

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	F ² MC-16LX
Core Size	16-Bit
Speed	24MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, WDT
Number of I/O	51
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 15x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-QFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb90f352spfm-gse1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(Continued)

Part Number	MB00E351	MB00E351S	MB00E351A	MB00E351TA	MB00E351AS				
Parameter	MB90F352	MB90F352S	MB90F352A	MB90F352TA	MB90F352AS	MB90F351TAS, MB90F352TAS			
		6 channels							
16-bit Input Capture	Retains freerui interrupt.	n timer value by	ι (rising edge, fa	Illing edge or ris	sing & falling ed	ge), signals an			
8/16-bit		6 cł 8-bit r 8-bit re	nannels (16-bit), 8-bit reload c eload registers eload registers	/10 channels (8 counters × 12 for L pulse widt for H pulse widt	B-bit) th $ imes$ 12 th $ imes$ 12				
Programmable Pulse Generator	Supports 8-bit A pair of 8-bit 8-bit prescaler Operation cloc (fsys = Machin	Supports 8-bit and 16-bit operation modes. A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler + 8-bit reload counter. Operation clock frequency : fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ or 128 μ s@fosc = 4 MHz							
		-	1 cha	annel					
CAN Interface	Conforms to CAN Specification Version 2.0 Part A and B. Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID Supports multiple messages. Flexible configuration of acceptance filtering : Full bit compare/Full bit mask/Two partial bit masks								
			8 cha	nnels					
External Interrupt	Can be used r extended intel	ising edge, falli ligent I/O servio	ng edge, startin ces (El²OS) and	ig up by H/L le∖ I DMA.	vel input, extern	al interrupt,			
D/A converter			_	_					
I/O Ports	Virtually all ext All push-pull o Bit-wise settab Settable as CM TTL input leve	/irtually all external pins can be used as general purpose I/O port. All push-pull outputs Bit-wise settable as input/output or peripheral signal Settable as CMOS schmitt trigger/ automotive inputs ITL input level settable for external bus (only for external bus pin)							
Flash Memory	Supports auto Write/Erase/Er A flag indicatir Number of era Data retention Boot block cor Erase can be p Block protection Flash Security	Supports automatic programming, Embedded Algorithm ^{™*2} Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of erase cycles : 10,000 times Data retention time : 10 years Boot block configuration Erase can be performed on each block. Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash (MB90F352x only)							
Corresponding EVA name	MB90V340A- 102	MB90V340A- 101	MB90V3	40A-102	MB90V3	40A-101			

*1: It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the Emulator hardware manual about details.

*2 : Embedded Algorithm is a trademark of Advanced Micro Devices Inc.

■ PRODUCT LINEUP 2

Part Number	MB90351A, MB90352A	MB90351TA, MB90352TA	MB90351AS, MB90352AS	MB90351TAS, MB90352TAS	MB90V340A- 101	MB90V340A- 102				
	On chin DLL o									
System clock	Minimum instr	uction executio	×1, ×2, ×3, ×4, n time : 42 ns (×6, 1/2 when P oscillation clock	$(4 \text{ MHz}, \text{PLL} \times)$	6)				
ROM	MASK ROM 64Kbytes : N 128Kbytes : N	IB90351A(S), N IB90352A(S), N	/IB90351TA(S) /IB90352TA(S)		Exte	ernal				
RAM		4 Kt	oytes		30 K	bytes				
Emulator-specific power supply*		_	_		Y	es				
Sub clock pin (X0A, X1A) (Max 100 kHz)	Y	es	Ν	lo	No	Yes				
Clock monitor function			Ν	lo						
Low voltage/CPU operation detection reset	No	Yes	No	Yes	Ν	lo				
Operating voltage range	3.5 V to 5.5 V : 4.0 V to 5.5 V 4.5 V to 5.5 V	at normal opera : at using A/D o : at using exter	ating (not using converter nal bus	A/D converter)	5 V ± 10%					
Operating temperature range		–40 °C to	o +125 °C		—					
Package		LQF	P-64		PGA-299					
		2 cha	innels		5 channels					
UART	Wide range of Special synch LIN functionali	baud rate settin ronous options ty working eithe	ngs using a deo for adapting to er as master or	dicated reload ti different synch slave LIN devid	imer ronous serial pr ce	otocols				
I ² C (400 Kbps)		1 cha	annel		2 cha	innels				
		15 cha	annels		24 ch	annels				
A/D Converter	10-bit or 8-bit Conversion tin	resolution ne : Min 3 μs in	cludes sample	time (per one c	channel)					
16-bit Reload Timer (4 channels)	Operation cloc Supports Exte	k frequency : fs rnal Event Cou	sys/2 ¹ , fsys/2 ³ , 1 nt function.	fsys/2 ⁵ (fsys = I	Machine clock f	requency)				
16-bit I/O Timer	I/O Timer 0 (cl I/O Timer 1 (cl	I/O Timer 0 co ICU 0/1/2/3 I/O Timer 1 co ICU 4/5/6/7	rresponds to 5, OCU 0/1/2/3. rresponds to 7, OCU 4/5/6/7.							
(2 channels)	Signals an interrupt when overflowing. Supports Timer Clear when a match with Output Compare (Channel 0, 4). Operation clock frequency : fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ , fsys/2 ⁵ , fsys/2 ⁶ , fsys/2 ⁷ (fsys = Machine clock frequency)									

Pin No.	Pin name	Circuit	Function
LQFP64*		type	
	P00 to P07		General purpose I/O ports. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
24 to 31	AD00 to AD07	G	Input/output pins of external address data bus lower 8 bits. This function is enabled when the external bus is enabled.
	INT8 to INT15		External interrupt request input pins for INT8 to INT15
	P10		General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
32	AD08	G	Input/output pin for external bus address data bus bit 8. This function is enabled when external bus is enabled.
	TIN1		Event input pin for reload timer1
	P11		General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
33	AD09 G		Input/output pin for external bus address data bus bit 9. This function is enabled when external bus is enabled.
	TOT1		Output pin for reload timer1
	P12		General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
34	AD10	Ν	Input/output pin for external bus address data bus bit 10. This function is enabled when external bus is enabled.
	SIN3		Serial data input pin for UART3
	INT11R		External interrupt request input pin for INT11
	P13		General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
35	AD11	G	Input/output pin for external bus address data bus bit 11. This function is enabled when external bus is enabled.
	SOT3		Serial data output pin for UART3
	P14		General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
36	AD12	G	Input/output pin for external bus address data bus bit 12. This function is enabled when external bus is enabled.
	SCK3		Clock input/output pin for UART3
27	P15	N	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
57	AD13	IN	Input/output pin for external bus address data bus bit 13. This function is enabled when external bus is enabled.
38	P16	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
50	AD14	9	Input/output pin for external bus address data bus bit 14. This function is enabled when external bus is enabled.

F CMOS level output (loc = 4 mA, loc = −4 mA) F F G F Pull-up resistor F Pull-up resistor F P Pull-up resistor F P Pull-up resistor F F CMOS level output (loc = 4 mA, loc = −4 mA) CMOS level output (loc = 4 mA, loc = −4 mA) CMOS level output (loc = 4 mA, loc = −4 mA) CMOS level output (loc = 4 mA, loc = −4 mA) CMOS hysteresis inputs studown function Pull-up resistor F Pull-up control F Pull-up resistor F Pull-up resistor F CMOS hysteresis inputs studown function Automotive inputs hysteresis inputs f Automotive inputs studown function P F H F P F P F P F F F P F P F P F P P P P P<	Туре	Circuit	Remarks
 G CMOS level output (lo = 4 mA, lot = -4 mA) CMOS hysteresis inputs (With the standby-time input shutdown function) Automotive inputs TTL input (With the standby-time input shutdown function) TTL input (With the standby-time input shutdown function) Programable pull-up resistor: approx. 50 kΩ CMOS level output (lo = 4 mA, lot = -4 mA) CMOS hysteresis inputs Automotive inputs TTL input (With the standby-time input shutdown function) Programable pull-up resistor: approx. 50 kΩ CMOS level output (lo = 3 mA, lot = -3 mA) CMOS hysteresis inputs (With the standby-time input shutdown function) Automotive inputs Standby control for input shutdown 	F	P-ch Pout P-ch Nout R W CMOS hysteresis inputs Automotive inputs Standby control for input shutdown	 CMOS level output (IoL = 4 mA, IoH = -4 mA) CMOS hysteresis inputs (With the standby-time input shutdown function) Automotive input (With the standby-time input shutdown function)
 H CMOS level output (loL = 3 mA, loH = -3 mA) CMOS hysteresis inputs (With the stand- by-time input shutdown function) Automotive inputs Standby control for input shutdown 	G	Pull-up control Pull-up control P-ch P-ch Pout P-ch Pout CMOS hysteresis inputs Automotive inputs TTL input Standby control for input shutdown	 CMOS level output (Io_L = 4 mA, Io_H = -4 mA) CMOS hysteresis inputs (With the standby-time input shutdown function) Automotive input (With the standby-time input shutdown function) TTL input (With the standby-time input shutdown function) Programmable pull-up resistor: approx. 50 kΩ
	Н	P-ch Pout N-ch Nout R M CMOS hysteresis inputs Automotive inputs Standby control for input shutdown	 CMOS level output (lo∟ = 3 mA, lo⊢ = -3 mA) CMOS hysteresis inputs (With the standby-time input shutdown function) Automotive input (With the standby-time input shutdown function)

Туре	Circuit	Remarks
I	Pout Pout N-ch Nout R CMOS hysteresis inputs Automotive inputs Standby control for input shutdown Analog input	 CMOS level output (IoL = 4 mA, IoH = -4 mA) CMOS hysteresis inputs (With the standby-time input shutdown function) Automotive input (With the standby-time input shutdown function) A/D analog input
К	P-ch N-ch	Power supply input protection circuit
L	P-ch N-ch 777 ANE AVR ANE	 A/D converter reference voltage power supply input pin, with the protection circuit Flash memory devices do not have a protection circuit against Vcc for pin AVRH.

HANDLING DEVICES

Special care is required for the following when handling the device :

- Preventing latch-up
- Treatment of unused pins
- Using external clock
- Precautions for when not using a sub clock signal
- Notes on during operation of PLL clock mode
- Power supply pins (Vcc/Vss)
- Pull-up/down resistors
- Crystal Oscillator Circuit
- Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs
- Connection of Unused Pins of A/D Converter
- Notes on Energization
- Stabilization of power supply voltage
- Initialization
- Port0 to port3 output during Power-on (External-bus mode)
- Notes on using CAN Function
- Flash security Function
- Correspondence with $T_{A}=~+$ 105 $^{\circ}C$ or more
- Low voltage/CPU operation detection reset circuit
- Internal CR oscillation circuit

1. Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions :

- A voltage higher than $V_{\mbox{\scriptsize CC}}$ or lower than $V_{\mbox{\scriptsize SS}}$ is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{CC} pin and V_{SS} pin.
- The AV cc power supply is applied before the V vc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

In using the devices, take sufficient care to avoid exceeding maximum ratings.

For the same reason, also be careful not to let the analog power-supply voltage (AVcc, AVRH) exceed the digital power-supply voltage.

2. Handling unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefore they must be pulled up or pulled down through resistors. In this case those resistors should be more than 2 k Ω .

Unused I/O pins should be set to the output state and can be left open, or the input state with the above described connection.

3. Using external clock

To use external clock, drive the X0 pin and leave X1 pin open.

Address	Register	Abbrevia- tion	Access	Resource name	Initial value				
САн	External Interrupt Enable Register 1	ENIR1	R/W		0000000в				
СВн	External Interrupt Source Register 1	EIRR1	R/W		XXXXXXXXB				
ССн	External Interrupt Level Register 1	ELVR1	R/W	External Interrupt 1	0000000в				
СDн	External Interrupt Level Register 1	ELVR1	R/W		0000000в				
СЕн	External Interrupt Source Select Register	EISSR	R/W		0000000в				
СГн	PLL/Sub clock Control register	PSCCR	W	PLL	XXXX0000b				
D0н	DMA Buffer Address Pointer L	BAPL	R/W		XXXXXXXXB				
D1н	DMA Buffer Address Pointer M	BAPM	R/W		XXXXXXXXB				
D 2н	DMA Buffer Address Pointer H	BAPH	R/W		XXXXXXXXB				
D3н	DMA Control Register	DMACS	R/W		XXXXXXXXB				
D4н	I/O Register Address Pointer L	IOAL	R/W	DIVIA	XXXXXXXXB				
D5н	I/O Register Address Pointer H	IOAH	R/W		XXXXXXXXB				
D 6н	Data Counter L	DCTL	R/W		XXXXXXXXB				
D7 н	Data Counter H	DCTH	R/W		XXXXXXXXB				
D8н	Serial Mode Register 2	SMR2	W,R/W		0000000в				
D 9н	Serial Control Register 2	SCR2	W,R/W		0000000в				
DAH	Reception/Transmission Data Register 2	RDR2/ TDR2	R/W		0000000в				
DBн	Serial Status Register 2	SSR2	R,R/W		00001000в				
DCн	Extended Communication Control Register 2	ECCR2	R,W, R/W	UARTZ	000000XXв				
DDн	Extended Status/Control Register 2	ESCR2	R/W		00000100в				
DEн	Baud Rate Generator Register 20	BGR20	R/W		0000000в				
DFH	Baud Rate Generator Register 21	BGR21	R/W		0000000в				
EOH to EFH		Reserve	əd						
F0н to FFн		External a	area						
7900н to 7907н	Reserved								

Address	Register	Abbrevia- tion	Access	Resource name	Initial value
7908н	Reload Register L4	PRLL4	R/W		XXXXXXXXB
7909н	Reload Register H4	PRLH4	R/W	16-bit Programmable	XXXXXXXXB
790Ан	Reload Register L5	PRLL5	R/W	Generator 4/5	XXXXXXXXB
790Вн	Reload Register H5	PRLH5	R/W		XXXXXXXXB
790Сн	Reload Register L6	PRLL6	R/W		XXXXXXXXB
790D н	Reload Register H6	PRLH6	R/W	16-bit Programmable	XXXXXXXXB
790Ен	Reload Register L7	PRLL7	R/W	Generator 6/7	XXXXXXXXB
790F н	Reload Register H7	PRLH7	R/W		XXXXXXXXB
7910н	Reload Register L8	PRLL8	R/W		XXXXXXXXB
7911 н	Reload Register H8	PRLH8	R/W	16-bit Programmable	XXXXXXXXB
7912н	Reload Register L9	PRLL9	R/W	Generator 8/9	XXXXXXXXB
7913н	Reload Register H9	PRLH9	R/W		XXXXXXXXB
7914н	Reload Register LA	PRLLA	R/W		XXXXXXXXB
7915н	Reload Register HA	PRLHA	R/W	16-bit Programmable	XXXXXXXXB
7916н	Reload Register LB	PRLLB	R/W	Generator A/B	XXXXXXXXB
7917 н	Reload Register HB	PRLHB	R/W		XXXXXXXXB
7918 н	Reload Register LC	PRLLC	R/W		XXXXXXXXB
7919 н	Reload Register HC	PRLHC	R/W	16-bit Programmable	XXXXXXXXB
791Ан	Reload Register LD	PRLLD	R/W	Generator C/D	XXXXXXXXB
791В н	Reload Register HD	PRLHD	R/W		XXXXXXXXB
791С н	Reload Register LE	PRLLE	R/W		XXXXXXXXB
791D н	Reload Register HE	PRLHE	R/W	16-bit Programmable	XXXXXXXXB
791E н	Reload Register LF	PRLLF	R/W	Generator E/F	XXXXXXXXB
791F н	Reload Register HF	PRLHF	R/W		XXXXXXXXB
7920н	Input Capture Register 0	IPCP0	R		XXXXXXXXB
7921н	Input Capture Register 0	IPCP0	R	Input Conturo 0/1	XXXXXXXXB
7922н	Input Capture Register 1	IPCP1	R		XXXXXXXAB
7923н	Input Capture Register 1	IPCP1	R		XXXXXXXXB
7924н to 7927н		Reserv	ed		
7928н	Input Capture Register 4	IPCP4	R		XXXXXXXXB
7929н	Input Capture Register 4	IPCP4	R	Input Conturo 4/5	XXXXXXXXB
792Ан	Input Capture Register 5	IPCP5	R	input Capture 4/5	XXXXXXXXB
792Вн	Input Capture Register 5	IPCP5	R		XXXXXXXXB

(Continued)

Address	Register	Abbrevia- tion	Access	Resource name	Initial value						
79С2 н	Setting Prohibited										
79С3н to 79DFн	Reserved										
79E0 н	Detect Address Setting Register 0	PADR0	R/W		XXXXXXXXB						
79E1 н	Detect Address Setting Register 0	PADR0	R/W		XXXXXXXXB						
79E2 н	Detect Address Setting Register 0	PADR0	R/W		XXXXXXXXB						
79ЕЗ н	Detect Address Setting Register 1	PADR1	R/W		XXXXXXXXB						
79E4 н	Detect Address Setting Register 1	PADR1	R/W	Address Match	XXXXXXXXB						
79E5 н	Detect Address Setting Register 1	PADR1	R/W	Detection of	XXXXXXXXB						
79E6 н	Detect Address Setting Register 2	PADR2	R/W		XXXXXXXXB						
79E7 н	Detect Address Setting Register 2	PADR2	R/W		XXXXXXXXB						
79E8 н	Detect Address Setting Register 2	PADR2	R/W		XXXXXXXXB						
79E9н to 79EFн	Reserved										
79F0 н	Detect Address Setting Register 3	PADR3	R/W		XXXXXXXXB						
79F1⊦	Detect Address Setting Register 3	PADR3	R/W		XXXXXXXXB						
79F2 н	Detect Address Setting Register 3	PADR3	R/W		XXXXXXXXB						
79F3 н	Detect Address Setting Register 4	PADR4	R/W	A delve e e Matele	XXXXXXXXB						
79F4 н	Detect Address Setting Register 4	PADR4	R/W	Detection 1	XXXXXXXXB						
79F5 н	Detect Address Setting Register 4	PADR4	R/W		XXXXXXXXB						
79F6 н	Detect Address Setting Register 5	PADR5	R/W		XXXXXXXXB						
79F7 н	Detect Address Setting Register 5	PADR5	R/W		XXXXXXXXB						
79F8 н	Detect Address Setting Register 5	PADR5	R/W		XXXXXXXXB						
79F9н to 7BFFн		Reserve	ed								
7C00н to 7CFFн	Reserved for CAN Int	erface 1. Refe	r to "∎ CAI	N CONTROLLERS"							
7D00н to 7DFFн	Reserved for CAN Int	erface 1. Refe	r to "∎ CAI	N CONTROLLERS"							
7E00н to 7FFFн		Reserve	ed								

Notes : • Initial value of "X" represents unknown value.

 Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results reading "X".

 $\begin{array}{l} (MB90F352(S)/MB90F351(S): T_{A} = -40 \ ^{\circ}C \ to +105 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (MB90F352(S)/MB90F351(S): T_{A} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 16 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_{A} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ \end{array}$

Paramotor	Sym-	Din	Condition	Value			Unit	Pomarke
Falameter	bol	ГШ			Тур	Max	Unit	Neina KS
Power supply current			$V_{cc} = 5.0 V$, Internal frequency: 8 kHz, During operating clock monitor function, At sub sleep $T_A = +25^{\circ}C$		60	200	μΑ	MB90F356A MB90F357A MB90356A MB90357A
		Vcc	$V_{CC} = 5.0 V,$ Internal CR oscillation/ 4 division, At sub sleep $T_A = +25^{\circ}C$		60	200	μΑ	MB90F356AS MB90F357AS MB90356AS MB90357AS
	ICCLS		$V_{CC} = 5.0 V$, Internal frequency: 8 kHz, During stopping clock monitor function, At sub sleep $T_A = +25^{\circ}C$		70	150	μΑ	MB90F351TA MB90F352TA MB90F356TA MB90F357TA MB90351TA MB90352TA MB90356TA MB90357TA
			$V_{cc} = 5.0 V$, Internal frequency: 8 kHz, During operating clock monitor function, At sub sleep $T_A = +25^{\circ}C$		110	300	μΑ	MB90F356TA MB90F357TA MB90356TA MB90357TA
			$V_{CC} = 5.0 V,$ Internal CR oscillation/ 4 division, At sub sleep $T_A = +25^{\circ}C$		110	300	μΑ	MB90F356TAS MB90F357TAS MB90356TAS MB90357TAS
	Ісст		Vcc = 5.0 V, Internal frequency: 8 kHz, During stopping clock monitor function, At watch mode $T_A = +25^{\circ}C$		10	35	μΑ	MB90F351 MB90F352 MB90F351A MB90F352A MB90F356A MB90F357A MB90351A MB90352A MB90356A MB90357A

(2) Reset Standby Input

 $(MB90F352(S)/MB90F351(S): T_A = -40 \ ^{\circ}C \ to +105 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (MB90F352(S)/MB90F351(S): T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 16 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: T_A = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \le 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \ V_{SS} = AV_{SS} = 0 \ V) \ V_{SS} = AV_{SS} = 0 \ V \ V_{SS} = AV_{SS} = 0 \ V_{SS} =$

Paramotor	Symbol	Din	Value	Unit	Pomarks	
Farameter	Symbol	ГШ	Min	Max	Unit	Remarks
Reset input time	trstl	RST	500	_	ns	Under normal operation
			Oscillation time of oscillator* + 100 μs		μs	In Stop mode, Sub Clock mode, Sub Sleep mode and Watch mode
			100		μs	In Main timer mode and PLL timer mode

* : Oscillation time of oscillator is the time that the amplitude reaches 90%.
 In the crystal oscillator, the oscillation time is between several ms to tens of ms. In FAR / ceramic oscillators, the oscillation time is between hundreds of μs to several ms. With an external clock, the oscillation time is 0 ms.

(5) Bus Timing (Read)

(T_A = -40°C to +105°C, V_{CC} = 5.0 V \pm 10 %, V_{SS} = 0.0 V, f_{CP} \leq 24 MHz)

Parameter	Sym-	Din	Condi-	Va	Value Min Max		Value Unit Min Max		Pomarke
Farameter	bol	E III	tion	Min					IVEIIIai KS
ALE pulse width	t lhll	ALE		tcp/2 - 10		ns			
Valid address \Rightarrow ALE \downarrow time	tavll	ALE, A21 to A16, AD15 to AD00		tcp/2 - 20		ns			
$ALE \downarrow \Rightarrow Address valid time$	t LLAX	ALE, AD15 to AD00	-	tcp/2 – 15		ns			
Valid address $\Rightarrow \overline{RD} \downarrow time$	tavrl	A21 toA16, AD15 to AD00, RD		tcp – 15		ns			
Valid address \Rightarrow Valid data input	tavdv	A21 to A16, AD15 to AD00			5 tcp/2 – 60	ns			
RD pulse width	t rlrh	RD		(n*+3/2) tcp - 20		ns			
$\overline{RD} \downarrow \Rightarrow Valid data input$	t rldv	RD, AD15 to AD00	-		(n*+3/2) tcp – 50	ns			
\overline{RD}^{\uparrow} \Rightarrow Data hold time	t RHDX	RD, AD15 to AD00	-	0		ns			
$\overline{RD} \uparrow \Rightarrow ALE \uparrow time$	t RHLH	RD, ALE		tcp/2 - 15		ns			
$\overline{RD} \uparrow \Rightarrow Address valid time$	t RHAX	RD, A21 to A16	-	tcp/2 - 10		ns			
Valid address \Rightarrow CLK \uparrow time	tavch	A21 to A16, AD15 to AD00, CLK		tcp/2 – 16		ns			
$\overline{RD} \downarrow \Rightarrow CLK \uparrow time$	t rlch	RD, CLK		tcp/2 - 15		ns			
$ALE \downarrow \Rightarrow \overline{RD} \downarrow time$	t llrl	ALE, RD		tcp/2 - 15		ns			

* : n: number of ready cycles

(6) Bus Timing (Write)

Value Parameter Symbol Pin Condition Unit Remarks Min Max A21 to A16, Valid address $\Rightarrow \overline{WR} \downarrow time$ AD15 to AD00, **t**avwl tcp-15 ns WR WR WR pulse width (n*+3/2)tcp-20 **t**wlwh ns ____ Valid data output $\Rightarrow \overline{WR} \uparrow$ AD15 to AD00, (n*+3/2)tcp - 20 t_{DVWH} ns WR time AD15 to AD00, $\overline{\mathsf{WR}} \uparrow \Rightarrow$ Data hold time 15 twhdx ____ ns WR A21 to A16, $\overline{WR} \uparrow \Rightarrow Address valid time$ tcp/2 - 10 **t**whax ns WR $\overline{\mathsf{WR}} \uparrow \Rightarrow \mathsf{ALE} \uparrow \mathsf{time}$ WR, ALE tcp/2 - 15 twhlh ____ ns $\overline{\mathsf{WR}} \downarrow \Rightarrow \mathsf{CLK} \uparrow \mathsf{time}$ WR, CLK **t**wlch tcp/2 - 15 ns ____

* : n: Number of ready cycles

 $(T_A = -40^{\circ}C \text{ to } +105^{\circ}C, V_{CC} = 5.0 \text{ V} \pm 10 \%, V_{SS} = 0.0 \text{ V}, f_{CP} \le 24 \text{ MHz})$

(7) Ready Input Timing

(.,	(T _A = -40° C to $+105^{\circ}$ C, V _{CC} = 5.0 V ± 10 %, V _{SS} = 0.0 V, f _{CP} \leq 24 MHz						
Paramotor	Sym- bol	Pin	Condition	Value		Unite	Bomarka
Farameter				Min	Мах	Units	Itellial KS
RDY set-up time	t ryhs	RDY	_	45	—	ns	fcp = 16 MHz
				32	—	ns	fcp = 24 MHz
RDY hold time	t ryhh	RDY		0		ns	

Note : If the RDY set-up time is insufficient, use the auto-ready function.

(9) UART 2/3

 $\begin{array}{l} (MB90F352(S)/MB90F351(S): \ T_{A} = -40 \ ^{\circ}C \ to +105 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (MB90F352(S)/MB90F351(S): \ T_{A} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 16 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: \ T_{A} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C, \ V_{CC} = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ V_{SS} = AV_{SS} = 0 \ V) \\ \end{array}$

Paramotor	Symbol	Din	Condition	Value		Unit	Pomarka
Farameter	Symbol	FIII	Condition	Min	Max	Unit	Rellia KS
Serial clock cycle time	t scyc	SCK2, SCK3		8 tcp*		ns	
$SCK \downarrow o SOT$ delay time	t slov	SCK2, SCK3, SOT2, SOT3	Internal shift clock	-80	+80	ns	
Valid SIN \rightarrow SCK \uparrow	tıvsн	SCK2, SCK3, SIN2, SIN3	are $C_{L} = 80 \text{ pF} + 1 \text{ TTL}$	100	_	ns	
SCK $\uparrow \rightarrow $ Valid SIN hold time	tsнıx	SCK2, SCK3, SIN2, SIN3		60	_	ns	
Serial clock "H" pulse width	t s∺s∟	SCK2, SCK3		4 t _{CP}		ns	
Serial clock "L" pulse width	t s∟sн	SCK2, SCK3		4 tcp		ns	
SCK $\downarrow ightarrow$ SOT delay time	t slov	SCK2, SCK3, SOT2, SOT3	External shift clock mode output pins		150	ns	
Valid SIN \rightarrow SCK \uparrow	tıvsн	SCK2, SCK3, SIN2, SIN3	are C∟ = 80 pF + 1 TTL	60	_	ns	
$SCK^{\uparrow} ightarrowValidSINholdtime$	tsнix	SCK2, SCK3, SIN2, SIN3		60		ns	

* : Refer to " (1) Clock timing" rating for tcp (internal operating clock cycle time).

Notes : • AC characteristic in CLK synchronized mode.

• CL is load capacity value of pins when testing.

(10) Trigger Input Timing

 $\begin{array}{l} (MB90F352(S)/MB90F351(S): T_{A} = -40 \ ^{\circ}C \ to \ +105 \ ^{\circ}C, \ Vcc = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ Vss = AV_{SS} = 0 \ V) \\ (MB90F352(S)/MB90F351(S): T_{A} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C, \ Vcc = 5.0 \ V \pm 10\%, \ f_{CP} \leq 16 \ MHz, \ Vss = AV_{SS} = 0 \ V) \\ (Device \ other \ than \ above: \ T_{A} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C, \ Vcc = 5.0 \ V \pm 10\%, \ f_{CP} \leq 24 \ MHz, \ Vss = AV_{SS} = 0 \ V) \\ \end{array}$

Paramotor	Symbol	Pin	Condition	Val	ue	Unit	Pomarke
Farameter Sym		FIII	Condition	Min	Мах	Unit	itema ka
Input pulse width	tтrgн tтrg∟	INT8 to INT15, INT9R to INT11R, ADTG		5 tcp		ns	

Notes on A/D Converter Section

• About the external impedance of the analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also if the sampling time cannot be sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

7. Flash Memory Program/Erase Characteristics

Flash Memory

Parameter	Conditions		Value		Unit	Remarks	
Falameter	Conditions	Min	Тур	Мах	Onit		
Sector erase time		_	1	15	S	Excludes programming prior to erasure	
Chip erase time	$\begin{array}{l} T_{\text{A}}=+25~^{\circ}C\\ V_{\text{CC}}=5.0~V \end{array}$	_	9	_	S	Excludes programming prior to erasure	
Word (16-bit width) programming time			16	3,600	μs	Except for the overhead time of the system level	
Program/Erase cycle	_	10,000			cycle		
Flash Memory Data Retention Time	Average T _A = +85 °C	20			year	*	

 * : This value comes from the technology qualification. (Using Arrhenius equation to translate high temperature measurements into normalized value at +85 °C)

Dual Operation Flash Memory

Paramotor	Conditions		Value		Unit	Remarks	
Farameter	conditions	Min	Тур	Max	Onic		
Sector erase time (4 Kbytes sector)		_	0.2	0.5	S	Excludes programming prior to erasure	
Sector erase time (16 Kbytes sector)	T _A = +25 °C		0.5	7.5	S	Excludes programming prior to erasure	
Chip erase time	Vcc = 5.0 V		4.6	_	S	Excludes programming prior to erasure	
Word (16-bit width) programming time		_	64	3,600	μs	Except for the overhead time of the system level	
Program/Erase cycle	—	10,000		_	cycle		
Flash Memory Data Retention Time	Average T _A = +85 °C	20			year	*	

* : This value comes from the technology qualification.

(Using Arrhenius equation to translate high temperature measurements into normalized value at +85 °C)

■ ORDERING INFORMATION

Part number	Package	Remarks			
MB90F351PFM		Flash memory products			
MB90F351SPFM	64-pin plastic LQFP	(64 Kbytes)			
MB90F352PFM	12mm □, 0.65mm pitch	Flash memory products (128 Kbytes)			
MB90F352SPFM					
MB90F351APMC					
MB90F351ASPMC					
MB90F351TAPMC					
MB90F351TASPMC	64-pin plastic LQFP	Dual operation			
MB90F356APMC	12mm [], 0.65mm pitch	(64 Kbytes)			
MB90F356ASPMC					
MB90F356TAPMC					
MB90F356TASPMC					
MB90F352APMC					
MB90F352ASPMC		Dual operation			
MB90F352TAPMC					
MB90F352TASPMC	64-pin plastic LQFP				
MB90F357APMC	12mm _, 0.65mm pitch	(128 Kbytes)			
MB90F357ASPMC					
MB90F357TAPMC					
MB90F357TASPMC					
MB90351APMC	64-pin plastic LQFP				
MB90351ASPMC		MASK ROM products (64 Kbytes)			
MB90351TAPMC					
MB90351TASPMC					
MB90356APMC	12mm □, 0.65mm pitch				
MB90356ASPMC					
MB90356TAPMC					
MB90356TASPMC					
MB90352APMC					
MB90352ASPMC					
MB90352TAPMC					
MB90352TASPMC	64-pin plastic LQFP FPT-64P-M23 12mm □, 0.65mm pitch	MASK ROM products			
MB90357APMC		(128 Kbytes)			
MB90357ASPMC]				
MB90357TAPMC]				
MB90357TASPMC					

