E. Toshiba Semiconductor and Storage - <u>TMP91FY42FG(C,JZ) Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	900/L1
Core Size	16-Bit
Speed	27MHz
Connectivity	EBI/EMI, I ² C, IrDA, UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	81
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/toshiba-semiconductor-and-storage/tmp91fy42fg-c-jz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(2) Reduced drivability for low-frequency oscillator

(Purpose)

Reduces noise and power for oscillator when a resonator is used.

(Block diagram)

(Setting method)

The drivability of the oscillator is reduced by writing 0 to the EMCCR0<DRVOSCL> register. By reset, <DRVOSCL> is initialized to 1.

(3) Single drive for high-frequency oscillator

(Purpose)

Not need twin-drive and protect mistake operation by inputted noise to X2 pin when the external oscillator is used.

Note: Do not write EMCCR0<EXTIN> = "1" when using external resonator.

Status of Received Interrupt		tus of Received Interrupt	Interrupt Enabled (Interrupt level) ≥ (Interrupt mask)			Interrupt Disabled (Interrupt level) < (Interrupt mask)		
HALT mode		HALT mode	IDLE2	IDLE1	STOP	IDLE2	IDLE1	STOP
	NMI		•	•	*1	-	-	-
		INTWD	♦	×	×	$\langle -$	-	-
се		INT0~INT4 (Note 1)	♦	•	*1	2	0	° ^{*1}
aran	INTRTC		♦	•	×		0	×
clea	ot	INT5~INT8	 ♦ (Note2) 	×	×	×	×	×
tate	errup	INTTA0~INTTA7	♦	×	×	$(7/\times)$	×	×
f halt st	Inte	INTTB00, INTTB01, INTTB10, INTTB11,INTTBOF0, INTTB0F1	♦	×	×	×	×	×
urce of		INTRX0~INTRX1, INTTX0~INTTX1	•	×	× ((×	×	×
So		INTSBI	•	×	(\mathbf{x})	× (X	×
		INTAD	•	×	$\langle \rangle$	× ×	\sim	×
		RESET		C	Initializ	e LSI.	$\langle \rangle$	

Table 3.3.5 Source of Halt State Clearance and Halt Clearance Operation

- ♦: After clearing the HALT mode, CPU starts interrupt processing.
- •: After clearing the HALT mode, CPU resumes executing starting from instruction following the HALT instruction.
- ×: It can not be used to release the HALT mode.
- -: The priority level (Interrupt request level) of non-maskable interrupts is fixed to 7, the highest priority level. There is not this combination type.
- *1: Releasing the HALT mode is executed after passing the warm-up time.
- Note1: When the HALT mode is cleared by an INTO interrupt of the level mode in the interrupt enabled status, hold level H until starting interrupt processing. If level L is set before holding level L, interrupt processing is correctly started.
- Note2: When the external interrupts INT5 to INT8 are used during IDLE2 mode, set to 1 for TB0RUN<I2TB0> and TB1RUN<I2TB1>.

(Example releasing IDLE1 mode)

An INTO interrupt clears the halt state when the device is in IDLE1 mode.

(6) Attention point

The instruction execution unit and the bus interface unit of this CPU operate independently. Therefore, immediately before an interrupt is generated, if the CPU fetches an instruction that clears the corresponding interrupt request flag, the CPU may execute the instruction that clears the interrupt request flag (Note) between accepting and reading the interrupt vector. In this case, the CPU reads the default vector 0008H and reads the interrupt vector address FFFF08H.

To avoid the avobe plogram, place instructions that clear interrupt request flags after a DI instruction. And in the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing and more than 1-instructions (e.g., "NOP" × 1 times).

In the case of changing the value of the interrupt mask register <IFF2:0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

In addition, take care as the following 2 circuits are exceptional and demand special attention.

INT0 Level Mode	In level mode INT0 is not an edge-triggered interrupt. Hence, in leve
	mode the interrupt request flip-flop for INTO does not function. The
	peripheral interrupt request passes through the S input of the flip-flop
	and becomes the Q output. If the interrupt input mode is change
	from edge mode to level mode, the interrupt request flag is cleared
	automatically.
	If the CPU enters the interrupt response sequence as a result of
	INTO going from 0 to 1, INTO must then be held at 1 until the
	interrupt response sequence has been completed. If INTO is set to
	level mode so as to release a halt state, INTO must be held at 1 from
	the time INTO changes from 0 to 1 until the halt state is released
	(Hence, it is necessary to ensure that input noise is not interpreter
	as a 0, causing INTO to revert to 0 before the halt state has been
	released.)
	When the mode changes from level mode to edge mode, interrup
	request flags which were set in level mode will not be cleared
	Interrupt request flags must be cleared using the following
	sequence.
\sim	DI
$\langle \rangle$	LD (IMC), 00H; Switches interrupt input mode from leve
	mode to edge mode.
	LD (INTCLR), 0AH; Clears interrupt request flag.
	NOP ; Wait EI instruction
NNTRX ()	(The) interrupt request flip-flop can only be cleared by a reset or by
	reading the serial channel receive buffer. It cannot be cleared by
	writing INTCLR register.

Note: The following instructions or pin input state changes are equivalent to instructions that clear the interrupt request flag.

INTO: Instructions which switch to level mode after an interrupt request has been generated in edge mode.

The pin input change from high to low after interrupt request has been generated in level mode. (H \rightarrow L)

INTRX: Instruction which read the receive buffer

		7	6	5	4	3	2	1	0
B0CS	Bit symbol	B0E		B0OM1	B0OM0	B0BUS	B0W2	B0W1	B0W0
(00C0H)	Read/Write	W	\backslash				V		
	After reset	0	\backslash	0	0	0	0	0	0
Read- modify- write instructions are prohibited.	Function	0: Disable 1: Enable		Chip select waveform s 00: For RO 01: 10: Do	t output selection M/SRAM on't care	Data bus width 0: 16 bits 1: 8 bits	Number of 000: 2 wait 001: 1 wait 010: (1 + N 011: 0 wait	waits 100: 101: 101: 10: 110: 111:	Reserved 3 waits 4 waits 8 waits
				11: J		<u> </u>			
	Bit symbol	B1E	/	B1OM1	B1OM0	B1BUS	B1W2	B1W1	B1W0
	Read/Write	W				V			
	After reset	0		0	0	0		0	0
Read- modify- write instructions are prohibited.	Function	0: Disable 1: Enable		Chip select waveform s 00: For RO 01: 10: 11: Dc	t output selection M/SRAM on't care	Data bus width 0: 16 bits 1: 8 bits	Number of 000: 2 wait 001: 1 wait 010: (1 + N 011: 0 wait	waits s 100: 101: I) waits 110: s 111:	Reserved 3 waits 4 waits 8 waits
B2CS	Bit symbol	B2E	B2M	B2OM1	B2OMQ	B2BUS	B2W2	B2W4	B2W0
(00C2H)	Read/Write					X	(()	\bigcirc	
	After reset	1	0	0	Q	✓ 0	0	$\sim /_0$	0
Read- modify- write instructions are prohibited.	Functions	0: Disable 1: Enable	CS2 area selection 0: 16-Mbyte area 1: CS area	Chip select waveform s 00: For RO 01: 10: Do	output selection M/SRAM on't care	Data bus width 0: 16 bits 1: 8 bits	Number of 000:2 wait 001: 1 wait 010: (1 + N 011: 0 wait	waits s 100: 101:) waits 110: s 111:	Reserved 3 waits 4 waits 8 waits
B3CS	Bit symbol	B3E	\searrow	7 B30M1	B3OM0	∧ B3BUS	B3W2	B3W1	B3W0
(00C3H)	Read/Write	W	\square	$\langle \rangle$		<u> </u>	V		
	After reset	0	\mathbb{N}	\mathcal{I}_0	0	$\geq \delta$	0	0	0
Read- modify- write instructions are prohibited.	Functions	0: Disable 1: Enable		Chip select waveform s 00: For RO 01: 10: DC 14:	t output selection M/SRAM	Data bus width 0: 16 bits 1: 8 bits	Number of 000: 2 wait 001: 1 wait 010: (1 + N 011: 0 wait	waits s 100: 101: waits 110: s 111:	Reserved 3 waits 4 waits 8 waits
BEXCS	Bit symbol			\mathcal{N}		BEXBUS	BEXW2	BEXW1	BEXW0
(00C7H)	Read/Write						V	V	
Read- modify- write instructions are prohibited.	After reset Functions					0 Data bus width 0: 16 bits 1: 8 bits	0 Number of 000: 2 wait 001: 1 wait 010: (1 + N 011: 0 wait	0 waits s 100: 101: 1) waits 110: s 111:	0 Reserved 3 waits 4 waits 8 waits
	\searrow		\rightarrow]
	Master enable 0 Enable 1 Disable	ebit ↓		Chip select of vaveform sel 00 For RO 01	utput ection M/SRAM		Number o (See 3.6	f address ar 2.2, (3) Wait o	ea waits :ontrol.)
	CS2 area sele	ection ←		10 Don't ca	are			s wiath selec	uon
Γ	0 16-Mbyte	area		11		Ţ	0 16-b	it data bus	
	1 Specified	address area	a				1 8-bit	data bus	

(4) Comparator (CP0)

The comparator compares the value in an up counter with the value set in a timer register. If they match, the up counter is cleared to zero and an interrupt signal (INTTA0 or INTTA1) is generated. If timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

(5) Timer flip-flop (TA1FF)

The timer flip-flop (TA1FF) is a flip-flop inverted by the match detects signal (8-bit comparator output) of each interval timer.

Whether inversion is enabled or disabled is determined by the setting of the bit TA1FFCR<TA1FFIE> in the timer flip-flop control register.

A reset clears the value of TA1FF1 to 0.

Writing 01 or 10 to TA1FFCR<TA1FFC1:0> sets TA1FF to 0 or 1. Writing 00 to these bits inverts the value of TA1FF. (This is known as software inversion.)

The TA1FF signal is output via the TA1OUT pin (Concurrent with P71). When this pin is used as the timer output, the timer flip-flop should be set beforehand using the port 7 function register P7CR, P7FC.

Table 3.7.3	PWM	Cycle
-------------	-----	-------

at fc = 33 MHz, fs = 32.768 kHz

Select Select			PWM Cycle								
System	System Prescaler		2 ⁶		27			2 ⁸			
<sysck></sysck>	<prck1:0></prck1:0>	CGLARZ.02	φT1	φ T 4	φT16	φT1	φT4	φT16	φT1	φT4	φT16
1 (fs)		XXX	15.6 ms	62.5 ms	250 ms	31.3 ms	125.0 ms	500 ms	62.5 ms	250ms	1000 ms
	00 (f _{FPH})	000 (fc)	19.0 μs	75.9 μs	303.4 μs	37.9 μs	151.7 μs	606.8 µs	75.9 μs	303.4 μs	1311 μs
		001 (fc/2)	37.9 μs	151.7 μs	606.8 μs	75.9 μs	303.4 μs	1213.6 μs	151.7 μs	606.8 μs	2621 μs
		010 (fc/4)	75.9 μs	303.4 μs	1213.6 μs	151.7 μs	606.8 μ s	2427.3 μ s	-303.4 μs	1213.6 μs	5243 μs
0 (fc)		011 (fc/8)	151.7 μs	606.8 μs	2427.3 μs	303.4 µs∕	1213.6 µş	4854.5 µs	606.8 μs	2427.3 μs	9709.0 μs
		100 (fc/16)	303.4 μs	1213.6 μs	4854.5 μs	606.8 μs	2427.3 µs	9709.0 µs	1213.6 μs	4854.5 μs	19418 μs
	10 (fc/16 clock)	xxx	303.4 μs	1213.6 μs	4854.5 μs	606.8 μs	2427.3 µS	9709.0 µs	1213.6 μs	4854.5 μs	19418 μs

XXX: Don't care

(5) Settings for each mode

Table 3.7.4 shows the SFR settings for each mode.

Register Name		TAON	NOD		TA1FFCR
<bit symbol=""></bit>	<ta01m1:0></ta01m1:0>	<pwm01:00></pwm01:00>	<ta1clk1:0></ta1clk1:0>	<ta0clk1:0></ta0clk1:0>	TA1FFIS
Function	Timer Mode		Upper Timer Input Clock	Lower Timer Input Clock	Timer F/F Invert Signal Select
8-bit timer × 2 channels	00		Lower timer match	External clock ∳T1, ∳T4, ∳T16 (00, 01, 10, 11)	0: Lower timer output 1: Upper timer output
16-bit timer mode	01	<u> </u>		External clock φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit PPG × 1 channel		-		External clock φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit PWM × 1 channel	T.	$\begin{array}{c} 2^{6}, 2^{7}, 2^{8} \\ (01, 10, 11) \end{array}$	-	External clock φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit Timer × 1 channel	J 11	\sim	φT1, φT16, φT256 (01, 10, 11)	_	Output disabled
-: Don't care					

				>
Table 271	Timor	Mada	Cotting	Dogistore
1able 3.7.4	Inner	INIQUE	Setting	Registers
		1 ($\sim \sim 0$	

(6) Comparators (CP10 and CP11, CP12 and CP13)

CP0 and CP1 are 16-bit comparators which compare the value in the up counter UC0 value with the value set of TB0RG0H/L or TB0RG1H/L respectively, in order to detect a match. If a match is detected, the comparators generate an interrupt (INTTB00 or INTTB01 respectively).

(7) Timer flip-flops (TB0FF0 and TB0FF1)

These flip-flops are inverted by the match detect signals from the comparators and the latch signals to the capture registers. Inversion can be enabled and disabled for each element using TB0FFCR<TB0C1T1, TB0C0T1, TB0E1T1, TB0E0T1>.

After a reset, the value of TB0FF0 and TB0FF1 is undefined. If "00" is written to TB0FFCR<TB0FF0C1:0> or <TB0FF1C1:0>, TB0FF0 or TB0FF1 will be inverted. If "01" is written to the flip-flops control registers, the value of TB0FF0 and TB0FF1 will be set to "1". If "10" is written to the flip-flops control registers, the value of TB0FF0 and TB0FF0 and TB0FF1 will be cleared to "0".

The values of TB0FF0 and TB0FF1 can be output to the timer output pins TB0OUT0 (which is shared with P82), TB0OUT1 (which is shared with P83). Timer output should be specified by using the port 8 function register P8FC and port 8 control register P8CR.

		7	6	5	4	3	2	1	0
TB0FFCR	Bit symbol	TB0FF1C1	TB0FF1C0	TB0C1T1	TB0C0T1	TB0E1T1	TB0E0T1	TB0FF0C1	TB0FF0C0
(0183H)	Read/Write	W	*		R/	W		W	/*
	After reset	1	1	0	0	0	0	1	1
Read-Modify	Function	TB0FF1 cor	ntrol	TB0FF0 inv	ersion trigge	r		TB0FF0 Co	ntrol
instruction is		00: Invert		0: Trigger o	lisable		(00: Invert	
prohibited		01: Set		1: Trigger e	enable		(01: Set	
		10: Clear		Invert when	Invert when	Invert when	Invert when	10: Clear	
		11: Don't ca	re	the UC10	the UC10	the UC10 🔿	the UC10	$\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \right)$	re
		* Always re	ad as "11".	value is	value is	matches	match with	* Always re	ad as "11".
				TB0CP1H/L.	TB0CP0H/L.	TB0RG1H/L.			
							$\langle \nabla \rangle$		
							\rightarrow	2(
					└→ Timer	Flip-Flop (T	B0FF0) contr	ol	\geq
					00	(Invert to T	B0FF0 (Softv	ware inversio	n)
					01	Set TB0FF	=0 to "1".		()
					(10	Clear TB0	FF0 to "0".	71	//
					11	Don't care	(C	\sim	
						sion trigger of	f TB0FF0 wh	en the UC10	match with
					TROK	GUH/L			
						Trigger as			
				4(ion trigger of	TROFED wh	(bon the UC10 match with	
					TBOR	G1H/L G1H/L	I ABOFFO WI		
					0	Trigger dis	able (Disable	e inversion)	
				$\sim \mathbb{P}$	1	Trigger en	able (Enable	inversion)	
				\sim	→ Invers loade	sion trigger of d in to TB0C	f TB0FF0 Wł P0H/L	nen the UC10) value is
					0	Trigger dis	able (Disable	e inversion)	
			$((// \uparrow)$		$\overline{\mathcal{A}}$	Trigger en	able (Enable	inversion)	
		\square				sion trigger of d in to TB0C	f TB0FF0 Wł P1H/L	nen the UC10) value is
		<		\sim		Trigger dis	able (Disable	e inversion)	
					1	Trigger en	able (Enable	inversion)	
			\geq	$\backslash \square$		•			
	\sim	>							
	$\sum_{i=1}^{n}$	\searrow	Fi	gure 3.8.6	Register	for TMRB			
~)	\langle						

TMRB0 Flip-Flop Control Register

c. Transmission and receiving (Full duplex mode)

When the full duplex mode is used, set the level of Receive Interrupt to 0 and set enable the interrupt level (1 to 6) to the transfer interrupt. In the transfer interrupt program, The receiving operation should be done like the above example before setting the next transfer data.

Example: Channel 0, SCLK output Baud rate = 9600 bps fc = 14.7456 MHz	t Sustan decty, High transport (fe)
* CIUCK State	Clock gear: 1 (fc) Prescaler clock: fFPH
Main routine 7 6 5 4 3 2 1 INTES0 - 0 0 1 - 0 0 P9CR - - - - 1 0 P9FC X X - X - 1 X SCOMOD0 - - - 0 0 - SCOMOD1 1 1 X X X X SCOCR - - - - 0 BR0CR 0 1 1 0 0 1 SCOMOD0 - 1 - - - - SCOBUF * <th> Set the INTTX0 level to 1. Set the INTRX0 level to 0. Set P90, P91 and P92 to function as the TXD0, RXD0 and SCLK0 pins respectively. Select I/O interface mode. Select full duplex mode. SCLK output, transmit on negative edge, receive on positive edge Baud rate = 9600 bps Enable receiving * Set the transmit data and start. Read the receiving buffer. Set the next transmit data. </th>	 Set the INTTX0 level to 1. Set the INTRX0 level to 0. Set P90, P91 and P92 to function as the TXD0, RXD0 and SCLK0 pins respectively. Select I/O interface mode. Select full duplex mode. SCLK output, transmit on negative edge, receive on positive edge Baud rate = 9600 bps Enable receiving * Set the transmit data and start. Read the receiving buffer. Set the next transmit data.

3.10.6 Data Transfer in I²C Bus Mode

(1) Device initialization

Set the SBI0BR1<P4EN>, SBI0CR1<ACK, SCK2:0>, Set SBI0BR1 to 1 and clear bits 7 to 5 and 3 in the SBI0CR1 to 0.

Set a slave address $\langle SA6:0 \rangle$ and the $\langle ALS \rangle (\langle ALS \rangle = 0$ when an addressing format) to the I2C0AR.

For specifying the default setting to a slave receiver mode, clear 0 to the <MST, TRX, BB> and set 1 to the <PIN>, 10 to the <SBIM1:0>.

- (2) Start condition and slave address generation
 - a. Master mode

In the master mode, the start condition and the slave address are generated as follows.

Check a bus free status (when $\langle BB \rangle \neq 0$).

Set the SBI0CR1<ACK> to 1 (Acknowledge mode) and specify a slave address and a direction bit to be transmitted to the SBI0DBR.

When SBIOCR2 < BB > = 0, the start condition are generated by writing 1111 to SBIOCR2 < MST, TRX, BB, PIN>. Subsequently to the start condition, nine clocks are output from the SCL pin. While eight clocks are output, the slave address and the direction bit which are set to the SBIODBR. At the 9th clock, the SDA line is released and the acknowledge signal is received from the slave device.

An INTSBI interrupt request occurs at the falling edge of the 9th clock. The <PIN> is cleared to 0. In the master mode, the SCL pin is pulled down to the low level while <PIN> is 0. When an interrupt request occurs, the <TRX> is changed according to the direction bit only when an acknowledge signal is returned from the slave device.

b. Slave mode

In the slave mode, the start condition and the slave address are received.

After the start condition is received from the master device, while eight clocks are output from the SCL pin, the slave address and the direction bit which are output from the master device are received.

When a GENERAL CALL or the same address as the slave address set in I2COAR is received, the SDA line is pulled down to the low level at the 9th clock, and the acknowledge signal is output.

An INTSBI interrupt request occurs on the falling edge of the 9th clock. The $\langle PIN \rangle$ is cleared to 0. In slave mode the SCL line is pulled down to the low level while the $\langle PIN \rangle \neq 0$.

Figure 3.10.13 Start Condition Generation and Slave Address Transfer

When the <TRX> is 0 (Receiver mode)

When the next transmitted data is other than 8 bits, set <BC2:0> <ACK> and read the received data from SBI0DBR to release the SCL line (data which is read immediately after a slave address is sent is undefined). After the data is read, <PIN> becomes 1. Serial clock pulse for transferring new 1 word of data is defined SCL and outputs "L" level from SDA pin with acknowledge timing.

An INTSBI interrupt request then occurs and the <PIN> becomes 0, Then the TMP91FY42F pulls down the SCL pin to the low level. The TMP91FY42 outputs a clock pulse for 1 word of data transfer and the acknowledge signal each time that received data is read from the SBI0DBR.

In order to terminate the transmission of data to a transmitter, clear $\langle ACK \rangle$ to 0 before reading data which is 1 word before the last data to be received. The last data word does not generate a clock pulse as the acknowledge signal. After the data has been transmitted and an interrupt request has been generated, set BC $\langle 2:0 \rangle$ to 001 and read the data. The TMP91FY42 generates a clock pulse for a 1-bit data transfer. Since the master device is a receiver, the SDA line on the bus remains high. The transmitter interprets the high signal as an ACK signal. The receiver indicates to the transmitter that data transfer is complete.

After the one data bit has been received and an interrupt request been generated, the TMP91FY42 generates a stop condition (See Section 3.10.6 (4)) and terminates data transfer.

Figure 3.10.16 Termination of Data Transfer in Master Receiver Mode

(4) Stop condition generation

When SBI0SR < BB > = 1, the sequence for generating a stop condition can be initiated by writing 1 to SBI0CR2 < MST, TRX, PIN > and 0 to SBI0CR2 < BB >. Do not modify the contents of SBI0CR2 < MST, TRX, PIN, BB > until a stop condition has been generated on the bus. When the bus's SCL line has been pulled low by another device, the TMP91FY42 generates a stop condition when the other device has released the SCL line.

When SBI0CR2<MST, TRX, PIN> are written 1 and (BB> is written 0, <BB> changes to 0 by internal SCL changes to 1, without waiting stop condition.

To check whether SCL and SDA pin are 1 by sensing their ports is needed to detect bus free condition.

3.13 Special timer for CLOCK

The TMP91FY42 includes a timer that is used for a clock operation.

An interrupt (INTRTC) can be generated each 0.0625 [s] or 0.125 [s] or 0.25 [s] or 0.50 [s] by using a low frequency clock of 32.768 kHz. A clock function can be easily used.

Special timer for CLOCK can operate in all modes in which a low-frequency oscillation is operated.

In addition, INTRTC can return from each standby mode except STOP mode.

The Special timer for CLOCK is controlled by the Special timer for CLOCK control register (RTCCR) as shown in .

Figure 3.13.2 Special timer for CLOCK Control Register

	Transfer Byte Number	Transfer Data from Controller to Device	Baud Rate	Transfer Data from Device to Controller
Boot ROM	1st byte	Baud rate setting UART 86H	Desired baud rate (Note 1)	-
	2nd byte			ACK response to baud rate setting Normal (baud rate OK) • UART 86H (If the desired baud rate cannot be set, operation is terminated.)
	3rd byte	Operation command data (10H)		
	4th byte			ACK response to operation command (Note 2) Normal 10H Error x1H Protection applied (Note 4) x6H Communications error x8H
	5th byte	Password data (12 bytes)	$(7/ \wedge$	
	to		$\langle \vee O \rangle$	
	16th byte		\sim	
	17th byte	CHECKSUM value for 5th to 16th bytes		
	18th byte		\rightarrow	ACK response to CHECKSUM value (Note 2) Normal 10H Error 11H Communications error 18H
	19th byte	RAM storage start address 31 to 24 (Note 3)		
	20th byte	RAM storage start address 23 to 16 (Note 3)		_
	21st byte	RAM storage start address 15 to 8 (Note 3)		
	22nd byte	RAM storage start address 7 to 0 (Note 3)		
	23rd byte	RAM storage byte count 15 to 8 (Note 3)		\sim –
	24th byte	RAM storage byte count 7 to 0 (Note 3)	$\langle \langle \rangle$	
	25th byte	CHECKSUM value for 19th to 24th bytes (Note 3)	$\langle \rangle$	
	26th byte		\rangle	ACK response to CHECKSUM value (Note 2)Normal10HError11HCommunications error18H
	27th byte to m'th byte	RAM storage data		—
	(m±1)th byte	CHECKSUM value for 27th to m'th hytos		_
	(m+2)th byte			ACK response to CHECKSUM value (Note 2)
\langle				Normal 10H Error 11H Communications error 18H
RAM	(m+3)th byte	$((\land ((\downarrow))))$		Jump to RAM storage start address
				samp to rain otorago start addroso

Table 3.14.8 Transfer Format of Single Boot Program [RAM Transfer]

Note 1: For the desired baud rate setting, see Table 3.14.6.

Note 2: After sending an error response, the device waits for operation command data (3rd byte).

Note 3: The data to be transferred in the 19th to 25th bytes should be programmed within the RAM address range of 001000H to 004DFFH (15.8 Kbytes).

Note 4: When read protection or write protection is applied, the device aborts the received operation command and waits for the next operation command data (3rd byte).

3.14.4.16 Password

When the RAM Transfer command (10H) or the Flash Memory Protect Set command (60H) is received as operation command data, password verification is performed. First, the device echoes back the operation command data (10H to 60H) and checks the data (12 bytes) in the password area (addresses 04FEF4H to 04FEFFH).

Then, the device verifies the password data received in the 5th to 16th bytes against the data in the password area as shown in Table 3.14.22.

Unless all the 12 bytes are verified correctly, a password error will occur.

A password error will also occur if all the 12 bytes of password data contain the same value. Only exception is when all the 12 bytes are "FFH" and verified correctly and the reset vector area (addresses 04FF00H to 04FF02H) is all "FFH". In this case, a blank device will be assumed and no password error will occur.

If a password error has occurred, the device returns the ACK response data for password error in the 18th byte.

Data to be verified against
Data at address 04FEF4H
Data at address 04FEF5H
Data at address 04FEF6H
Data at address 04FEF7H
Data at address 04FEF8H
Data at address 04FEF9H
Data at address 04FEFAH
Data at address 04FEFBH
Data at address 04FEFCH
Data at address 04FEFDH
Data at address04FEFEH
Data at address 04FEFFH

Table 3.14.22 Password Verification Table 7

Example of data that cannot be specified as a password

For blank products (Note)

For programmed products

· The same 12 consecutive bytes cannot be specified as a password.

The table below shows password error examples.													
Programmed product	1	2	3	4	5	6	7	8	9	10	11	12	Note
Error example 1	FFH	All "FF"											
Error example 2	00H	All "00"											
Error example 3	5AH	All "5A"											

(Example: Program to be loaded and executed in RAM) Erase data at addresses 20000H to 20FFFH (sector erase) and then write 0706H to address 20000H.

:#### Flash mer	nory sector erase processing #####	
ld	XIX, 0x20000	; set start address
SECTORERASI	£:	
ld	(0x10AAA), 0xAA	; 1st bus write cycle
ld	(0x10554), 0x55	; 2nd bus write cycle
ld	(0x10AAA), 0x80	; 3rd bus write cycle
ld	(0x10AAA), 0xAA	, 4th bus write cycle
10 14	(0X10554), 0X55 (XIX), 0x20	, oth bus write cycle
Iu	(AIA), 0x30	, our bus write cycle
cal	TOGGLECHK	; check toggle bit
SECTORERASI	E_LOOP:	
ld	WA, (XIX+)	; read data from flash memory
cp	WA, 0xFFFF	; blank data?
j	ne, SECTORERASE_ERR	; if not blank data, jump to error processing
cp	XIX, 0x20FFF	; end address (0x20FFF)?
J	ULI, SECTORERASE_LOOP	, check erased sector area and then end loop processing
;#### Flash mer	nory program processing #####	$(\alpha \wedge \gamma)$
ld	XIX, 0x20000	; set program address)) \land
ld	WA, 0x0706	; set program data
PROGRAM:		
ld	(0x10AAA), 0xAA	; 1st bus write cycle
ld	(0x10554), 0x55	; 2nd bus write cycle
ld	(0x10AAA), 0xA0	, 3rd bus write cycle
Id	(AIA), WA	, 4th bus write cycle
cal	TOGGLECHK	; check toggle bit
ld	BC, (XIX)	read data from flash memory
ср	WA, BC	
j	ne, PROGRAM_ERR	if programmed data cannot be read, error is determined
ld	BC, (XIX)	read data from flash memory
cp	WA, BC	
j	ne, PROGRAM_ERR	; if programmed data cannot be read, error is determined
PROGRAM EN	D:	
i itoonam_En	PROGRAM END	; program operation end
5		, program operation ond
		(Ω)
;#### Toggle bit	(D6) check processing #####	
TOGGLECHK:		
ld	L, (XIX)	
and	L, 0y01000000	; check toggle bit (D6)
TOGGLECHKA		, save first toggle bit data
ld		
and	L. 9v91000000	; check toggle bit (D6)
cp	L,H	; toggle bit = toggled?
_j ((z, TOGGLECHK2	; If not toggled, end processing
//bf/_	H/L	; save current toggle bit state
j	TOGGLECHK1	; Recheck toggle bit
TOGGLECHK2		
ret	\rightarrow	
	~ //	
;#### Error proc	cessing ####	
SECTORERASI	E_ERR:	
j	SECTORERASE_ERR	; sector erase error
PROGRAM_ER	R	
j	PROGRAM_ERR	; program error

4.9 Bus Request/Bus Acknowledge

Note 1: Even if the BUSRQ signal goes low, the bus will not be released while the WAIT signal is low. The bus will only be released when BUSRQ goes low while WAIT is high.

Note 2: This line shows only that the output buffer is in the off state.

It does not indicate that the signal level is fixed.

Just after the bus is released, the signal level set before the bus was released is maintained dynamically by the external capacitance. Therefore, to fix the signal level using an external resister during bus release, careful design is necessary, since fixing of the level is delayed. The internal programmable pull-up/pull-down resistor is switched between the active and non-active states by the internal signal.

4.10 Flash Characteristics

(1) (Rewriting)

Parameter	Condition	Min	Тур	Max	Unit
Gurantee on Flash-memory rewriting	Vcc = 3.0V to 3.6V, fc = 4 to 27 MHz Ta = -10~40°C	_	_	100	Times

	Clock gea	r (2/2)								
Symbol	Name	Address	7	6	5	4	3	2	1	0
			PROTECT	_	—	—	ALEEN	EXTIN	DRVOSCH	DRVOSCL
			R				R/W			
EMCCR0			0	0	1	0	0	0	1	1
	EMC		Protection	Always	Always	Always	1: ALE	1: fc	fc	fs
	control	E3H	flag	write "0"	write "1"	write "0"	output	external	oscillator	oscillator
	register 0		0: OFF				enable	clock	driver	driver
			1: ON					(())	ability	ability
								\sim	1: Normal	1: Normal
							. (($7/\Lambda$	0: Weak	0: Weak
	EMC				Wri	ting 1FH tur	ns protection	soff		
EMCCR1	control	E4H		W	Vriting any va	alue other th	an 1FH turns	protection c	on.	
	register 1				······g -···) ··			7		
	Note: EMC	CR1				C	\sim			
	V	Vhen protect	-ON is set to	EMCCR1	It is prohibite	ed that follow		e written	$\langle \bigcirc \rangle$	
		SED that can	not write)	Lineerti,					\sim	
	(•		mot write)			(7)	\sim	$\langle \rangle$	$\gamma > \gamma$	
	1. C	S/WAIT con	troller) <	>	26	
	В	0CS, B1CS,	B2CS, B3C	S, BEXCS,	G	\sim	/	$\langle \rangle \rangle$	40/	
	Ν	ISAR0, MSA	R1, MSAR2	, MSAR3,		$\langle \rangle$	/	\sim	\rightarrow	
	N	AMRO, MAN	/R1. MAMR	2. MAMR3	$\mathcal{A}()$	\searrow	($\langle \rangle$		
	2. C	Clock gear (only EMCCR1 is available to write)								
	S	YSCR0, SY	SCR1, SYSC	CR2, EMCC	RO		\sim \lor $<$))		
	2 5			$\leq \langle$	\sim					
	L	FMCR0					\searrow			
	,		_ 、 _	\sim)		\checkmark			
(6)	DFM (C	lock doub	ler) (\sim $^-$		$\langle \rangle$				

Symbol	Name	Address	7	6	5 <	A	3	2	1	0
			ACT1/	ACT0	DLUPFG	DLUPTM	/			
	DFM control register 0	E8H	\mathbb{R}	ŵ	R	R/W				
DFMCR0			0	0		0				
				Always	write "0"					
	DEM		> -	$\langle -$		_	-	_	-	-
DFMCR1	DFM control register 1	M trol E9H ter 1	~			R/	W			
			0	0	○ 0	1	0	0	1	1
			Don't access this register							

Note: (MP9) FY42 does not built-in Clock Doubler (DFM).

UART/Serial chanel (2/2)

(9-3) UART/SIO Channel1

Symbol	Name	Address	7	6	5	4	3	2	1	0			
	Serial	208H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0			
SC1BUF	channel 1	(Prohibit RMW)	R (Receiving)/W (Transmission)										
	buffer		Undefined										
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC			
SC1CR			R	R/	W	R (Clea	red to 0 whe	en read)	R/	W			
	Serial		Undefined	0	0	0	0	\bigcirc	б	0			
	channel 1	209H	Received	Parity	Parity		1: Error	774	0: SCLK0↑	0: Baud rate			
	control		data bit8	0: Odd	addition	Overrun	Rarity	Framing	1: SCLK0↓	generator			
				1: Even	0: Disable			\bigcirc		input			
					1: Enable								
			TB8	CTSE	RXE	WU	SMI	SM0	SC1	SC0			
				i	i	R/	W	i		h			
			0	0	0	0	6	0 <	1 0	0			
	Quintat		Transmissio	Handshake	Receive	Wakeup	Serial transr	mission	Serial transr	nission			
00440000	Serial channel 1 mode	20AH	n	0: CTS	function	function	mode	$\langle (C)$	clock (UART	Γ)			
SC1MOD0			data bit8	disable	0: Receive	0: Disáble	/00: I/O intè	rface mode	00: TAOTR	G			
				1: CTS	disable	ble 1: Enable 01: 7-bit UAR I mode			01: Baud rate				
				enable	1: Receive	\sim	11: 0-bit U	RT mode	generat	or			
					enable	\searrow	11. 3-01. 07		10: Internal	clock f _{SYS}			
					\bigcirc	\triangleright	\square	,	11: Externa	I CIOCK			
					- PRACKA	DD40K0			SULKI	DD 400			
	Baud rate control	20BH	_	BRIADUE	BRICKI	BRICKO	BR153	BR1S2	BR1S1	BR1S0			
			-				W			0			
BR1CR			0						0	0			
DIVICIX			Always	+ (16 – K)/16	00: 010			Divided freq	uency setting)			
			while 0.	Division	10: μTQ	\wedge	\sim						
			((1. Enable	10. φτο								
			\sim		11. 0132	$\overline{\langle 2 \rangle}$	PD1K2	PD1K2	PD1K1	PP1K0			
	Serial		$\neg q \uparrow \tau$			4	DRTRS			BRIND			
	channel 1	20CH			$\overline{\langle}$	\geq	0	0	0	0			
BRIADD	K setting	20011			-(//		0	0 Sat fraguen	U	0			
	register						(d	Set frequer		2)			
			1004						+ (10 - K)/ 10)). 			
				U CURAL	\rightarrow								
	Serial	$\overline{\gamma}$	K/										
SC1MOD1	channel	20DH		U	\rightarrow \sim		\vdash						
	mode 1												
~		$\langle \rangle$	U. SIUP	V. Hall									
	\leftarrow	<u> </u>											
	$// \sim$	- /	> (())									