	
007C69н	DLC Tegister 4	DLCR4		ллллллв	
007С6Ан	DLC register 5	DLCR5	R/W	VVVVVVV ₂	
007C6Bн	DLC register 5	DLORG		XXXXXXXXB	
007С6Сн	DLC register 6	DLCR6	R/W	XXXXXXXXB	
007C6Dн	DEC legister o	DEGRO	10/00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
007С6Ен	DLC register 7	gister 7 DLCR7 I	R/W	XXXXXXXX	
007C6Fн	DLC Tegister 7	DLCKI		ХХХХХХХХХВ	
007С70н	DLC register 8	DLCR8	R/W	XXXXXXXX _B	
007C71 н	DLC register o	DLCRO		ллллллв	
007С72н	DLC register 9	DLCR9	R/W	XXXXXXXXB	
007С73н	DLC register 9	DLONG	10/00	АЛАЛАЛАВ	
007C74н	DLC register 10	DLCR10	R/W	XXXXXXXXB	
007C75н	DEC legister 10	DECKIO		VVVVVVV R	
007С76н	DLC register 11	DLCR11	R/W	XXXXXXXX	
007С77 н	DLC register 11	DLOKTI		VVVVVVV R	
007С78н	DLC register 12	DLCR12	R/W	XXXXXXXXB	
007С79 н	DEC register 12	DEGITZ	10/00	лллллллв	
007С7Ан	DLC register 13	DLCR13	R/W	XXXXXXXXB	
007С7Вн		DEGRIS		AAAAAAAAB	
007С7Сн	DLC register 14	DLCR14	R/W	XXXXXXXXB	
007C7Dн	DEC TEGISIEL 14	DLGR14	FX/ V V	лллллллв	
007С7Ен	DLC register 15		R/W	YYYYYYYY ₂	
007C7Fн	DLC register 15	DLCR15	r./ VV	XXXXXXXXB	

List of Message Buffers (DLC Registers and Data Registers)

(Continued)

Interrupt cause	El ² OS corre- DMA ch		Interrupt vector		Interrupt control register	
	sponding	number	Number	Address	Number	Address
UART 2 RX	Y2	14	#39	FFFF60⊦	ICR14	0000BEH
UART 2 TX	Y1	15	#40	FFFF5CH		UUUUDEH
Flash Memory	N		#41	FFFF58⊦	ICR15	0000BFн
Delayed interrupt	N		#42	FFFF54⊦	10115	UUUUDFH

Y1 : Usable

Y2 : Usable, with EI2OS stop function

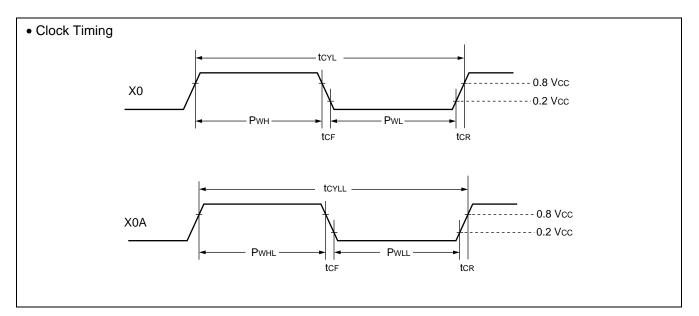
N : Unusable

Notes : • The peripheral resources sharing the ICR register have the same interrupt level.

- When two peripheral resources share the ICR register, only one can use El²OSat a time.
- When either of the two peripheral resources sharing the ICR register specifies EI²OS, the other one cannot use interrupts.

4. AC Characteristics

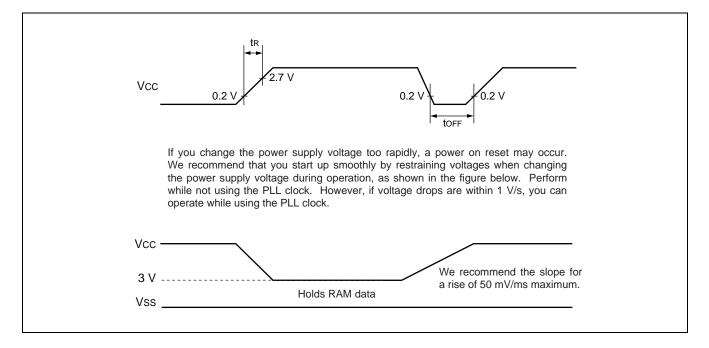
(1) Clock Timing


(MB90F352(S)/N	/IB90F351(Ś): T _A = −40	°C to +	125 °C, ∖	/cc = 5.0	$V \pm 10^{\circ}$	%, fcP ≤ 24 MHZ, Vss = AVss = 0 V %, fcP ≤ 16 MHZ, Vss = AVss = 0 V %, fcP ≤ 24 MHZ, Vss = AVss = 0 V	
			Value					
Parameter	Symbol	Pin	Min	Тур	Мах	Unit	Remarks	
			3		16	MHz	1/2 (at PLL stop) When using an oscillation circuit	
			4		16	MHz	1 multiplied PLL When using an oscillation circuit	
		X0, X1	4		12	MHz	2 multiplied PLL When using an oscillation circuit	
		λ0, λ1	4		8	MHz	3 multiplied PLL When using an oscillation circuit	
			4		6	MHz	4 multiplied PLL When using an oscillation circuit	
	fc				4	MHz	6 multiplied PLL When using an oscillation circuit	
Clock frequency		XO	3		24	MHz	1/2 (at PLL stop), When using an external clock	
			4		24	MHz	1 multiplied PLL When using an external clock	
			4		12	MHz	2 multiplied PLL When using an external clock	
			4		8	MHz	3 multiplied PLL When using an external clock	
			4	_	6	MHz	4 multiplied PLL When using an external clock	
					4	MHz	6 multiplied PLL When using an external clock	
	fc∟	X0A, X1A		32.768	100	kHz		
	tcy∟	X0, X1	62.5		333	ns	When using an oscillation circuit	
Clock cycle time	LOTL	X0	41.67	—	333	ns	When using an external clock	
	t CYLL	X0A, X1A	10	30.5		μs		
Input clock pulse width	Pwh, Pwl	X0	10			ns	Duty ratio is about 30% to 70%.	
	PWHL, PWLL	X0A	5	15.2		μs		
Input clock rise and fall time	tcr, tcr	X0			5	ns	When using an external clock	
							(Continued	

 $(MB90F352(S)/MB90F351(S): T_A = -40 \text{ °C to } +105 \text{ °C}, V_{CC} = 5.0 \text{ V} \pm 10\%, f_{CP} \le 24 \text{ MHz}, V_{SS} = AV_{SS} = 0 \text{ V})$

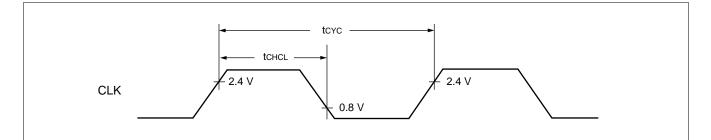
(Continued)

 $\begin{array}{l} (MB90F352(S)/MB90F351(S): T_{A} = -40 \ ^{\circ}C \ to +105 \ ^{\circ}C, \ V_{Cc} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (MB90F352(S)/MB90F351(S): T_{A} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{Cc} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 16 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_{A} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{Cc} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ \end{array}$


Parameter	Symbol	Pin		Value		Unit	Remarks
Farameter	Symbol	E III	Min	Тур	Мах	Unit	iteliidi kõ
			1.5		24	MHz	$\begin{array}{l} MB90F352/(S), \ MB90F351/(S)\\ When \ using \ main \ clock\\ (T_A \leq +105 \ ^\circ C) \end{array}$
Internal operating clock frequency (machine clock)	fср		1.5		16		$\begin{array}{l} MB90F352/(S),\ MB90F351/(S)\\ When using main clock\\ (T_{A}\leq +125\ ^{\circ}C) \end{array}$
			1.5		24	MHz	Device other than above, When using main clock
	fcpl			8.192	50	kHz	When using sub clock
Internal operating clock cycle time (machine clock)	tcp		41.67	66	666	ns	$\begin{array}{l} MB90F352/(S),\ MB90F351/(S)\\ When\ using\ main\ clock\\ (T_A \leq +105\ ^{\circ}C) \end{array}$
			62.5		000	115	$\begin{array}{l} MB90F352/(S),\ MB90F351/(S)\\ When\ using\ main\ clock\\ (T_A \leq +125\ ^{\circ}C) \end{array}$
			41.67		666	ns	Device other than above, When using main clock
	t CPL		20	122.1	—	μs	When using sub clock

(3) Power On Reset

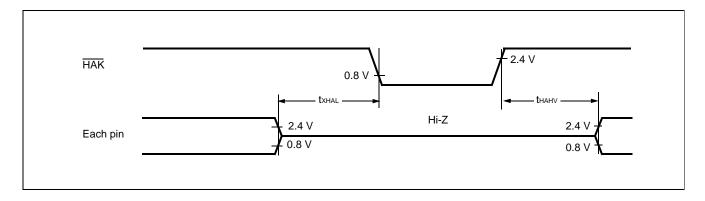
 $\begin{array}{l} (MB90F352(S)/MB90F351(S): \ T_{A} = -40 \ ^{\circ}C \ to \ +105 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (MB90F352(S)/MB90F351(S): \ T_{A} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 16 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: \ T_{A} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ \end{array}$

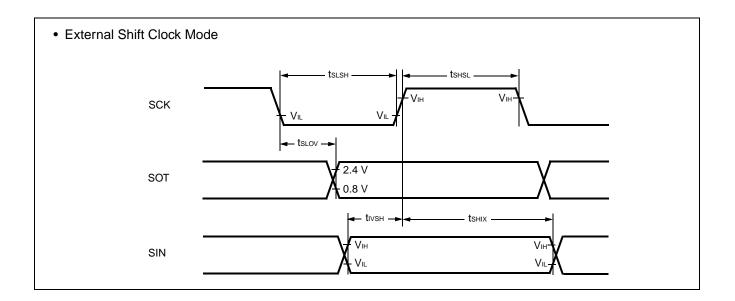

Parameter	Symbol Pin		Condition	Va	lue	Unit	Remarks	
Farameter	Symbol	EIII	Condition	Min	Max	Unit	iveingi ka	
Power on rise time	tR	Vcc		0.05	30	ms		
Power off time	toff	Vcc		1		ms	Due to repetitive operation	

(4) Clock Output Timing

 $(T_A = -40 \text{ °C to } +105 \text{ °C}, V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0.0 \text{ V}, f_{CP} \le 24 \text{ MHz})$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
Farameter	Symbol			Min	Max	Onit	itemarks
Cycle time		CLK	_	62.5	_	ns	fcp = 16 MHz
Cycle time tcyc	LCYC			41.76	_	ns	fcp = 24 MHz
$CLK \uparrow \rightarrow CLK \downarrow$ top	touo	CLK		20	_	ns	fcp = 16 MHz
	ICHCL	OLK		13		ns	fcp = 24 MHz

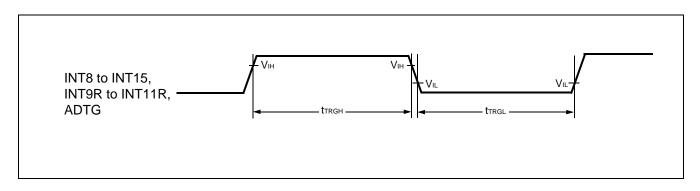



(8) Hold Timing

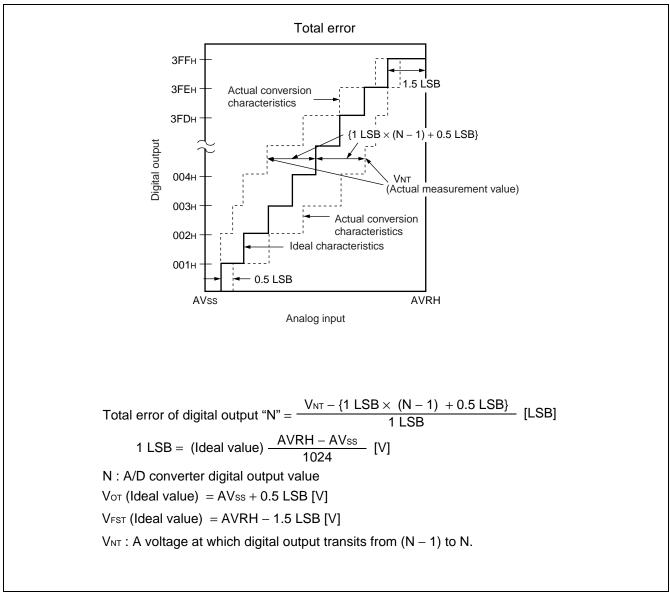
(T_A = -40°C to +105°C, V_{\rm CC} = 5.0 V \pm 10 %, V_{\rm SS} = 0.0 V, f_{\rm CP} \leq 24 MHz)

Parameter	Symbol Pin		Condition	Va	lue	Units	Remarks
Farameter	Symbol	ГШ	Condition	Min	Мах	Units	Remarks
Pin floating $\Rightarrow \overline{\text{HAK}} \downarrow$ time	t xhal	HAK		30	tcp	ns	
$\frac{\text{HAK}}{\text{time}} \uparrow \text{time} \Rightarrow \text{Pin valid}$	t hah∨	HAK		t CP	2 tcp	ns	

Note : There is more than 1 machine cycle from when HRQ pin reads in until the \overline{HAK} is changed.



(10) Trigger Input Timing


 $\begin{array}{l} (MB90F352(S)/MB90F351(S): T_{A} = -40 \ ^{\circ}C \ to \ +105 \ ^{\circ}C, \ Vcc = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ Vss = AV_{SS} = 0 \ V) \\ (MB90F352(S)/MB90F351(S): T_{A} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C, \ Vcc = 5.0 \ V \pm 10\%, \ f_{CP} \leq 16 \ MHz, \ Vss = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_{A} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C, \ Vcc = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ Vss = AV_{SS} = 0 \ V) \\ \end{array}$

Parameter	Symbol Pin		Condition	Val	ue	Unit	Remarks
Farameter	Symbol	FIII	Condition		Max	Unit	itema ka
Input pulse width	ttrgh ttrgl	INT8 to INT15, INT9R to INT11R, ADTG	_	5 tcp		ns	

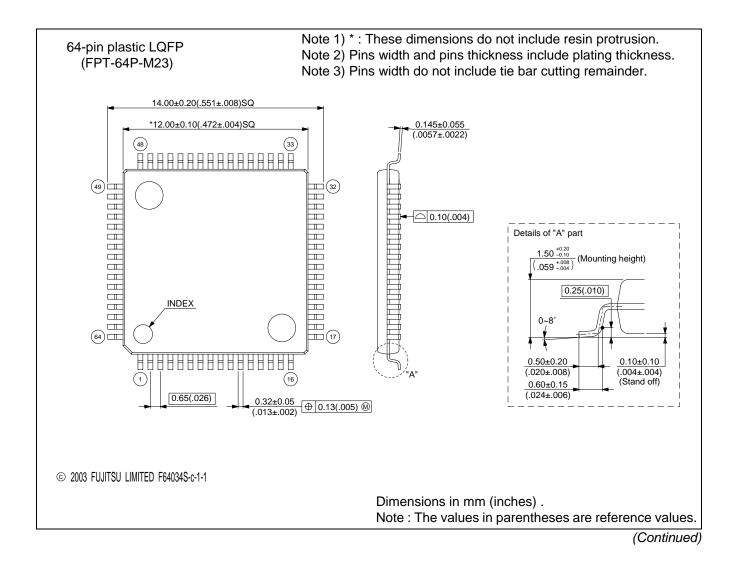
6. Definition of A/D Converter Terms

Resolution	: Analog variation that is recognized by an A/D converter.
Non linearity error	: Deviation between a line across zero-transition line ("00 0000 0000" $\leftarrow \rightarrow$ "00 0000 0001") and full-scale transition line ("11 1111 1110" $\leftarrow \rightarrow$ "11 1111 1111") and actual conversion characteristics.
Differential linearity error	: Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
Total error	: Difference between an actual value and a theoretical value. A total error includes zero tran- sition error, full-scale transition error, and linear error.

7. Flash Memory Program/Erase Characteristics

Flash Memory

Parameter	Conditions		Value		Unit	Remarks	
Falailletei	Conditions	Min	Тур	Max	Onit	Remarks	
Sector erase time		_	1	15	S	Excludes programming prior to erasure	
Chip erase time	$\begin{array}{l} T_{\text{A}}=+25 \ ^{\circ}\text{C} \\ V_{\text{CC}}=5.0 \ \text{V} \end{array}$	_	9	—	S	Excludes programming prior to erasure	
Word (16-bit width) programming time		_	16	3,600	μs	Except for the overhead time of the system level	
Program/Erase cycle		10,000	_		cycle		
Flash Memory Data Retention Time	Average T _A = +85 °C	20			year	*	


 * : This value comes from the technology qualification. (Using Arrhenius equation to translate high temperature measurements into normalized value at +85 °C)

Dual Operation Flash Memory

Parameter	Conditions		Value		Unit	Remarks	
raiaineter	Conditions	Min	Тур	Max	Onit	Reliidiks	
Sector erase time (4 Kbytes sector)		_	0.2	0.5	S	Excludes programming prior to erasure	
Sector erase time (16 Kbytes sector)	T _A = +25 °C	_	0.5	7.5	S	Excludes programming prior to erasure	
Chip erase time	Vcc = 5.0 V	_	4.6		S	Excludes programming prior to erasure	
Word (16-bit width) programming time		_	64	3,600	μs	Except for the overhead time of the system level	
Program/Erase cycle		10,000			cycle		
Flash Memory Data Retention Time	Average T _A = +85 °C	20			year	*	

* : This value comes from the technology qualification.

(Using Arrhenius equation to translate high temperature measurements into normalized value at +85 °C)

