E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 19x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk10dn128vlh5r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μA

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

3.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	٥°C
V _{DD}	3.3 V supply voltage	3.3	V

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V

Table continues on the next page ...

General

Symbol	Description	Min.	Max.	Unit
I _{DD}	Digital supply current	—	155	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	V _{DD} + 0.3	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{BAT}	RTC battery supply voltage	-0.3	3.8	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

All digital I/O switching characteristics assume:

- 1. output pins
 - have $C_L=30$ pF loads,
 - are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
 - are configured for high drive strength (PORTx_PCRn[DSE]=1)
- 2. input pins
 - have their passive filter disabled (PORTx_PCRn[PFE]=0)

5.2 Nonswitching electrical specifications

5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = - 9 mA	$V_{DD} - 0.5$	—	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -3 mA	$V_{DD} - 0.5$	_	V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2 mA	$V_{DD} - 0.5$	—	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{ mA}$	$V_{DD} - 0.5$	_	V	
I _{OHT}	Output high current total for all ports	—	100	mA	
V _{OL}	Output low voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9 mA	—	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 3 \text{ mA}$	_	0.5	V	
	Output low voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2 mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{ mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports	—	100	mA	
I _{IN}	Input leakage current (per pin)				
	@ full temperature range	—	1.0	μA	1
	• @ 25 °C	—	0.1	μA	
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	
I _{OZ}	Total Hi-Z (off-state) leakage current (all input pins)	_	4	μA	
R _{PU}	Internal pullup resistors	22	50	kΩ	2
R _{PD}	Internal pulldown resistors	22	50	kΩ	3

1. Tested by ganged leakage method

2. Measured at Vinput = V_{SS}

3. Measured at Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 50 MHz
- Bus clock = 50 MHz
- Flash clock = 25 MHz

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip.	_	300	μs	1
	• VLLS0 \rightarrow RUN	_	130	μs	
	• VLLS1 \rightarrow RUN	_	130	μs	
	• VLLS2 \rightarrow RUN	—	70	μs	
	• VLLS3 \rightarrow RUN	_	70	μs	
	• LLS → RUN	—	6	μs	
	• VLPS → RUN	_	5.2	μs	
	• STOP → RUN	_	5.2	μs	

Table 5. Power mode transition operating behaviors

1. Normal boot (FTFL_OPT[LPBOOT]=1)

5.2.5 Power consumption operating behaviors

Table 6. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash • @ 1.8V • @ 3.0V		13.7 13.9	15.1 15.3	mA mA	2
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash • @ 1.8V	_	16.1	18.2	mA	3, 4
	• @ 3.0V	_	16.3	17.7	mA	
	• @ 25°C • @ 125°C	_	16.7	18.4	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled		7.5	8.4	mA	2
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled		5.6	6.4	mA	5

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled					
	• @ –40 to 25°C	—	0.176	0.859	μA	
	• @ 70°C	—	2.2	13.1	μA	
	• @ 105°C	—	13	23.9	μA	
I _{DD_VBAT}	Average current with RTC and 32kHz disabled at 3.0 V					
	• @ –40 to 25°C		0.19	0.22	μA	
	• @ 70°C	_	0.49	0.64	uA	
	• @ 105°C	_	2.2	3.2	μA	
I _{DD_VBAT}	Average current when CPU is not accessing RTC registers					9
	• @ 1.8V					
	 @ -40 to 25°C 	_	0.57	0.67	uА	
	• @ 70°C	_	0.90	1.2	uA	
	• @ 105°C	_	2.4	3.5	μA	
	• @ 3.0V				Port	
	 @ -40 to 25°C 		0.67	0.94	uА	
	• @ 70°C		1.0	1.4	uA	
	• @ 105°C	_	2.7	3.9	μA	

Table 6. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. 50MHz core and system clock, 25MHz bus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled.
- 3. 50MHz core and system clock, 25MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, and peripherals are in active operation.
- 4. Max values are measured with CPU executing DSP instructions
- 5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz flash clock. MCG configured for FEI mode.
- 6. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 7. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 8. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 9. Includes 32kHz oscillator current and RTC operation.

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL

Symbol	Description	Min.	Max.	Unit	Notes
f _{LPTMR_pin}	f _{LPTMR_pin} LPTMR clock		25	MHz	
f _{LPTMR_ERCLK}	LPTMR_ERCLK LPTMR external reference clock		16	MHz	
f _{I2S_MCLK}	I2S master clock	_	12.5	MHz	
f _{I2S_BCLK}	I2S bit clock	—	4	MHz	

Table 9. Device clock specifications (continued)

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CMT, and I²C signals.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	_	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	50	_	ns	3
	External reset pulse width (digital glitch filter disabled)	100	_	ns	3
	Mode select (EZP_CS) hold time after reset deassertion		_	Bus clock cycles	
	Port rise and fall time (high drive strength)				4
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	13	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_		ns	
	Slew enabled		7		
	• $1.71 \le V_{DD} \le 2.7V$	—		ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	36 24	ns	

Table 10. General switching specifications

Table continues on the next page...

Symbol	Description	Min.	Max.	Unit	Notes
	Port rise and fall time (low drive strength)				5
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	6	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	24	ns	
		1			

Table 10. General switching specifications (continued)

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75pF load
- 5. 15pF load

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

5.4.2 Thermal attributes

Board type	Symbol	Description	64 MAPBGA	64 LQFP	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	107	65	°C/W	1, 2
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	56	46	°C/W	1, 3

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
J _{acc_pll}	PLL accumulated jitter over 1µs (RMS)					8
	• f _{vco} = 48 MHz	—	1350	—	ps	
	• f _{vco} = 100 MHz	—	600	_	ps	
D _{lock}	Lock entry frequency tolerance	± 1.49	—	± 2.98	%	
D _{unl}	Lock exit frequency tolerance	± 4.47		± 5.97	%	
t _{pll_lock}	Lock detector detection time			150×10^{-6} + 1075(1/ f _{pll_ref})	S	9

Table 13. MCG specifications (continued)

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).

2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.

 The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_t}) over voltage and temperature should be considered.

4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.

5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.

6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

7. Excludes any oscillator currents that are also consuming power while PLL is in operation.

8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.

 This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

6.3.2.1 Oscillator DC electrical specifications Table 14. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	—	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	—	mA	
1		1	1		1	1

Table continues on the next page ...

6.4.1.2 Flash timing specifications — commands Table 19. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					
t _{rd1blk32k}	• 32 KB data flash	—	_	0.5	ms	
t _{rd1blk128k}	128 KB program flash	—	—	1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	—	60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time	—	_	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	
	Erase Flash Block execution time					2
t _{ersblk32k}	32 KB data flash	—	55	465	ms	
t _{ersblk128k}	 128 KB program flash 	—	61	495	ms	
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
	Program Section execution time					
t _{pgmsec512}	• 512 B flash	—	4.7	_	ms	
t _{pgmsec1k}	• 1 KB flash	_	9.3	_	ms	
t _{rd1all}	Read 1s All Blocks execution time			1.8	ms	
t _{rdonce}	Read Once execution time	—	—	25	μs	1
t _{pgmonce}	Program Once execution time	_	65	—	μs	
t _{ersall}	Erase All Blocks execution time	_	115	1000	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	30	μs	1
	Program Partition for EEPROM execution time					
t _{pgmpart32k}	• 32 KB FlexNVM	—	70	_	ms	
	Set FlexRAM Function execution time:					
t _{setramff}	Control Code 0xFF	_	50	_	μs	
t _{setram8k}	8 KB EEPROM backup	_	0.3	0.5	ms	
t _{setram32k}	32 KB EEPROM backup	—	0.7	1.0	ms	
	Byte-write to FlexRAM	for EEPRON	l operation	I		I
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time	_	175	260	μs	3
	Byte-write to FlexRAM execution time:					
t _{eewr8b8k}	8 KB EEPROM backup	_	340	1700	μs	
t _{eewr8b16k}	16 KB EEPROM backup	_	385	1800	μs	
t _{eewr8b32k}	32 KB EEPROM backup	_	475	2000	μs	

Table continues on the next page ...

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycd}	Cycling endurance	10 K	50 K	_	cycles	2
	FlexRAM as	s EEPROM				
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50		years	
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100		years	
	Write endurance					3
n _{nvmwree16}	EEPROM backup to FlexRAM ratio = 16	35 K	175 K	—	writes	
n _{nvmwree128}	• EEPROM backup to FlexRAM ratio = 128	315 K	1.6 M	—	writes	
n _{nvmwree512}	• EEPROM backup to FlexRAM ratio = 512	1.27 M	6.4 M	—	writes	
n _{nvmwree4k}	• EEPROM backup to FlexRAM ratio = 4096	10 M	50 M	—	writes	
n _{nvmwree8k}	• EEPROM backup to FlexRAM ratio = 8192	20 M	100 M	—	writes	

Table 21. NVM reliability specifications (continued)

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_j \leq 125°C.

3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup. Minimum and typical values assume all byte-writes to FlexRAM.

6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the flash memory module to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Writes_FlexRAM =
$$\frac{\text{EEPROM} - 2 \times \text{EEESIZE}}{\text{EEESIZE}} \times \text{Write}_\text{efficiency} \times n_{\text{nvmcycd}}$$

where

• Writes_FlexRAM — minimum number of writes to each FlexRAM location

6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 23 and Table 24 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	
ΔV _{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} - V _{DDA})	-100	0	+100	mV	2
ΔV _{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} - V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	Reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage		V _{REFL}	—	V _{REFH}	V	
C _{ADIN}	Input	16 bit modes	_	8	10	pF	
	capacitance	 8/10/12 bit modes 	_	4	5		
R _{ADIN}	Input resistance		—	2	5	kΩ	
R _{AS}	Analog source resistance	13/12 bit modes f _{ADCK} < 4MHz	_	_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13 bit modes	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16 bit modes	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion	≤ 13 bit modes					5
	rate	No ADC hardware averaging Continuous conversions enabled, subsequent conversion	20.000	_	818.330	Ksps	

6.6.1.1 16-bit ADC operating conditions Table 23. 16-bit ADC operating conditions

Table continues on the next page...

Peripheral operating requirements and behaviors

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion rate	16 bit modes No ADC hardware averaging	37.037	_	461.467	Ksps	5
		Continuous conversions enabled, subsequent conversion time					

Table 23. 16-bit ADC operating conditions (continued)

- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The R_{AS}/ C_{AS} time constant should be kept to <1ns.
- 4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/ files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1

Figure 10. ADC input impedance equivalency diagram

6.6.1.2 16-bit ADC electrical characteristics Table 24. 16-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215		1.7	mA	3

Table continues on the next page ...

Peripheral operating requirements and behaviors

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
SFDR	Spurious free dynamic range16 bit differential mode • Avg=3216 bit single-ended mode • Avg=32		82 78	95 90	_	dB dB	7
EIL	Input leakage error			I _{In} × R _{AS}		mV	I _{In} = leakage current (refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	-40°C to 105°C	_	1.715	_	mV/°C	
V _{TEMP25}	Temp sensor voltage	25°C	_	719	_	mV	

Table 24. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$

Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

 The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock speed.

- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock <12MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock <12MHz.

6.6.2 CMP and 6-bit DAC electrical specifications Table 25. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μΑ
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	—	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	—	—	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	—	mV
	 CR0[HYSTCTR] = 01 	—	10	—	mV
	• CR0[HYSTCTR] = 10	—	20	—	mV
	 CR0[HYSTCTR] = 11 	—	30		mV
V _{CMPOh}	Output high	V _{DD} – 0.5	—	—	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_		40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD}-0.6V.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

6.8.1 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	25	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 2	_	ns	1
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	—	8	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	0	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	14		ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

 Table 30.
 Master mode DSPI timing (limited voltage range)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 15. DSPI classic SPI timing — master mode

Table 31. Slave mode DSPI timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		12.5	MHz

Table continues on the next page ...

Figure 18. DSPI classic SPI timing — slave mode

6.8.3 I²C switching specifications

See General switching specifications.

6.8.4 UART switching specifications

See General switching specifications.

6.8.5 I2S/SAI Switching Specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to http://www.freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number			
64-pin LQFP	98ASS23234W			
64-pin MAPBGA	98ASA00420D			

8 Pinout

8.1 K10 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

64 MAP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
BGA												
A1	1	PTE0	DISABLED		PTE0		UART1_TX				RTC_CLKOUT	
B1	2	PTE1/ LLWU_P0	DISABLED		PTE1/ LLWU_P0		UART1_RX					
C5	3	VDD	VDD	VDD								
C4	4	VSS	VSS	VSS								
E1	5	PTE16	ADC0_SE4a	ADC0_SE4a	PTE16	SPI0_PCS0	UART2_TX	FTM_CLKIN0		FTM0_FLT3		
D1	6	PTE17	ADC0_SE5a	ADC0_SE5a	PTE17	SPI0_SCK	UART2_RX	FTM_CLKIN1		LPTMR0_ ALT3		
E2	7	PTE18	ADC0_SE6a	ADC0_SE6a	PTE18	SPI0_SOUT	UART2_CTS_ b	I2C0_SDA				
D2	8	PTE19	ADC0_SE7a	ADC0_SE7a	PTE19	SPI0_SIN	UART2_RTS_ b	I2C0_SCL				
G1	9	ADC0_DP0	ADC0_DP0	ADC0_DP0								
F1	10	ADC0_DM0	ADC0_DM0	ADC0_DM0								
G2	11	ADC0_DP3	ADC0_DP3	ADC0_DP3								

64 Map Bga	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
A2	64	PTD7	DISABLED		PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_FLT1		

8.2 K10 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

Pinout

Revision History

Rev. No.	Date	Substantial Changes
4	5/2012	 For the "32kHz oscillator frequency specifications", added specifications for an externally driven clock. Renamed section "Flash current and power specifications" to section "Flash high voltage current behaviors" and improved the specifications. For the "VREF full-range operating behaviors" table, removed the Ac (aging coefficient) specification. Corrected the following DSPI switching specifications: tightened DS5, DS6, and DS7; relaxed DS11 and DS13. Removed references to USB as non-applicable. For the "TSI electrical specifications", changed and clarified the example calculations for the MaxSens specification.

 Table 39.
 Revision History (continued)