
Microsemi Corporation - A3P1000L-FG484I Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 147456

Number of I/O 300

Number of Gates 1000000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 484-BGA

Supplier Device Package 484-FPBGA (23x23)

Purchase URL https://www.e-xfl.com/product-detail/microsemi/a3p1000l-fg484i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3p1000l-fg484i-4493238
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

Table of Contents
Introduction . 213
Low Power Flash Device I/O Support . 214
Pro I/Os—IGLOOe, ProASIC3EL, and ProASIC3E . 215
I/O Architecture . 220
I/O Standards . 223
I/O Features . 227
Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout . 241
I/O Software Support . 242
User I/O Naming Convention . 245
Board-Level Considerations . 246
Conclusion . 248
Related Documents . 248
List of Changes . 249

9 I/O Software Control in Low Power Flash Devices. 251
Flash FPGAs I/O Support . 252
Software-Controlled I/O Attributes . 253
Implementing I/Os in Microsemi Software . 254
Assigning Technologies and VREF to I/O Banks . 264
Conclusion . 269
Related Documents . 269
List of Changes . 270

10 DDR for Microsemi’s Low Power Flash Devices . 271
Introduction . 271
Double Data Rate (DDR) Architecture . 271
DDR Support in Flash-Based Devices . 272
I/O Cell Architecture . 273
Input Support for DDR . 275
Output Support for DDR . 275
Instantiating DDR Registers . 276
Design Example . 282
Conclusion . 284
List of Changes . 285

11 Programming Flash Devices . 287
Introduction . 287
Summary of Programming Support . 287
Programming Support in Flash Devices . 288
General Flash Programming Information . 289
Important Programming Guidelines . 295
Related Documents . 297
List of Changes . 298

12 Security in Low Power Flash Devices . 301
Security in Programmable Logic . 301
Security Support in Flash-Based Devices . 302
Security Architecture . 303
Security Features . 304
Security in Action . 308
4 Revision 4

ProASIC3L FPGA Fabric User’s Guide
• There will be added skew and clock insertion delay due to the clock gating circuit. The user
should analyze external setup/hold times carefully. The user should also ensure the additional
skew across the clock gating filter circuit is accounted for in any paths where the launch register is
driven from the filter input clock and captured by a register driven by the gated clock filter output
clock.

Power Analysis
SmartPower identifies static and dynamic power consumption problems quickly within a design. It
provides a hierarchical view, allowing users to drill down and estimate the power consumption of
individual components or events. SmartPower analyzes power consumption for nets, gates, I/Os,
memories, clocks, cores, clock domains, power supply rails, peak power during a clock cycle, and
switching transitions.
SmartPower generates detailed hierarchical reports of the dynamic power consumption of a design for
easy inspection. These reports include design-level power summary, average switching activity, and
ambient and junction temperature readings. Enter the target clock and data frequencies for a design, and
let SmartPower perform a detailed and accurate power analysis. SmartPower supports importing files in
the VCD (Value-Change Dump) format as specified in the IEEE 1364 standard. It also supports the
Synopsys® Switching Activity Interchange Format (SAIF) standard. Support for these formats lets
designers generate switching activity information in a variety of simulators and then import this
information directly into SmartPower.
For portable or battery-operated applications, a power profile feature enables you to measure power and
battery life, based on a sequence of operational modes of the design. In most portable and battery-
operated applications, the system is seldom fully "on" 100 percent of the time. "On" is a combination of
fully active, standby, sleep, or other functional modes. SmartPower allows users to create a power profile
for a design by specifying operational modes and the percent of time the device will run in each of the
modes. Power is calculated for each of the modes, and total power is calculated based on the weighted
average of all modes.
SmartPower also provides an estimated battery life based on the power profile. The current capacity for
a given battery is entered and used to estimate the life of the battery. The result is an accurate and
realistic indication of battery life.
More information on SmartPower can be found on the Microsemi SoC Products Group website:
http://www.microsemi.com/soc/products/software/libero/smartpower.aspx.

Additional Power Conservation Techniques
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 FPGAs provide many ways to
inherently conserve power; however, there are also several design techniques that can be used to
reduce power on the board.

• Microsemi recommends that the designer use the minimum number of I/O banks possible and tie
any unused power supplies (such as VCCPLL, VCCI, VMV, and VPUMP) to ground.

• Leave unused I/O ports floating. Unused I/Os are configured by the software as follows:
– Output buffer is disabled (with tristate value of high impedance)
– Input buffer is disabled (with tristate value of high impedance)

• Use the lowest available voltage I/O standard, the lowest drive strength, and the slowest slew rate
to reduce I/O switching contribution to power consumption.

• Advanced and pro I/O banks may consume slightly higher static current than standard and
standard plus banks—avoid using advanced and pro banks whenever practical.
– The small static power benefit obtained by avoiding advanced or pro I/O banks is usually

negligible compared to the benefit of using a low power I/O standard.
• Deselect RAM blocks that are not being used.
• Only enable read and write ports on RAM blocks when they are needed.
• Gating clocks LOW offers improved static power of RAM blocks.
• Drive the FF port of RAM blocks with the Flash_Freeze_Enabled signal from the Flash*Freeze

management IP.
• Drive inputs to the full voltage level so that all transistors are turned on or off completely.
Revision 4 41

http://www.microsemi.com/soc/products/software/libero/smartpower.aspx

ProASIC3L FPGA Fabric User’s Guide
YB and YC are identical to GLB and GLC, respectively, with the exception of a higher selectable final
output delay. The SmartGen PLL Wizard will configure these outputs according to user specifications and
can enable these signals with or without the enabling of Global Output Clocks.
The above signals can be enabled in the following output groupings in both internal and external
feedback configurations of the static PLL:

• One output – GLA only
• Two outputs – GLA + (GLB and/or YB)
• Three outputs – GLA + (GLB and/or YB) + (GLC and/or YC)

PLL Macro Block Diagram
As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these
(GLB and GLC) can be routed to the B and C global network access, respectively, and/or routed to the
device core (YB and YC).
There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).
There are delay elements in the feedback loop that can be used to advance the clock relative to the
reference clock.
The PLL macro reference clock can be driven in the following ways:

1. By an INBUF* macro to create a composite macro, where the I/O macro drives the global buffer
(with programmable delay) using a hardwired connection. In this case, the I/O must be placed in
one of the dedicated global I/O locations.

2. Directly from the FPGA core.
3. From an I/O that is routed through the FPGA regular routing fabric. In this case, users must

instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described
earlier.

During power-up, the PLL outputs will toggle around the maximum frequency of the voltage-controlled
oscillator (VCO) gear selected. Toggle frequencies can range from 40 MHz to 250 MHz. This will
continue as long as the clock input (CLKA) is constant (HIGH or LOW). This can be prevented by LOW
assertion of the POWERDOWN signal.
The visual PLL configuration in SmartGen, a component of the Libero SoC and Designer tools, will derive
the necessary internal divider ratios based on the input frequency and desired output frequencies
selected by the user.
Revision 4 85

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CCC Locations
CCCs located in the middle of the east and west sides of the device access the three VersaNet global
networks on each side (six total networks), while the four CCCs located in the four corners access three
quadrant global networks (twelve total networks). See Figure 4-13.

The following explains the locations of the CCCs in IGLOO and ProASIC3 devices:
In Figure 4-15 on page 98 through Figure 4-16 on page 98, CCCs with integrated PLLs are indicated in
red, and simplified CCCs are indicated in yellow. There is a letter associated with each location of the
CCC, in clockwise order. The upper left corner CCC is named "A," the upper right is named "B," and so
on. These names finish up at the middle left with letter "F."

Figure 4-13 • Global Network Architecture for 60 k Gate Devices and Above

Northwest Quadrant Global Networks

Southeast Quadrant Global Networks

Chip-Wide (main)
Global

Networks

3

3

3

3 3 3

3 3 3 3

6

6

6

6

6

6

6

6

G
lo

ba
l S

pi
ne

Q
ua

dr
an

t G
lo

ba
l S

pi
ne

CCC Location A

CCC Location F

CCC Location E CCC Location D

CCC Location C

CCC Location B
96 Revision 4

ProASIC3L FPGA Fabric User’s Guide
 wire VCC, GND;

 VCC VCC_1_net(.Y(VCC));
 GND GND_1_net(.Y(GND));
 PLL Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN),
 .GLA(GLA), .LOCK(LOCK), .GLB(), .YB(), .GLC(), .YC(),
 .OADIV0(GND), .OADIV1(GND), .OADIV2(GND), .OADIV3(GND),
 .OADIV4(GND), .OAMUX0(GND), .OAMUX1(GND), .OAMUX2(VCC),
 .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND), .DLYGLA3(GND)
 , .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND),
 .OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND),
 .OBMUX2(GND), .DLYYB0(GND), .DLYYB1(GND), .DLYYB2(GND),
 .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND), .DLYGLB1(GND),
 .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND),
 .OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND),
 .OCMUX0(GND), .OCMUX1(GND), .OCMUX2(GND), .DLYYC0(GND),
 .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND),
 .DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND)
 , .DLYGLC4(GND), .FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(
 VCC), .FINDIV3(GND), .FINDIV4(GND), .FINDIV5(GND),
 .FINDIV6(GND), .FBDIV0(VCC), .FBDIV1(GND), .FBDIV2(VCC),
 .FBDIV3(GND), .FBDIV4(GND), .FBDIV5(GND), .FBDIV6(GND),
 .FBDLY0(GND), .FBDLY1(GND), .FBDLY2(GND), .FBDLY3(GND),
 .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND), .XDLYSEL(GND),
 .VCOSEL0(GND), .VCOSEL1(GND), .VCOSEL2(GND));
 defparam Core.VCOFREQUENCY = 33.000;
endmodule

The "PLL Configuration Bits Description" section on page 106 provides descriptions of the PLL
configuration bits for completeness. The configuration bits are shown as busses only for purposes of
illustration. They will actually be broken up into individual pins in compilation libraries and all simulation
models. For example, the FBSEL[1:0] bus will actually appear as pins FBSEL1 and FBSEL0. The setting
of these select lines for the static PLL configuration is performed by the software and is completely
transparent to the user.
Revision 4 115

ProASIC3L FPGA Fabric User’s Guide
Simulation of FlashROM Design
The MEM file has 128 rows of 8 bits, each representing the contents of the FlashROM used for
simulation. For example, the first row represents page 0, byte 0; the next row is page 0, byte 1; and so
the pattern continues. Note that the three MSBs of the address define the page number, and the four
LSBs define the byte number. So, if you send address 0000100 to FlashROM, this corresponds to the
page 0 and byte 4 location, which is the fifth row in the MEM file. SmartGen defaults to 0s for any
unspecified location of the FlashROM. Besides using the MEM file generated by SmartGen, you can
create a binary file with 128 rows of 8 bits each and use this as a MEM file. Microsemi recommends that
you use different file names if you plan to generate multiple MEM files. During simulation, Libero SoC
passes the MEM file used as the generic file in the netlist, along with the design files and testbench. If
you want to use different MEM files during simulation, you need to modify the generic file reference in the
netlist.
…………………
UFROM0: UFROM
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_a.mem")
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_b.mem")
…………………….

The VITAL and Verilog simulation models accept the generics passed by the netlist, read the MEM file,
and perform simulation with the data in the file.

Programming File Generation for FlashROM Design
FlashPoint is the programming software used to generate the programming files for flash devices.
Depending on the applications, you can use the FlashPoint software to generate a STAPL file with
different FlashROM contents. In each case, optional AES decryption is available. To generate a STAPL
file that contains the same FPGA core content and different FlashROM contents, the FlashPoint software
needs an Array Map file for the core and UFC file(s) for the FlashROM. This final STAPL file represents
the combination of the logic of the FPGA core and FlashROM content.
FlashPoint generates the STAPL files you can use to program the desired FlashROM page and/or FPGA
core of the FPGA device contents. FlashPoint supports the encryption of the FlashROM content and/or
FPGA Array configuration data. In the case of using the FlashROM for device serialization, a sequence
of unique FlashROM contents will be generated. When generating a programming file with multiple
unique FlashROM contents, you can specify in FlashPoint whether to include all FlashROM content in a
single STAPL file or generate a different STAPL file for each FlashROM (Figure 5-11). The programming
software (FlashPro) handles the single STAPL file that contains the FlashROM content from multiple
devices. It enables you to program the FlashROM content into a series of devices sequentially
(Figure 5-11). See the FlashPro User’s Guide for information on serial programming.

Figure 5-11 • Single or Multiple Programming File Generation

FlashPoint

FPGA Array
Map File

FPGA Array
Map File

Security SettingsSecurity Settings

UFC File for
Multiple FlashROM

Contents

UFC File for
Single FlashROM

Contents

FlashPoint

Single
STAPL

File

Single
STAPL

File

Single
STAPL

File
Revision 4 143

http://www.microsemi.com/soc/documents/flashpro_ug.pdf

163

ProASIC3L FPGA Fabric User’s Guide

Tabl

16,384 32,768 65,536
Dual-Port Dual-Port Dual-Port

W
id

th

1 4 8 16 × 1
4 × (4,096 × 1)
Cascade Deep

8 × (4,096 × 1)
Cascade Deep

16 × (4,096 × 1)
Cascade Deep

2 8 16 32
8 × (4,096 × 1)

Cascaded 4 Deep
and 2 Wide

16 × (4,096 × 1)
Cascaded 8 Deep

and 2 Wide

32 × (4,096 × 1)
Cascaded 16

Deep and 2 Wide
4 16 32 64

16 × (4,096 × 1)
Cascaded 4 Deep

and 4 Wide

32 × (4,096 × 1)
Cascaded 8 Deep

and 4 Wide

64 × (4,096 × 1)
Cascaded 16

Deep and 4 Wide
8 32 64

32 × (4,096 × 1)
Cascaded 4 Deep

and 8 Wide

64 × (4,096 × 1)
Cascaded 8 Deep

and 8 Wide
9 32

32 × (512 × 9)
Cascaded Deep

1 64
32 × (4,096 × 1)

Cascaded 4 Deep
and 16 Wide

1

3

3

6

7

Note:
Revision 4

e 6-10 • RAM and FIFO Memory Block Consumption
Depth

256 512 1,024 2,048 4,096 8,192
Two-Port Dual-Port Dual-Port Dual-Port Dual-Port Dual-Port Dual-Port

Number Block 1 1 1 1 1 1 2
Configuration Any Any Any 1,024 × 4 2,048 × 2 4,096 × 1 2 × (4,096 × 1)

Cascade Deep
Number Block 1 1 1 1 1 2 4
Configuration Any Any Any 1,024×4 2,048 × 2 2 × (4,096 × 1)

Cascaded Wide
4 × (4,096 × 1)

Cascaded 2 Deep
and 2 Wide

Number Block 1 1 1 1 2 4 8
Configuration Any Any Any 1,024 × 4 2 × (2,048 × 2)

Cascaded Wide
4 × (4,096 × 1)
Cascaded Wide

4 × (4,096 × 1)
Cascaded 2 Deep

and 4 Wide
Number Block 1 1 1 2 4 8 16
Configuration Any Any Any 2 × (1,024 × 4)

Cascaded Wide
4 × (2,048 × 2)
Cascaded Wide

8 × (4,096 × 1)
Cascaded Wide

16 × (4,096 × 1)
Cascaded 2 Deep

and 8 Wide
Number Block 1 1 1 2 4 8 16
Configuration Any Any Any 2 × (512 × 9)

Cascaded Deep
4 × (512 × 9)

Cascaded Deep
8 × (512 × 9)

Cascaded Deep
16 × (512 × 9)

Cascaded Deep
6 Number Block 1 1 1 4 8 16 32

Configuration 256 × 18 256 × 18 256 × 18 4 × (1,024 × 4)
Cascaded Wide

8 × (2,048 × 2)
Cascaded Wide

16 × (4,096 × 1)
Cascaded Wide

32 × (4,096 × 1)
Cascaded 2 Deep

and 16 Wide
8 Number Block 1 2 2 4 8 18 32

Configuration 256 × 8 2 × (512 × 9)
Cascaded Wide

2 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded 2 Deep

and 2 Wide

8 × (512 × 9)
Cascaded 4 Deep

and 2 Wide

16 × (512 × 9)
Cascaded 8 Deep

and 2 Wide

16 × (512 × 9)
Cascaded 16

Deep and 2 Wide
2 Number Block 2 4 4 8 16 32 64

Configuration 2 × (256 × 18)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

8 × (1,024 × 4)
Cascaded Wide

16 × (2,048 × 2)
Cascaded Wide

32 × (4,096 × 1)
Cascaded Wide

64 × (4,096 × 1)
Cascaded 2 Deep

and 32 Wide
6 Number Block 2 4 4 8 16 32

Configuration 2 × (256 × 18)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded 2 Deep

and 4 Wide

16 × (512 × 9)
Cascaded 4 Deep

and 4 Wide

16 × (512 × 9)
Cascaded 8 Deep

and 4 Wide
4 Number Block 4 8 8 16 32 64

Configuration 4 × (256 × 18)
Cascaded Wide

8 × (512 × 9)
Cascaded Wide

8 × (512 × 9)
Cascaded Wide

16 × (1,024 × 4)
Cascaded Wide

32 × (2,048 × 2)
Cascaded Wide

64 × (4,096 × 1)
Cascaded Wide

2 Number Block 4 8 8 16 32
Configuration 4 × (256 × 18)

Cascaded Wide
8 × (512 × 9)

Cascaded Wide
8 × (512 × 9)

Cascaded Wide
16 × (512 × 9)

Cascaded Wide
16 × (512 × 9)

Cascaded 4 Deep
and 8 Wide

Memory configurations represented by grayed cells are not supported.

ProASIC3L FPGA Fabric User’s Guide
The ROM emulation application is based on RAM block initialization. If the user's main design has
access only to the read ports of the RAM block (RADDR, RD, RCLK, and REN), and the contents of the
RAM are already initialized through the TAP, then the memory blocks will emulate ROM functionality for
the core design. In this case, the write ports of the RAM blocks are accessed only by the user interface
block, and the interface is activated only by the TAP Instruction Register contents.
Users should note that the contents of the RAM blocks are lost in the absence of applied power.
However, the 1 kbit of flash memory, FlashROM, in low power flash devices can be used to retain data
after power is removed from the device. Refer to the "SRAM and FIFO Memories in Microsemi's Low
Power Flash Devices" section on page 147 for more information.

Sample Verilog Code
Interface Block
`define Initialize_start 8'h22 //INITIALIZATION START COMMAND VALUE
`define Initialize_stop 8'h23 //INITIALIZATION START COMMAND VALUE

module interface(IR, rst_n, data_shift, clk_in, data_update, din_ser, dout_ser, test,
test_out,test_clk,clk_out,wr_en,rd_en,write_word,read_word,rd_addr, wr_addr);

input [7:0] IR;
input [3:0] read_word; //RAM DATA READ BACK
input rst_n, data_shift, clk_in, data_update, din_ser; //INITIALIZATION SIGNALS
input test, test_clk; //TEST PROCEDURE CLOCK AND COMMAND INPUT
output [3:0] test_out; //READ DATA
output [3:0] write_word; //WRITE DATA
output [1:0] rd_addr; //READ ADDRESS
output [1:0] wr_addr; //WRITE ADDRESS
output dout_ser; //TDO DRIVER
output clk_out, wr_en, rd_en;

wire [3:0] write_word;
wire [1:0] rd_addr;
wire [1:0] wr_addr;
wire [3:0] Q_out;
wire enable, test_active;

reg clk_out;

//SELECT CLOCK FOR INITIALIZATION OR READBACK TEST
always @(enable or test_clk or data_update)
begin

case ({test_active})
1 : clk_out = test_clk ;
0 : clk_out = !data_update;
default : clk_out = 1'b1;

endcase
end

assign test_active = test && (IR == 8'h23);
assign enable = (IR == 8'h22);
assign wr_en = !enable;
assign rd_en = !test_active;
assign test_out = read_word;
assign dout_ser = Q_out[3];

//4-bit SIN/POUT SHIFT REGISTER
shift_reg data_shift_reg (.Shiften(data_shift), .Shiftin(din_ser), .Clock(clk_in),

.Q(Q_out));

//4-bit PIPELINE REGISTER
D_pipeline pipeline_reg (.Data(Q_out), .Clock(data_update), .Q(write_word));
Revision 4 167

ProASIC3L FPGA Fabric User’s Guide
Pipeline Register
module D_pipeline (Data, Clock, Q);

input [3:0] Data;
input Clock;
output [3:0] Q;

reg [3:0] Q;

always @ (posedge Clock) Q <= Data;

endmodule

4x4 RAM Block (created by SmartGen Core Generator)
module mem_block(DI,DO,WADDR,RADDR,WRB,RDB,WCLOCK,RCLOCK);

input [3:0] DI;
output [3:0] DO;
input [1:0] WADDR, RADDR;
input WRB, RDB, WCLOCK, RCLOCK;

wire WEBP, WEAP, VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
INV WEBUBBLEB(.A(WRB), .Y(WEBP));
RAM4K9 RAMBLOCK0(.ADDRA11(GND), .ADDRA10(GND), .ADDRA9(GND), .ADDRA8(GND),

.ADDRA7(GND), .ADDRA6(GND), .ADDRA5(GND), .ADDRA4(GND), .ADDRA3(GND), .ADDRA2(GND),

.ADDRA1(RADDR[1]), .ADDRA0(RADDR[0]), .ADDRB11(GND), .ADDRB10(GND), .ADDRB9(GND),

.ADDRB8(GND), .ADDRB7(GND), .ADDRB6(GND), .ADDRB5(GND), .ADDRB4(GND), .ADDRB3(GND),

.ADDRB2(GND), .ADDRB1(WADDR[1]), .ADDRB0(WADDR[0]), .DINA8(GND), .DINA7(GND),

.DINA6(GND), .DINA5(GND), .DINA4(GND), .DINA3(GND), .DINA2(GND), .DINA1(GND),

.DINA0(GND), .DINB8(GND), .DINB7(GND), .DINB6(GND), .DINB5(GND), .DINB4(GND),

.DINB3(DI[3]), .DINB2(DI[2]), .DINB1(DI[1]), .DINB0(DI[0]), .WIDTHA0(GND),

.WIDTHA1(VCC), .WIDTHB0(GND), .WIDTHB1(VCC), .PIPEA(GND), .PIPEB(GND),

.WMODEA(GND), .WMODEB(GND), .BLKA(WEAP), .BLKB(WEBP), .WENA(VCC), .WENB(GND),

.CLKA(RCLOCK), .CLKB(WCLOCK), .RESET(VCC), .DOUTA8(), .DOUTA7(), .DOUTA6(),

.DOUTA5(), .DOUTA4(), .DOUTA3(DO[3]), .DOUTA2(DO[2]), .DOUTA1(DO[1]),

.DOUTA0(DO[0]), .DOUTB8(), .DOUTB7(), .DOUTB6(), .DOUTB5(), .DOUTB4(), .DOUTB3(),

.DOUTB2(), .DOUTB1(), .DOUTB0());
INV WEBUBBLEA(.A(RDB), .Y(WEAP));

endmodule
Revision 4 169

7 – I/O Structures in IGLOO and ProASIC3 Devices

Introduction
Low power flash devices feature a flexible I/O structure, supporting a range of mixed voltages (1.2 V, 1.5 V,
1.8 V, 2.5 V, and 3.3 V) through bank-selectable voltages. IGLOO,® ProASIC3®L, and ProASIC3 families
support Standard, Standard Plus, and Advanced I/Os.
Users designing I/O solutions are faced with a number of implementation decisions and configuration
choices that can directly impact the efficiency and effectiveness of their final design. The flexible I/O
structure, supporting a wide variety of voltages and I/O standards, enables users to meet the growing
challenges of their many diverse applications. Libero SoC software provides an easy way to implement
I/Os that will result in robust I/O design.
This document first describes the two different I/O types in terms of the standards and features they
support. It then explains the individual features and how to implement them in Libero SoC.

Figure 7-1 • DDR Configured I/O Block Logical Representation

Input
Register

E = Enable PinA

Y

PAD

1 2

3

4

5

6

OCE

ICE

ICE

Input
Register

Input
Register

CLR/PRE

CLR/PRE

CLR/PRE

CLR/PRE

CLR/PRE

Pull-Up/-Down
Resistor Control

Signal Drive Strength
and Slew Rate Control

Output
Register

Output
Register

To FPGA Core

From FPGA Core

Output
Enable

Register
OCE

I/O / CLR or I/O / PRE / OCE

I/O / Q0

I/O / Q1

I/O / ICLK

I/O / D0

I/O / D1 / ICE

I/O / OCLK

I/O / OE

Scan

Scan
Scan
Revision 4 175

ProASIC3L FPGA Fabric User’s Guide
Example: For a bus consisting of 20 equidistant loads, the terminations given in EQ 1 provide the
required differential voltage, in worst-case industrial operating conditions, at the farthest receiver:

RS = 60 Ω, RT = 70 Ω, given ZO = 50 Ω (2") and Zstub = 50 Ω (~1.5").

EQ 1

Figure 7-8 • A B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

...

RT RT

BIBUF_LVDSR

RS RS

Z0

Receiver

+ -

Zstub

T

RS RS

Z0

Transceiver

+ -
R

RS RS

Z0

Receiver

+ -
T

Transceiver

+ -

D

RS RS

Z0

Driver

+ -

EN EN EN EN EN

Zstub Zstub Zstub Zstub Zstub Zstub Zstub

Z0 Z0 Z0Z0

RS RS

Zstub Zstub

Z0

Z0

Z0

Z0
Revision 4 187

DDR for Microsemi’s Low Power Flash Devices
Design Example
Figure 10-9 shows a simple example of a design using both DDR input and DDR output registers. The
user can copy the HDL code in Libero SoC software and go through the design flow. Figure 10-10 and
Figure 10-11 on page 283 show the netlist and ChipPlanner views of the ddr_test design. Diagrams may
vary slightly for different families.

Figure 10-9 • Design Example

Figure 10-10 • DDR Test Design as Seen by NetlistViewer for IGLOO/e Devices

D QR

QF

CLR

PAD Y

INBUF_SSTL2_I DDR_REG

PAD

CLK

CLR

D PAD
DR Q

CLR

DF

DataR

DataF

OUTBUF_SSTL3_IDDR_OUT
282 Revision 4

DDR for Microsemi’s Low Power Flash Devices
module ddr_test(DIN, CLK, CLR, DOUT);

input DIN, CLK, CLR;
output DOUT;

Inbuf_ddr Inbuf_ddr (.PAD(DIN), .CLR(clr), .CLK(clk), .QR(qr), .QF(qf));
Outbuf_ddr Outbuf_ddr (.DataR(qr),.DataF(qf), .CLR(clr), .CLK(clk),.PAD(DOUT));

INBUF INBUF_CLR (.PAD(CLR), .Y(clr));
INBUF INBUF_CLK (.PAD(CLK), .Y(clk));

endmodule

Simulation Consideration
Microsemi DDR simulation models use inertial delay modeling by default (versus transport delay
modeling). As such, pulses that are shorter than the actual gate delays should be avoided, as they will
not be seen by the simulator and may be an issue in post-routed simulations. The user must be aware of
the default delay modeling and must set the correct delay model in the simulator as needed.

Conclusion
Fusion, IGLOO, and ProASIC3 devices support a wide range of DDR applications with different I/O
standards and include built-in DDR macros. The powerful capabilities provided by SmartGen and its GUI
can simplify the process of including DDR macros in designs and minimize design errors. Additional
considerations should be taken into account by the designer in design floorplanning and placement of I/O
flip-flops to minimize datapath skew and to help improve system timing margins. Other system-related
issues to consider include PLL and clock partitioning.
284 Revision 4

ProASIC3L FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 10-1 • Flash-Based
FPGAs.

272

The "I/O Cell Architecture" section was updated with information applicable to nano
devices.

273

The output buffer (OUTBUF_SSTL3_I) input was changed to D, instead of Q, in
Figure 10-1 • DDR Support in Low Power Flash Devices, Figure 10-3 • DDR Output
Register (SSTL3 Class I), Figure 10-6 • DDR Output Register (SSTL3 Class I),
Figure 10-7 • DDR Tristate Output Register, LOW Enable, 8 mA, Pull-Up (LVTTL),
and the output from the DDR_OUT macro was connected to the input of the
TRIBUFF macro in Figure 10-7 • DDR Tristate Output Register, LOW Enable, 8 mA,
Pull-Up (LVTTL).

271,
275,

278, 279

v1.3
(October 2008)

The "Double Data Rate (DDR) Architecture" section was updated to include mention
of the AFS600 and AFS1500 devices.

271

The "DDR Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

272

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 10-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

272

v1.1
(March 2008)

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 272
Revision 4 285

ProASIC3L FPGA Fabric User’s Guide
Programming Solutions
Details for the available programmers can be found in the programmer user's guides listed in the
"Related Documents" section on page 297.
All the programmers except FlashPro4, FlashPro3, FlashPro Lite, and FlashPro require adapter
modules, which are designed to support device packages. All modules are listed on the Microsemi SoC
Products Group website at
http://www.microsemi.com/soc/products/hardware/program_debug/ss/modules.aspx. They are not listed
in this document, since this list is updated frequently with new package options and any upgrades
required to improve programming yield or support new families.

Table 11-3 • Programming Solutions

Programmer Vendor ISP
Single
Device Multi-Device Availability

FlashPro4 Microsemi Only Yes Yes1 Available

FlashPro3 Microsemi Only Yes Yes1 Available

FlashPro Lite2 Microsemi Only Yes Yes1 Available

FlashPro Microsemi Only Yes Yes1 Discontinued

Silicon Sculptor 3 Microsemi Yes3 Yes Cascade option
(up to two)

Available

Silicon Sculptor II Microsemi Yes3 Yes Cascade option
(up to two)

Available

Silicon Sculptor Microsemi Yes Yes Cascade option
(up to four)

Discontinued

Sculptor 6X Microsemi No Yes Yes Discontinued

BP MicroProgrammers BP
Microsystems

No Yes Yes Contact BP
Microsystems at

www.bpmicro.com

Notes:
1. Multiple devices can be connected in the same JTAG chain for programming.
2. If FlashPro Lite is used for programming, the programmer derives all of its power from the target pc

board's VDD supply. The FlashPro Lite's VPP and VPN power supplies use the target pc board's
VDD as a power source. The target pc board must supply power to both the VDDP and VDD power
pins of the ProASICPLUS device in addition to supplying VDD to the FlashPro Lite. The target pc
board needs to provide at least 500 mA of current to the FlashPro Lite VDD connection for
programming.

3. Silicon Sculptor II and Silicon Sculptor 3 can only provide ISP for ProASIC and ProASICPLUS
families, not for Fusion, IGLOO, or ProASIC3 devices.
Revision 4 293

http://www.microsemi.com/soc/products/hardware/program_debug/ss/modules.aspx
http://www.bpmicro.com

Programming Flash Devices
Signal Integrity While Using ISP
For ISP of flash devices, customers are expected to follow the board-level guidelines provided on the
Microsemi SoC Products Group website. These guidelines are discussed in the datasheets and
application notes (refer to the “Related Documents” section of the datasheet for application note links).
Customers are also expected to troubleshoot board-level signal integrity issues by measuring voltages
and taking oscilloscope plots.

Programming Failure Allowances
Microsemi has strict policies regarding programming failure allowances. Please refer to Programming
and Functional Failure Guidelines on the Microsemi SoC Products Group website for details.

Contacting the Customer Support Group
Highly skilled engineers staff the Customer Applications Center from 7:00 A.M. to 6:00 P.M., Pacific time,
Monday through Friday. You can contact the center by one of the following methods:

Electronic Mail
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
Microsemi monitors the email account throughout the day. When sending your request to us, please be
sure to include your full name, company name, and contact information for efficient processing of your
request. The technical support email address is soc_tech@microsemi.com.

Telephone
Our Technical Support Hotline answers all calls. The center retrieves information, such as your name,
company name, telephone number, and question. Once this is done, a case number is assigned. Then
the center forwards the information to a queue where the first available applications engineer receives
the data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific time, Monday
through Friday.
The Customer Applications Center number is (800) 262-1060.
European customers can call +44 (0) 1256 305 600.
296 Revision 4

http://www.microsemi.com/soc/documents/FA_Policies_Guidelines_5-06-00002.pdf
http://www.microsemi.com/soc/documents/FA_Policies_Guidelines_5-06-00002.pdf
mailto: soc_tech@microsemi.com

Security in Low Power Flash Devices
STAPL File with AES Encryption
• Does not contain AES key / FlashLock Key information
• Intended for transmission through web or service to unsecured locations for programming

===
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EF57";
NOTE "SAVE_DATA" "FRomStream";
NOTE "SECURITY" "ENCRYPT FROM CORE ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "20000000";
NOTE "SILSIG" "$00000000";

Conclusion
The new and enhanced security features offered in Fusion, IGLOO, and ProASIC3 devices provide state-
of-the-art security to designs programmed into these flash-based devices. Microsemi low power flash
devices employ the encryption standard used by NIST and the U.S. government—AES using the 128-bit
Rijndael algorithm.
The combination of an on-chip AES decryption engine and FlashLock technology provides the highest
level of security against invasive attacks and design theft, implementing the most robust and secure ISP
solution. These security features protect IP within the FPGA and protect the system from cloning,
wholesale “black box” copying of a design, invasive attacks, and explicit IP or data theft.

Glossary

References
National Institute of Standards and Technology. “ADVANCED ENCRYPTION STANDARD (AES)

Questions and Answers.” 28 January 2002 (10 January 2005).
See http://csrc.nist.gov/archive/aes/index1.html for more information.

Term Explanation

Security Header
programming file

Programming file used to program the FlashLock Pass Key and/or AES key into the device to
secure the FPGA, FlashROM, and/or FBs.

AES (encryption) key 128-bit key defined by the user when the AES encryption option is set in the Microsemi
Designer software when generating the programming file.

FlashLock Pass Key 128-bit key defined by the user when the FlashLock option is set in the Microsemi Designer
software when generating the programming file.
The FlashLock Key protects the security settings programmed to the device. Once a device
is programmed with FlashLock, whatever settings were chosen at that time are secure.

FlashLock The combined security features that protect the device content from attacks. These features
are the following:
• Flash technology that does not require an external bitstream to program the device
• FlashLock Pass Key that secures device content by locking the security settings and

preventing access to the device as defined by the user
• AES key that allows secure, encrypted device reprogrammability
324 Revision 4

http://csrc.nist.gov/archive/aes/index1.html

ProASIC3L FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

August 2012 This chapter will now be published standalone as an application note in addition to
being part of the IGLOO/ProASIC3/Fusion FPGA fabric user’s guides (SAR 38769).

N/A

The "ISP Programming Header Information" section was revised to update the
description of FP3-10PIN-ADAPTER-KIT in Table 13-3 • Programming Header
Ordering Codes, clarifying that it is the adapter kit used for ProASICPLUS based
boards, and also for ProASIC3 based boards where a compact programming
header is being used (SAR 36779).

335

June 2011 The VPUMP programming mode voltage was corrected in Table 13-2 • Power
Supplies. The correct value is 3.15 V to 3.45 V (SAR 30668).

329

The notes associated with Figure 13-5 • Programming Header (top view) and
Figure 13-6 • Board Layout and Programming Header Top View were revised to
make clear the fact that IGLOO nano V2 devices can be programmed at 1.2 V (SAR
30787).

335, 337

Figure 13-6 • Board Layout and Programming Header Top View was revised to
include resistors tying TCK and TRST to GND. Microsemi recommends tying off
TCK and TRST to GND if JTAG is not used (SAR 22921). RT ProASIC3 was added
to the list of device families.

337

In the "ISP Programming Header Information" section, the kit for adapting
ProASICPLUS devices was changed from FP3-10PIN-ADAPTER-KIT to FP3-26PIN-
ADAPTER-KIT (SAR 20878).

335

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

References to FlashPro4 and FlashPro3X were added to this chapter, giving
distinctions between them. References to SmartGen were deleted and replaced
with Libero IDE Catalog.

N/A

The "ISP Architecture" section was revised to indicate that V2 devices can be
programmed at 1.2 V VCC with FlashPro4.

327

SmartFusion was added to Table 13-1 • Flash-Based FPGAs Supporting ISP. 328

The "Programming Voltage (VPUMP) and VJTAG" section was revised and 1.2 V
was added to Table 13-2 • Power Supplies.

329

The "Nonvolatile Memory (NVM) Programming Voltage" section is new. 329

 Cortex-M3 was added to the "Cortex-M1 and Cortex-M3 Device Security" section. 331

In the "ISP Programming Header Information" section, the additional header
adapter ordering number was changed from FP3-26PIN-ADAPTER to FP3-10PIN-
ADAPTER-KIT, which contains 26-pin migration capability.

335

The description of NC was updated in Figure 13-5 • Programming Header (top
view), Table 13-4 • Programming Header Pin Numbers and Description and
Figure 13-6 • Board Layout and Programming Header Top View.

335, 336

The "Symptoms of a Signal Integrity Problem" section was revised to add that
customers are expected to troubleshoot board-level signal integrity issues by
measuring voltages and taking scope plots. "FlashPro4/3/3X allows TCK to be
lowered from 6 MHz down to 1 MHz to allow you to address some signal integrity
problems" formerly read, "from 24 MHz down to 1 MHz." "The Scan Chain
command expects to see 0x2" was changed to 0x1.

337
Revision 4 339

16 – Boundary Scan in Low Power Flash Devices

Boundary Scan
Low power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware
architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during
boundary scan testing.
The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and
instruction register (Figure 16-2 on page 360).
Low power flash devices support three types of test data registers: bypass, device identification, and
boundary scan. The bypass register is selected when no other register needs to be accessed in a device.
This speeds up test data transfer to other devices in a test data path. The 32-bit device identification
register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan
register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register
cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 16-1.
The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given
state transition to occur. IR and DR indicate that the instruction register or the data register is operating in
that state.
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Figure 16-1 • TAP Controller State Machine

1

TEST_LOGIC_RESET

RUN_TEST_IDLE SELECT_DR

CAPTURE_DR

SHIFT_DR

EXIT1_DR

PAUSE_DR

EXIT2_DR

UPDATE_DR

SELECT_IR

CAPTURE_IR

SHIFT_IR

EXIT1_IR

PAUSE_IR

EXIT2_IR

UPDATE_IR

1

0

1

0
1

0

1

0

1

0

1

0

1

0

1

0

1
0

1

0

1 0

1

0

0
0

1

0

1

0

1

Revision 4 357

