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without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
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distinct advantages, making the choice dependent on the
specific needs of the application.
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Flash*Freeze Technology and Low Power Modes
Sleep and Shutdown Modes

Sleep Mode
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 FPGAs support Sleep mode when
device functionality is not required. In Sleep mode, VCC (core voltage), VJTAG (JTAG DC voltage), and
VPUMP (programming voltage) are grounded, resulting in the FPGA core being turned off to reduce
power consumption. While the device is in Sleep mode, the rest of the system can still be operating and
driving the input buffers of the device. The driven inputs do not pull up the internal power planes, and the
current draw is limited to minimal leakage current.
Table 2-7 shows the power supply status in Sleep mode.

Refer to the "Power-Up/-Down Behavior" section on page 33 for more information about I/O states during
Sleep mode and the timing diagram for entering and exiting Sleep mode.

Shutdown Mode
Shutdown mode is supported for all IGLOO nano and IGLOO PLUS devices as well the following
IGLOO/e devices: AGL015, AGL030, AGLE600, AGLE3000, and A3PE3000L. Shutdown mode can be
used by turning off all power supplies when the device function is not needed. Cold-sparing and hot-
insertion features enable these devices to be powered down without turning off the entire system. When
power returns, the live-at-power-up feature enables operation of the device after reaching the voltage
activation point.

Table 2-7 • Sleep Mode—Power Supply Requirement for IGLOO, IGLOO nano, IGLOO PLUS, 
ProASIC3L, and RT ProASIC3 Devices

Power Supplies Power Supply State 
VCC Powered off

VCCI = VMV Powered on

VJTAG Powered off

VPUMP Powered off
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Flash*Freeze management IP. Additional information on this IP core can be found in the Libero online
help.
The Flash*Freeze management IP is comprised of three blocks: the Flash*Freeze finite state machine
(FSM), the clock gating (filter) block, and the ULSICC macro, as shown in Figure 2-10. 

Flash*Freeze Management FSM
The Flash*Freeze FSM block is a simple, robust, fully encoded 3-bit state machine that ensures clean
entrance to and exit from Flash*Freeze mode by controlling activities of the clock gating, ULSICC, and
optional housekeeping blocks. The state diagram for the FSM is shown in Figure 2-11 on page 38. In
normal operation, the state machine waits for Flash*Freeze pin assertion, and upon detection of a
request, it waits for a short period of time to ensure the assertion persists; then it asserts
WAIT_HOUSEKEEPING (active High) synchronous to the user’s designated system clock. This flag can
be used by user logic to perform any needed shutdown processes prior to entering Flash*Freeze mode,
such as storing data into SRAM, notifying other system components of the request, or timing/validating
the Flash*Freeze request. The FSM also asserts Flash_Freeze_Enabled whenever the device enters
Flash*Freeze mode. This occurs after all housekeeping and clock gating functions have completed. The
Flash_Freeze_Enabled signal remains asserted, even during Flash*Freeze mode, until the Flash*Freeze
pin is deasserted. Use the Flash_Freeze_Enabled signal to drive any logic in the design that needs to be
in a particular state during Flash*Freeze mode. The DONE_HOUSEKEEPING (active High) signal
should be asserted to notify the FSM when all the housekeeping tasks are completed. If the user
chooses not to use housekeeping, the Flash*Freeze management IP core generator in Libero SoC will
connect WAIT_HOUSEKEEPING to DONE_HOUSEKEEPING.

Figure 2-10 • Flash*Freeze Management IP Block Diagram
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CLKDLY Macro Usage 
When a CLKDLY macro is used in a CCC location, the programmable delay element is used to allow the 
clock delays to go to the global network. In addition, the user can bypass the PLL in a CCC location 
integrated with a PLL, but use the programmable delay that is associated with the global network by 
instantiating the CLKDLY macro. The same is true when using programmable delay elements in a CCC 
location with no PLLs (the user needs to instantiate the CLKDLY macro). There is no difference between 
the programmable delay elements used for the PLL and the CLKDLY macro. The CCC will be configured 
to use the programmable delay elements in accordance with the macro instantiated by the user.
As an example, if the PLL is not used in a particular CCC location, the designer is free to specify up to 
three CLKDLY macros in the CCC, each of which can have its own input frequency and delay adjustment 
options. If the PLL core is used, assuming output to only one global clock network, the other two global 
clock networks are free to be used by either connecting directly from the global inputs or connecting from 
one or two CLKDLY macros for programmable delay.
The programmable delay elements are shown in the block diagram of the PLL block shown in Figure 4-6 
on page 87. Note that any CCC locations with no PLL present contain only the programmable delay 
blocks going to the global networks (labeled "Programmable Delay Type 2"). Refer to the "Clock Delay 
Adjustment" section on page 102 for a description of the programmable delay types used for the PLL. 
Also refer to Table 4-14 on page 110 for Programmable Delay Type 1 step delay values, and Table 4-15 
on page 110 for Programmable Delay Type 2 step delay values. CCC locations with a PLL present can 
be configured to utilize only the programmable delay blocks (Programmable Delay Type 2) going to the 
global networks A, B, and C. 
Global network A can be configured to use only the programmable delay element (bypassing the PLL) if the 
PLL is not used in the design. Figure 4-6 on page 87 shows a block diagram of the PLL, where the 
programmable delay elements are used for the global networks (Programmable Delay Type 2). 
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Loading the Configuration Register
The most important part of CCC dynamic configuration is to load the shift register properly with the 
configuration bits. There are different ways to access and load the configuration shift register:

• JTAG interface
• Logic core
• Specific I/O tiles

JTAG Interface
The JTAG interface requires no additional I/O pins. The JTAG TAP controller is used to control the 
loading of the CCC configuration shift register. 
Low power flash devices provide a user interface macro between the JTAG pins and the device core 
logic. This macro is called UJTAG. A user should instantiate the UJTAG macro in his design to access the 
configuration register ports via the JTAG pins. 
For more information on CCC dynamic reconfiguration using UJTAG, refer to the "UJTAG Applications in 
Microsemi’s Low Power Flash Devices" section on page 363.

Logic Core
If the logic core is employed, the user must design a module to provide the configuration data and control 
the shifting and updating of the CCC configuration shift register. In effect, this is a user-designed TAP 
controller, which requires additional chip resources.

Specific I/O Tiles
If specific I/O tiles are used for configuration, the user must provide the external equivalent of a TAP 
controller. This does not require additional core resources but does use pins.

Shifting the Configuration Data
To enter a new configuration, all 81 bits must shift in via SDIN. After all bits are shifted, SSHIFT must go 
LOW and SUPDATE HIGH to enable the new configuration. For simulation purposes, bits <71:73> and 
<77:80> are "don't care."
The SUPDATE signal must be LOW during any clock cycle where SSHIFT is active. After SUPDATE is 
asserted, it must go back to the LOW state until a new update is required.

PLL Configuration Bits Description  
Table 4-8 • Configuration Bit Descriptions for the CCC Blocks
Config.
Bits Signal Name Description
<88:87>  GLMUXCFG [1:0]1 NGMUX configuration The configuration bits specify the input clocks 

to the NGMUX (refer to Table 4-17 on 
page 110).2

86  OCDIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by the divider factor 
in Table 4-18 on page 111.

85  OBDIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by a 0.5 factor (refer 
to Table 4-18 on page 111).

84  OADIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by certain 0.5 factor 
(refer to Table 4-16 on page 110).

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set. 

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools > 
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
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The following is an example of a PLL configuration utilizing the clock frequency synthesis and clock delay 
adjustment features. The steps include generating the PLL core with SmartGen, performing simulation 
for verification with ModelSim, and performing static timing analysis with SmartTime in Designer.
Parameters of the example PLL configuration:

Input Frequency – 20 MHz
Primary Output Requirement – 20 MHz with clock advancement of 3.02 ns
Secondary 1 Output Requirement – 40 MHz with clock delay of 2.515 ns

Figure 4-29 shows the SmartGen settings. Notice that the overall delays are calculated automatically, 
allowing the user to adjust the delay elements appropriately to obtain the desired delays. 

After confirming the correct settings, generate a structural netlist of the PLL and verify PLL core settings 
by checking the log file:
Name                            : test_pll_delays
Family                          : ProASIC3E
Output Format                   : VHDL
Type                            : Static PLL
Input Freq(MHz)                 : 20.000
CLKA Source                     : Hardwired I/O
Feedback Delay Value Index      : 21
Feedback Mux Select             : 2
XDLY Mux Select                 : No
Primary Freq(MHz)               : 20.000
Primary PhaseShift              : 0
Primary Delay Value Index       : 1
Primary Mux Select              : 4
Secondary1 Freq(MHz)            : 40.000
Use GLB                         : YES
Use YB                          : NO
…
…
…
Primary Clock frequency 20.000
Primary Clock Phase Shift 0.000

Figure 4-29 • SmartGen Settings
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FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Support in Flash-Based Devices 
The flash FPGAs listed in Table 5-1 support the FlashROM feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 5-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 5-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 5-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
SRAM/FIFO Support in Flash-Based Devices 
The flash FPGAs listed in Table 6-1 support SRAM and FIFO blocks and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 6-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 6-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 6-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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SRAM and FIFO Architecture
To meet the needs of high-performance designs, the memory blocks operate strictly in synchronous
mode for both read and write operations. The read and write clocks are completely independent, and
each can operate at any desired frequency up to 250 MHz.

• 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—2 read / 2 write or 1 read / 1 write)
• 512×9, 256×18 (2-port RAM—1 read / 1 write)
• Sync write, sync pipelined / nonpipelined read

Automotive ProASIC3 devices support single-port SRAM capabilities or dual-port SRAM only under
specific conditions. Dual-port mode is supported if the clocks to the two SRAM ports are the same and
180° out of phase (i.e., the port A clock is the inverse of the port B clock). The Libero SoC software
macro libraries support a dual-port macro only. For use of this macro as a single-port SRAM, the inputs
and clock of one port should be tied off (grounded) to prevent errors during design compile. For use in
dual-port mode, the same clock with an inversion between the two clock pins of the macro should be
used in the design to prevent errors during compile.
The memory block includes dedicated FIFO control logic to generate internal addresses and external flag
logic (FULL, EMPTY, AFULL, AEMPTY). 
Simultaneous dual-port read/write and write/write operations at the same address are allowed when
certain timing requirements are met.
During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by
internal MUXes. 
The low power flash device architecture enables the read and write sizes of RAMs to be organized
independently, allowing for bus conversion. For example, the write size can be set to 256×18 and the
read size to 512×9.
Both the write width and read width for the RAM blocks can be specified independently with the WW
(write width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4,
2k×2, and 4k×1. When widths of one, two, or four are selected, the ninth bit is unused. For example,
when writing nine-bit values and reading four-bit values, only the first four bits and the second four bits of
each nine-bit value are addressable for read operations. The ninth bit is not accessible.
Conversely, when writing four-bit values and reading nine-bit values, the ninth bit of a read operation will
be undefined. The RAM blocks employ little-endian byte order for read and write operations.

Memory Blocks and Macros 
Memory blocks can be configured with many different aspect ratios, but are generically supported in the
macro libraries as one of two memory elements: RAM4K9 or RAM512X18. The RAM4K9 is configured
as a true dual-port memory block, and the RAM512X18 is configured as a two-port memory block. Dual-
port memory allows the RAM to both read from and write to either port independently. Two-port memory
allows the RAM to read from one port and write to the other using a common clock or independent read
and write clocks. If needed, the RAM4K9 blocks can be configured as two-port memory blocks. The
memory block can be configured as a FIFO by combining the basic memory block with dedicated FIFO
controller logic. The FIFO macro is named FIFO4KX18 (Figure 6-3 on page 152).
Clocks for the RAM blocks can be driven by the VersaNet (global resources) or by regular nets. When
using local clock segments, the clock segment region that encompasses the RAM blocks can drive the
RAMs. In the dual-port configuration (RAM4K9), each memory block port can be driven by either rising-
edge or falling-edge clocks. Each port can be driven by clocks with different edges. Though only a rising-
edge clock can drive the physical block itself, the Microsemi Designer software will automatically bubble-
push the inversion to properly implement the falling-edge trigger for the RAM block. 
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SRAM Usage
The following descriptions refer to the usage of both RAM4K9 and RAM512X18.

Clocking
The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered
clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on
either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge and by
separate clocks by port. Note that for Automotive ProASIC3, the same clock, with an inversion between
the two clock pins of the macro, should be used in design to prevent errors during compile.
Low power flash devices support inversion (bubble-pushing) throughout the FPGA architecture, including
the clock input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic
or in the HDL code will be automatically accounted for during design compile without incurring additional
delay in the clock path.
The two-port SRAM can be clocked on the rising or falling edge of WCLK and RCLK. 
If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion
management (bubble-pushing) is automatically used within the development tools, without performance
penalty. 

Modes of Operation
There are two read modes and one write mode:

• Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
onto the RD bus in the same clock cycle following RA and REN valid. The read address is
registered on the read port clock active edge, and data appears at RD after the RAM access time.
Setting PIPE to OFF enables this mode.

• Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock
delay from address to data but enables operation at a much higher frequency. The read address
is registered on the read port active clock edge, and the read data is registered and appears at
RD after the second read clock edge. Setting PIPE to ON enables this mode.

• Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into
the SRAM at the write address when WEN is HIGH. The setup times of the write address, write
enables, and write data are minimal with respect to the write clock. 

RAM Initialization
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the UJTAG
mechanism. The shift register for a target block can be selected and loaded with the proper bit
configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation. 

FIFO Features
The FIFO4KX18 macro is created by merging the RAM block with dedicated FIFO logic (Figure 6-6 on
page 158). Since the FIFO logic can only be used in conjunction with the memory block, there is no
separate FIFO controller macro. As with the RAM blocks, the FIFO4KX18 nomenclature does not refer to
a possible aspect ratio, but rather to the deepest possible data depth and the widest possible data width.
FIFO4KX18 can be configured into the following aspect ratios: 4,096×1, 2,048×2, 1,024×4, 512×9, and
256×18. In addition to being fully synchronous, the FIFO4KX18 also has the following features:

• Four FIFO flags: Empty, Full, Almost-Empty, and Almost-Full
• Empty flag is synchronized to the read clock
• Full flag is synchronized to the write clock
• Both Almost-Empty and Almost-Full flags have programmable thresholds
• Active-low asynchronous reset
• Active-low block enable
• Active-low write enable
• Active-high read enable
• Ability to configure the FIFO to either stop counting after the empty or full states are reached or to

allow the FIFO counters to continue
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SmartGen enables the user to configure the desired RAM element to use either a single clock for read
and write, or two independent clocks for read and write. The user can select the type of RAM as well as
the width/depth and several other parameters (Figure 6-13).

SmartGen also has a Port Mapping option that allows the user to specify the names of the ports
generated in the memory block (Figure 6-14).

SmartGen also configures the FIFO according to user specifications. Users can select no flags, static
flags, or dynamic flags. Static flag settings are configured using configuration flash and cannot be altered

Figure 6-13 • SmartGen Memory Configuration Interface 

Figure 6-14 • Port Mapping Interface for SmartGen-Generated Memory
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Advanced I/Os—IGLOO, ProASIC3L, and ProASIC3
Table 7-2 and Table 7-3 show the voltages and compatible I/O standards for the IGLOO, ProASIC3L, and
ProASIC3 families. 
I/Os provide programmable slew rates (except 30 K gate devices), drive strengths, and weak pull-up and
pull-down circuits. 3.3 V PCI and 3.3 V PCI-X can be configured to be 5 V–tolerant. See the "5 V Input
Tolerance" section on page 194 for possible implementations of 5 V tolerance.
All I/Os are in a known state during power-up, and any power-up sequence is allowed without current
impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial
and Industrial)" section in the datasheet for more information. During power-up, before reaching
activation levels, the I/O input and output buffers are disabled while the weak pull-up is enabled.
Activation levels are described in the datasheet.

I/O Banks and I/O Standards Compatibility
I/Os are grouped into I/O voltage banks. 
Each I/O voltage bank has dedicated I/O supply and ground voltages (VMV/GNDQ for input buffers and
VCCI/GND for output buffers). This isolation is necessary to minimize simultaneous switching noise from
the input and output (SSI and SSO). The switching noise (ground bounce and power bounce) is
generated by the output buffers and transferred into input buffer circuits, and vice versa. Because of
these dedicated supplies, only I/Os with compatible standards can be assigned to the same I/O voltage
bank. Table 7-3 shows the required voltage compatibility values for each of these voltages.
There are four I/O banks on the 250K gate through 1M gate devices. 
There are two I/O banks on the 30K, 60K, and 125K gate devices. 
I/O standards are compatible if their VCCI and VMV values are identical. VMV and GNDQ are "quiet"
input power supply pins and are not used on 30K gate devices (Table 7-3). 

Table 7-2 • Supported I/O Standards

IGLOO AGL015 AGL030 AGL060 AGL125 AGL250 AGL600 AGL1000

ProASIC3 A3P015 A3P030 A3P060 A3P125
A3P250/
A3P250L A3P400

A3P600/
A3P600L

A3P1000/
A3P1000L

Single-Ended

LVTTL/LVCMOS 3.3 V,
LVCMOS 2.5 V / 1.8 V /
1.5 V / 1.2 V
LVCMOS 2.5 V / 5.0 V

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3.3 V PCI/PCI-X – – ✓ ✓ ✓ ✓ ✓ ✓

Differential

LVPECL, LVDS, B-LVDS, 
M-LVDS

– – – – ✓ ✓ ✓ ✓

Table 7-3 • VCCI Voltages and Compatible IGLOO and ProASIC3 Standards

VCCI and VMV (typical) Compatible Standards

3.3 V LVTTL/LVCMOS 3.3, PCI 3.3, PCI-X 3.3 LVPECL

2.5 V LVCMOS 2.5, LVCMOS 2.5/5.0, LVDS, B-LVDS, M-LVDS

1.8 V LVCMOS 1.8

1.5 V LVCMOS 1.5

1.2 V LVCMOS 1.2
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List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 The notes in Table 9-2 • Designer State (resulting from I/O attribute modification)
were revised to clarify which device families support programmable input delay
(SAR 39666).

253

June 2011 Figure 9-2 • SmartGen Catalog was updated (SAR 24310). Figure 8-3 • Expanded
I/O Section and the step associated with it were deleted to reflect changes in the
software.

254

The following rule was added to the "VREF Rules for the Implementation of
Voltage-Referenced I/O Standards" section: 
Only minibanks that contain input or bidirectional I/Os require a VREF. A VREF is
not needed for minibanks composed of output or tristated I/Os (SAR 24310).

265

July 2010 Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 9-1 • Flash-Based
FPGAs.

252

The notes for Table 9-2 • Designer State (resulting from I/O attribute modification)
were revised to indicate that skew control and input delay do not apply to nano
devices.

253

v1.3
(October 2008)

The "Flash FPGAs I/O Support" section was revised to include new families and
make the information more concise.

252

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 9-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

252

v1.1
(March 2008)

This document was previously part of the I/O Structures in IGLOO and ProASIC3
Devices document. The content was separated and made into a new document.

N/A

Table 9-2 • Designer State (resulting from I/O attribute modification) was updated
to include note 2 for IGLOO PLUS.

253
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DDR for Microsemi’s Low Power Flash Devices
Instantiating DDR Registers
Using SmartGen is the simplest way to generate the appropriate RTL files for use in the design.
Figure 10-4 shows an example of using SmartGen to generate a DDR SSTL2 Class I input register.
SmartGen provides the capability to generate all of the DDR I/O cells as described. The user, through the
graphical user interface, can select from among the many supported I/O standards. The output formats
supported are Verilog, VHDL, and EDIF.
Figure 10-5 on page 277 through Figure 10-8 on page 280 show the I/O cell configured for DDR using
SSTL2 Class I technology. For each I/O standard, the I/O pad is buffered by a special primitive that
indicates the I/O standard type.

Figure 10-4 • Example of Using SmartGen to Generate a DDR SSTL2 Class I Input Register 
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ISP Programming Header Information
The FlashPro4/3/3X programming cable connector can be connected with a 10-pin, 0.1"-pitch
programming header. The recommended programming headers are manufactured by AMP (103310-1)
and 3M (2510-6002UB). If you have limited board space, you can use a compact programming header
manufactured by Samtec (FTSH-105-01-L-D-K). Using this compact programming header, you are
required to order an additional header adapter manufactured by Microsemi SoC Products Group (FP3-
10PIN-ADAPTER-KIT).
Existing ProASICPLUS family customers who are using the Samtec Small Programming Header
(FTSH-113-01-L-D-K) and are planning to migrate to IGLOO or ProASIC3 devices can also use
FP3-10PIN-ADAPTER-KIT.

Table 13-3 • Programming Header Ordering Codes

Manufacturer Part Number Description

AMP 103310-1 10-pin, 0.1"-pitch cable header (right-angle PCB mount
angle)

3M 2510-6002UB 10-pin, 0.1"-pitch cable header (straight PCB mount
angle)

Samtec FTSH-113-01-L-D-K Small programming header supported by FlashPro and
Silicon Sculptor 

Samtec FTSH-105-01-L-D-K Compact programming header

Samtec FFSD-05-D-06.00-01-N 10-pin cable with 50 mil pitch sockets; included in FP3-
10PIN-ADAPTER-KIT.

Microsemi FP3-10PIN-ADAPTER-KIT Transition adapter kit to allow FP3 to be connected to a
micro 10-pin header (50 mil pitch). Includes a 6 inch
Samtec FFSD-05-D-06.00-01-N cable in the kit. The
transition adapter board was previously offered as
FP3-26PIN-ADAPTER and includes a 26-pin adapter for
design transitions from ProASICPLUS based boards to
ProASIC3 based boards.

Note: *Prog_Mode on FlashPro4 is an output signal that goes High during device programming and
returns to Low when programming is complete. This signal can be used to drive a system to provide
a 1.5 V programming signal to IGLOO nano, ProASIC3L, and RT ProASIC3 devices that can run
with 1.2 V core voltage but require 1.5 V for programming. IGLOO nano V2 devices can be
programmed at 1.2 V core voltage (when using FlashPro4 only), but IGLOO nano V5 devices are
programmed with a VCC core voltage of 1.5 V.

Figure 13-5 • Programming Header (top view)
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

August 2012 This chapter will now be published standalone as an application note in addition to
being part of the IGLOO/ProASIC3/Fusion FPGA fabric user’s guides (SAR 38769).

N/A

The "ISP Programming Header Information" section was revised to update the
description of FP3-10PIN-ADAPTER-KIT in Table 13-3 • Programming Header
Ordering Codes, clarifying that it is the adapter kit used for ProASICPLUS based
boards, and also for ProASIC3 based boards where a compact programming
header is being used (SAR 36779).

335

June 2011 The VPUMP programming mode voltage was corrected in Table 13-2 • Power
Supplies. The correct value is 3.15 V to 3.45 V (SAR 30668).

329

The notes associated with Figure 13-5 • Programming Header (top view) and
Figure 13-6 • Board Layout and Programming Header Top View were revised to
make clear the fact that IGLOO nano V2 devices can be programmed at 1.2 V (SAR
30787).

335, 337

Figure 13-6 • Board Layout and Programming Header Top View was revised to
include resistors tying TCK and TRST to GND. Microsemi recommends tying off
TCK and TRST to GND if JTAG is not used (SAR 22921). RT ProASIC3 was added
to the list of device families.

337

In the "ISP Programming Header Information" section, the kit for adapting
ProASICPLUS devices was changed from FP3-10PIN-ADAPTER-KIT to FP3-26PIN-
ADAPTER-KIT (SAR 20878).

335

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

References to FlashPro4 and FlashPro3X were added to this chapter, giving
distinctions between them. References to SmartGen were deleted and replaced
with Libero IDE Catalog.

N/A

The "ISP Architecture" section was revised to indicate that V2 devices can be
programmed at 1.2 V VCC with FlashPro4.

327

SmartFusion was added to Table 13-1 • Flash-Based FPGAs Supporting ISP. 328

The "Programming Voltage (VPUMP) and VJTAG" section was revised and 1.2 V
was added to Table 13-2 • Power Supplies.

329

The "Nonvolatile Memory (NVM) Programming Voltage" section is new. 329

 Cortex-M3 was added to the "Cortex-M1 and Cortex-M3 Device Security" section. 331

In the "ISP Programming Header Information" section, the additional header
adapter ordering number was changed from FP3-26PIN-ADAPTER to FP3-10PIN-
ADAPTER-KIT, which contains 26-pin migration capability.

335

The description of NC was updated in Figure 13-5 • Programming Header (top
view), Table 13-4 • Programming Header Pin Numbers and Description and
Figure 13-6 • Board Layout and Programming Header Top View.

335, 336

The "Symptoms of a Signal Integrity Problem" section was revised to add that
customers are expected to troubleshoot board-level signal integrity issues by
measuring voltages and taking scope plots. "FlashPro4/3/3X allows TCK to be
lowered from 6 MHz down to 1 MHz to allow you to address some signal integrity
problems" formerly read, "from 24 MHz down to 1 MHz." "The Scan Chain
command expects to see 0x2" was changed to 0x1.

337
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16 – Boundary Scan in Low Power Flash Devices 

Boundary Scan
Low power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware
architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during
boundary scan testing. 
The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and
instruction register (Figure 16-2 on page 360). 
Low power flash devices support three types of test data registers: bypass, device identification, and
boundary scan. The bypass register is selected when no other register needs to be accessed in a device.
This speeds up test data transfer to other devices in a test data path. The 32-bit device identification
register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan
register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register
cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine 
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 16-1.
The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given
state transition to occur. IR and DR indicate that the instruction register or the data register is operating in
that state. 
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Figure 16-1 • TAP Controller State Machine
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I/O Behavior at Power-Up/-Down
This section discusses the behavior of device I/Os, used and unused, during power-up/-down of VCC and 
VCCI. As mentioned earlier, VMVx and VCCIBx are tied together, and therefore, inputs and outputs are 
powered up/down at the same time. 

I/O State during Power-Up/-Down
This section discusses the characteristics of I/O behavior during device power-up and power-down. 
Before the start of power-up, all I/Os are in tristate mode. The I/Os will remain tristated during power-up 
until the last voltage supply (VCC or VCCI) is powered to its functional level (power supply functional 
levels are discussed in the "Power-Up to Functional Time" section on page 378). After the last supply 
reaches the functional level, the outputs will exit the tristate mode and drive the logic at the input of the 
output buffer. Similarly, the input buffers will pass the external logic into the FPGA fabric once the last 
supply reaches the functional level. The behavior of user I/Os is independent of the VCC and VCCI 
sequence or the state of other voltage supplies of the FPGA (VPUMP and VJTAG). Figure 18-2 shows 
the output buffer driving HIGH and its behavior during power-up with 10 kΩ external pull-down. In 
Figure 18-2, VCC is powered first, and VCCI is powered 5 ms after VCC. Figure 18-3 on page 378 
shows the state of the I/O when VCCI is powered about 5 ms before VCC. In the circuitry shown in 
Figure 18-3 on page 378, the output is externally pulled down. 
During power-down, device I/Os become tristated once the first power supply (VCC or VCCI) drops 
below its brownout voltage level. The I/O behavior during power-down is also independent of voltage 
supply sequencing.  

Figure 18-2 • I/O State when VCC Is Powered before VCCI 
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B – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 650.318.8044

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more 
information and support. Many answers available on the searchable web resource include diagrams, 
illustrations, and links to other resources on the website. 

Website
You can browse a variety of technical and non-technical information on the SoC home page, at 
www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.
The technical support email address is soc_tech@microsemi.com.
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