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FPGA Array Architecture in Low Power Flash Devices
FPGA Array Architecture Support 
The flash FPGAs listed in Table 1-1 support the architecture features described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 1-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 1-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 1-1 • Flash-Based FPGAs

Series Family* Description

IGLOO® IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC®3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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FPGA Array Architecture in Low Power Flash Devices
I/O State of Newly Shipped Devices
Devices are shipped from the factory with a test design in the device. The power-on switch for VCC is
OFF by default in this test design, so I/Os are tristated by default. Tristated means the I/O is not actively
driven and floats. The exact value cannot be guaranteed when it is floating. Even in simulation software,
a tristate value is marked as unknown. Due to process variations and shifts, tristated I/Os may float
toward High or Low, depending on the particular device and leakage level. 
If there is concern regarding the exact state of unused I/Os, weak pull-up/pull-down should be added to
the floating I/Os so their state is controlled and stabilized.

Note: Flash*Freeze technology only applies to IGLOOe devices.
Figure 1-7 • IGLOOe and ProASIC3E Device Architecture Overview (AGLE600 device is shown)
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ProASIC3L FPGA Fabric User’s Guide
Clock Gating Block
Once DONE_HOUSEKEEPING is detected, the FSM will initiate the clock gating circuit by asserting
ASSERT_GATE (active Low). ASSERT_GATE is named control_user_clock_net in the IP block. Upon
assertion of the ASSERT_GATE signal, the clock will be gated in less than two cycles. The clock gating
circuit is comprised of a flip-flop, latch, AND gate, and CLKINT, as shown in Figure 2-12. The clock gating
block can support gating of up to 17 clocks. 

After initiating the clock gating circuit, the FSM will assert and hold the LSICC signal (active High),
feeding the ULSICC macro. This will initiate the 1 µs entrance into Flash*Freeze mode.
Upon deassertion of the Flash*Freeze pin, the FSM will set ASSERT_GATE High. Once the I/O banks
become active, the clock will enter the device and register the ASSERT_GATE signal, cleanly releasing
the clock gate.

Design Flow1

Microsemi has developed a convenient and intuitive design flow for configuring and integrating
Flash*Freeze technology into an FPGA design. Flash*Freeze type 1 is implemented by instantiating the
INBUF_FF macro in the top level of a design. Flash*Freeze type 2 with management IP can be
generated by the Libero core generator or SmartGen and instantiated as a single block in the user's
design. This single block will include an INBUF_FF macro and the optional Flash*Freeze management
IP, which includes the ULSICC macro. If designers do not wish to use this core generator, the INBUF_FF
macro and the optional ULSICC macro may be instantiated in the design, and custom Flash*Freeze
management IP can be developed by the user. The remainder of this section will cover configuration
details of the INBUF_FF macro, the ULSICC macro, and the Flash*Freeze management IP.
Additional information on the tools discussed within this section may be found in the Libero online help.

INBUF_FF
The INBUF_FF macro is a special-purpose input buffer macro that is interpreted downstream in the
design flow by Microsemi's Designer software. When this macro is used, the top-level port will be forced
to the dedicated FF pin in the FPGA, and Flash*Freeze mode will be available for use in the device. The
following are the design rules for INBUF_FF:

• If INBUF_FF is not used in the design, the device will not be configured to support Flash*Freeze
mode.

• When the INBUF_FF macro is used, the FF pin will establish a hardwired connection to the
Flash*Freeze technology circuit in the device, as shown in Figure 2-1 on page 25, Figure 2-3 on
page 27, and Figure 2-10 on page 37, and described in the "Flash*Freeze Type 1: Control by
Dedicated Flash*Freeze Pin" section on page 24.

Figure 2-12 • Clock Gating Circuit

1. This section applies to Libero / Designer software v8.3 and later. Microsemi recommends that designs created in earlier
versions of the software be modified to accommodate this flow by instantiating the INBUF_FF macro or the Flash*Freeze
management IP. Refer to the Libero / Designer software v8.3 release notes and the Libero online help for more information
on migrating designs from older software versions.
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Implementing EXTFB in ProASIC3/E Devices
When the external feedback (EXTFB) signal of the PLL in the ProASIC3/E devices is implemented, the 
phase detector of the PLL core receives the reference clock (CLKA) and EXTFB as inputs. EXTFB must 
be sourced as an INBUF macro and located at the global/chip clock location associated with the target 
PLL by Designer software. EXTFB cannot be sourced from the FPGA fabric.
The following example shows CLKA and EXTFB signals assigned to two global I/Os in the same global 
area of ProASIC3E device.

Figure 4-5 • CLKA and EXTFB Assigned to Global I/Os
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Table 4-13 • 2-Bit Feedback MUX

FBSEL<1:0> State MUX Input Selected

0 Ground. Used for power-down mode in power-down logic 
block.

1 PLL VCO 0° phase shift 

2 PLL delayed VCO 0° phase shift

3 N/A 

Table 4-14 • Programmable Delay Selection for Feedback Delay and Secondary Core Output Delays

FBDLY<4:0>; DLYYB<4:0>; DLYYC<4:0> State Delay Value

0 Typical delay = 600 ps

1 Typical delay = 760 ps

2 Typical delay = 920 ps

… …
31 Typical delay = 5.56 ns

Table 4-15 • Programmable Delay Selection for Global Clock Output Delays

DLYGLA<4:0>; DLYGLB<4:0>; DLYGLC<4:0> State Delay Value

0 Typical delay = 225 ps

1 Typical delay = 760 ps

2 Typical delay = 920 ps

… …

31 Typical delay = 5.56 ns

Table 4-16 • Fusion Dynamic CCC Clock Source Selection
RXASEL DYNASEL Source of CLKA
1 0 RC Oscillator

1 1 Crystal Oscillator

RXBSEL DYNBSEL Source of CLKB
1 0 RC Oscillator

1 1 Crystal Oscillator

RXBSEL DYNCSEL Source of CLKC
1 0 RC Oscillator

1 1 Crystal Oscillator

Table 4-17 • Fusion Dynamic CCC NGMUX Configuration
GLMUXCFG<1:0> NGMUX Select Signal Supported Input Clocks to NGMUX
00 0 GLA

1 GLC

01 0 GLA

1 GLINT

10 0 GLC

1 GLINT
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ProASIC3L FPGA Fabric User’s Guide
    wire VCC, GND;
    
    VCC VCC_1_net(.Y(VCC));
    GND GND_1_net(.Y(GND));
    PLL Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN), 
        .GLA(GLA), .LOCK(LOCK), .GLB(), .YB(), .GLC(), .YC(), 
        .OADIV0(GND), .OADIV1(GND), .OADIV2(GND), .OADIV3(GND), 
        .OADIV4(GND), .OAMUX0(GND), .OAMUX1(GND), .OAMUX2(VCC), 
        .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND), .DLYGLA3(GND)
        , .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND), 
        .OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND), 
        .OBMUX2(GND), .DLYYB0(GND), .DLYYB1(GND), .DLYYB2(GND), 
        .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND), .DLYGLB1(GND), 
        .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND), 
        .OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND), 
        .OCMUX0(GND), .OCMUX1(GND), .OCMUX2(GND), .DLYYC0(GND), 
        .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND), 
        .DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND)
        , .DLYGLC4(GND), .FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(
        VCC), .FINDIV3(GND), .FINDIV4(GND), .FINDIV5(GND), 
        .FINDIV6(GND), .FBDIV0(VCC), .FBDIV1(GND), .FBDIV2(VCC), 
        .FBDIV3(GND), .FBDIV4(GND), .FBDIV5(GND), .FBDIV6(GND), 
        .FBDLY0(GND), .FBDLY1(GND), .FBDLY2(GND), .FBDLY3(GND), 
        .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND), .XDLYSEL(GND), 
        .VCOSEL0(GND), .VCOSEL1(GND), .VCOSEL2(GND));
    defparam Core.VCOFREQUENCY = 33.000;  
endmodule

The "PLL Configuration Bits Description" section on page 106 provides descriptions of the PLL 
configuration bits for completeness. The configuration bits are shown as busses only for purposes of 
illustration. They will actually be broken up into individual pins in compilation libraries and all simulation 
models. For example, the FBSEL[1:0] bus will actually appear as pins FBSEL1 and FBSEL0. The setting 
of these select lines for the static PLL configuration is performed by the software and is completely 
transparent to the user.
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ProASIC3L FPGA Fabric User’s Guide
When SmartGen is used to define the configuration that will be shifted in via the serial interface, 
SmartGen prints out the values of the 81 configuration bits. For ease of use, several configuration bits 
are automatically inferred by SmartGen when the dynamic PLL core is generated; however, <71:73> 
(STATASEL, STATBSEL, STATCSEL) and <77:79> (DYNASEL, DYNBSEL, DYNCSEL) depend on the 
input clock source of the corresponding CCC. Users must first run Layout in Designer to determine the 
exact setting for these ports. After Layout is complete, generate the "CCC_Configuration" report by 
choosing Tools > Reports > CCC_Configuration in the Designer software. Refer to "PLL Configuration 
Bits Description" on page 106 for descriptions of the PLL configuration bits. For simulation purposes, bits 
<71:73> and <78:80> are "don't care." Therefore, it is strongly suggested that SmartGen be used to 
generate the correct configuration bit settings for the dynamic PLL core.
After setting all the required parameters, users can generate one or more PLL configurations with HDL or 
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results 
and messages in a log file:
****************
Macro Parameters
****************

Name                            : dyn_pll_hardio
Family                          : ProASIC3E
Output Format                   : VERILOG
Type                            : Dynamic CCC
Input Freq(MHz)                 : 30.000
CLKA Source                     : Hardwired I/O
Feedback Delay Value Index      : 1
Feedback Mux Select             : 1
XDLY Mux Select                 : No
Primary Freq(MHz)               : 33.000
Primary PhaseShift              : 0
Primary Delay Value Index       : 1
Primary Mux Select              : 4
Secondary1 Freq(MHz)            : 40.000
Use GLB                         : YES
Use YB                          : NO
GLB Delay Value Index           : 1
YB Delay Value Index            : 1
Secondary1 PhaseShift           : 0
Secondary1 Mux Select           : 0
Secondary1 Input Freq(MHz)      : 40.000
CLKB Source                     : Hardwired I/O
Secondary2 Freq(MHz)            : 50.000
Use GLC                         : YES
Use YC                          : NO
GLC Delay Value Index           : 1
YC Delay Value Index            : 1
Secondary2 PhaseShift           : 0
Secondary2 Mux Select           : 0
Secondary2 Input Freq(MHz)      : 50.000
CLKC Source                     : Hardwired I/O

Configuration Bits:
FINDIV[6:0]     0000101
FBDIV[6:0]      0100000
OADIV[4:0]      00100
OBDIV[4:0]      00000
OCDIV[4:0]      00000
OAMUX[2:0]      100
OBMUX[2:0]      000
OCMUX[2:0]      000
FBSEL[1:0]      01
FBDLY[4:0]      00000
XDLYSEL         0
DLYGLA[4:0]     00000
DLYGLB[4:0]     00000
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Notes:
1. Automotive ProASIC3 devices restrict RAM4K9 to a single port or to dual ports with the same clock 180° out of

phase (inverted) between clock pins. In single-port mode, inputs to port B should be tied to ground to prevent
errors during compile. This warning applies only to automotive ProASIC3 parts of certain revisions and earlier.
Contact Technical Support at soc_tech@microsemi.com for information on the revision number for a particular lot
and date code.

2. For FIFO4K18, the same clock 180° out of phase (inverted) between clock pins should be used.
Figure 6-3 • Supported Basic RAM Macros
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256×18 FIFO is full, even though a 128×18 FIFO was requested. For this example, the Almost-Full flag
can be used instead of the Full flag to signal when the 128th data word is reached.
To accommodate different aspect ratios, the almost-full and almost-empty values are expressed in terms
of data bits instead of data words. SmartGen translates the user’s input, expressed in data words, into
data bits internally. SmartGen allows the user to select the thresholds for the Almost-Empty and Almost-
Full flags in terms of either the read data words or the write data words, and makes the appropriate
conversions for each flag.
After the empty or full states are reached, the FIFO can be configured so the FIFO counters either stop or
continue counting. For timing numbers, refer to the appropriate family datasheet.

Signal Descriptions for FIFO4K18
The following signals are used to configure the FIFO4K18 memory element:

WW and RW
These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 6-6).

WBLK and RBLK
These signals are active-low and will enable the respective ports when LOW. When the RBLK signal is
HIGH, that port’s outputs hold the previous value.

WEN and REN
Read and write enables. WEN is active-low and REN is active-high by default. These signals can be
configured as active-high or -low.

WCLK and RCLK
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver. 
Note: For the Automotive ProASIC3 FIFO4K18, for the same clock, 180° out of phase (inverted)

between clock pins should be used.
RPIPE
This signal is used to specify pipelined read on the output. A LOW on RPIPE indicates a nonpipelined
read, and the data appears on the output in the same clock cycle. A HIGH indicates a pipelined read, and
data appears on the output in the next clock cycle.

RESET
This active-low signal resets the control logic and forces the output hold state registers to zero when
asserted. It does not reset the contents of the memory array (Table 6-7 on page 160).
While the RESET signal is active, read and write operations are disabled. As with any asynchronous
RESET signal, care must be taken not to assert it too close to the edges of active read and write clocks. 

WD
This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data
width less than 18 is specified, unused higher-order signals must be grounded (Table 6-7 on page 160). 

Table 6-6 • Aspect Ratio Settings for WW[2:0]

WW[2:0] RW[2:0] D×W

000 000 4k×1

001 001 2k×2

010 010 1k×4

011 011 512×9

100 100 256×18

101, 110, 111 101, 110, 111 Reserved
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
//
addr_counter counter_1 (.Clock(data_update), .Q(wr_addr), .Aset(rst_n), 

.Enable(enable));
addr_counter counter_2 (.Clock(test_clk), .Q(rd_addr), .Aset(rst_n),

.Enable( test_active));

endmodule

Interface Block / UJTAG Wrapper
This example is a sample wrapper, which connects the interface block to the UJTAG and the memory
blocks.
// WRAPPER
module top_init (TDI, TRSTB, TMS, TCK, TDO, test, test_clk, test_ out);

input TDI, TRSTB, TMS, TCK;
output TDO;
input test, test_clk;
output [3:0] test_out;

wire [7:0] IR;
wire reset, DR_shift, DR_cap, init_clk, DR_update, data_in, data_out;
wire clk_out, wen, ren;
wire [3:0] word_in, word_out;
wire [1:0] write_addr, read_addr;

UJTAG UJTAG_U1 (.UIREG0(IR[0]), .UIREG1(IR[1]), .UIREG2(IR[2]), .UIREG3(IR[3]),
.UIREG4(IR[4]), .UIREG5(IR[5]), .UIREG6(IR[6]), .UIREG7(IR[7]), .URSTB(reset),
.UDRSH(DR_shift), .UDRCAP(DR_cap), .UDRCK(init_clk), .UDRUPD(DR_update),
.UT-DI(data_in), .TDI(TDI), .TMS(TMS), .TCK(TCK), .TRSTB(TRSTB), .TDO(TDO),
.UT-DO(data_out));

mem_block RAM_block (.DO(word_out), .RCLOCK(clk_out), .WCLOCK(clk_out), .DI(word_in),
.WRB(wen), .RDB(ren), .WAD-DR(write_addr), .RADDR(read_addr));

interface init_block (.IR(IR), .rst_n(reset), .data_shift(DR_shift), .clk_in(init_clk),
.data_update(DR_update), .din_ser(data_in), .dout_ser(data_out), .test(test),
.test_out(test_out), .test_clk(test_clk), .clk_out(clk_out), .wr_en(wen),
.rd_en(ren), .write_word(word_in), .read_word(word_out), .rd_addr(read_addr),
.wr_addr(write_addr));

endmodule

Address Counter
module addr_counter (Clock, Q, Aset, Enable);

input Clock;
output [1:0] Q;
input Aset;
input Enable;

reg [1:0] Qaux;

always @(posedge Clock or negedge Aset)
begin

if (!Aset) Qaux <= 2'b11;
else if (Enable) Qaux <= Qaux + 1;

end

assign Q = Qaux;

endmodule
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Software Support
The SmartGen core generator is the easiest way to select and configure the memory blocks
(Figure 6-12). SmartGen automatically selects the proper memory block type and aspect ratio, and
cascades the memory blocks based on the user's selection. SmartGen also configures any additional
signals that may require tie-off. 
SmartGen will attempt to use the minimum number of blocks required to implement the desired memory.
When cascading, SmartGen will configure the memory for width before configuring for depth. For
example, if the user requests a 256×8 FIFO, SmartGen will use a 512×9 FIFO configuration, not 256×18. 

Figure 6-12 • SmartGen Core Generator Interface 
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
without reprogramming the device. Dynamic flag settings are determined by register values and can be
altered without reprogramming the device by reloading the register values either from the design or
through the UJTAG interface described in the "Initializing the RAM/FIFO" section on page 164.
SmartGen can also configure the FIFO to continue counting after the FIFO is full. In this configuration,
the FIFO write counter will wrap after the counter is full and continue to write data. With the FIFO
configured to continue to read after the FIFO is empty, the read counter will also wrap and re-read data
that was previously read. This mode can be used to continually read back repeating data patterns stored
in the FIFO (Figure 6-15).

FIFOs configured using SmartGen can also make use of the port mapping feature to configure the
names of the ports.

Limitations
Users should be aware of the following limitations when configuring SRAM blocks for low power flash
devices:

• SmartGen does not track the target device in a family, so it cannot determine if a configured
memory block will fit in the target device.

• Dual-port RAMs with different read and write aspect ratios are not supported.
• Cascaded memory blocks can only use a maximum of 64 blocks of RAM. 
• The Full flag of the FIFO is sensitive to the maximum depth of the actual physical FIFO block, not

the depth requested in the SmartGen interface. 

Figure 6-15 • SmartGen FIFO Configuration Interface
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Example: For a bus consisting of 20 equidistant loads, the terminations given in EQ 1 provide the
required differential voltage, in worst-case industrial operating conditions, at the farthest receiver:

RS = 60 Ω, RT = 70 Ω, given ZO = 50 Ω (2") and Zstub = 50 Ω (~1.5").

EQ 1

Figure 7-8 • A B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
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I/O Structures in IGLOOe and ProASIC3E Devices
I/O Banks and I/O Standards Compatibility
I/Os are grouped into I/O voltage banks. 
Each I/O voltage bank has dedicated I/O supply and ground voltages (VMV/GNDQ for input buffers and 
VCCI/GND for output buffers). Because of these dedicated supplies, only I/Os with compatible standards 
can be assigned to the same I/O voltage bank. Table 8-3 on page 217 shows the required voltage 
compatibility values for each of these voltages.
There are eight I/O banks (two per side).
Every I/O bank is divided into minibanks. Any user I/O in a VREF minibank (a minibank is the region of 
scope of a VREF pin) can be configured as a VREF pin (Figure 8-2). Only one VREF pin is needed to 
control the entire VREF minibank. The location and scope of the VREF minibanks can be determined by 
the I/O name. For details, see the user I/O naming conventions for "IGLOOe and ProASIC3E" on 
page 245. Table 8-5 on page 217 shows the I/O standards supported by IGLOOe and ProASIC3E 
devices, and the corresponding voltage levels. 
I/O standards are compatible if they comply with the following:

• Their VCCI and VMV values are identical.
• Both of the standards need a VREF, and their VREF values are identical.
• All inputs and disabled outputs are voltage tolerant up to 3.3 V.

For more information about I/O and global assignments to I/O banks in a device, refer to the specific pin 
table for the device in the packaging section of the datasheet, and see the user I/O naming conventions 
for "IGLOOe and ProASIC3E" on page 245.  

Figure 8-2 • Typical IGLOOe and ProASIC3E I/O Bank Detail Showing VREF Minibanks
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Programming File Header Definition
In each STAPL programming file generated, there will be information about how the AES key and
FlashLock Pass Key are configured. Table 12-8 shows the header definitions in STAPL programming
files for different security levels.

Example File Headers 
STAPL Files Generated with FlashLock Key and AES Key Containing Key Information

• FlashLock Key / AES key indicated in STAPL file header definition
• Intended ONLY for secured/trusted environment programming applications

=============================================
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EDB9";
NOTE "SAVE_DATA" "FRomStream";
NOTE "SECURITY" "KEYED ENCRYPT ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "20000000";
NOTE "SILSIG" "$00000000";
NOTE "PASS_KEY" "$00123456789012345678901234567890";
NOTE "AES_KEY" "$ABCDEFABCDEFABCDEFABCDEFABCDEFAB";
==============================================

Table 12-8 • STAPL Programming File Header Definitions by Security Level

Security Level STAPL File Header Definition 

No security (no FlashLock Pass Key or AES key) NOTE "SECURITY" "Disable"; 

FlashLock Pass Key with no AES key NOTE "SECURITY" "KEYED "; 

FlashLock Pass Key with AES key NOTE "SECURITY" "KEYED ENCRYPT "; 

Permanent Security Settings option enabled NOTE "SECURITY" "PERMLOCK ENCRYPT ";

AES-encrypted FPGA array (for programming updates) NOTE "SECURITY" "ENCRYPT CORE ";

AES-encrypted FlashROM (for programming updates) NOTE "SECURITY" "ENCRYPT FROM ";

AES-encrypted FPGA array and FlashROM (for
programming updates)

NOTE "SECURITY" "ENCRYPT FROM CORE ";
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FlashROM and Programming Files
Each low power flash device has 1 kbit of on-chip, nonvolatile flash memory that can be accessed from
the FPGA core. This nonvolatile FlashROM is arranged in eight pages of 128 bits (Figure 13-3). Each
page can be programmed independently, with or without the 128-bit AES encryption. The FlashROM can
only be programmed via the IEEE 1532 JTAG port and cannot be programmed from the FPGA core. In
addition, during programming of the FlashROM, the FPGA core is powered down automatically by the
on-chip programming control logic.

When using FlashROM combined with AES, many subscription-based applications or device
serialization applications are possible. The FROM configurator found in the Libero SoC Catalog supports
easy management of the FlashROM contents, even over large numbers of devices. The FROM
configurator can support FlashROM contents that contain the following:

• Static values
• Random numbers
• Values read from a file
• Independent updates of each page

In addition, auto-incrementing of fields is possible. In applications where the FlashROM content is
different for each device, you have the option to generate a single STAPL file for all the devices or
individual serialization files for each device. For more information on how to generate the FlashROM
content for device serialization, refer to the "FlashROM in Microsemi’s Low Power Flash Devices" section
on page 133. 
Libero SoC includes a unique tool to support the generation and management of FlashROM and FPGA
programming files. This tool is called FlashPoint. 
Depending on the applications, designers can use the FlashPoint software to generate a STAPL file with
different contents. In each case, optional AES encryption and/or different security settings can be set. 
In Designer, when you click the Programming File icon, FlashPoint launches, and you can generate
STAPL file(s) with four different cases (Figure 13-4 on page 334). When the serialization feature is used
during the configuration of FlashROM, you can generate a single STAPL file that will program all the
devices or an individual STAPL file for each device. 
The following cases present the FPGA core and FlashROM programming file combinations that can be
used for different applications. In each case, you can set the optional security settings (FlashLock Pass
Key and/or AES Key) depending on the application.

1. A single STAPL file or multiple STAPL files with multiple FlashROM contents and the FPGA core
content. A single STAPL file will be generated if the device serialization feature is not used. You
can program the whole FlashROM or selectively program individual pages.

2. A single STAPL file for the FPGA core content

Figure 13-3 • FlashROM Architecture
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UJTAG Applications in Microsemi’s Low Power Flash Devices
Silicon Testing and Debugging
In many applications, the design needs to be tested, debugged, and verified on real silicon or in the final
embedded application. To debug and test the functionality of designs, users may need to monitor some
internal logic (or nets) during device operation. The approach of adding design test pins to monitor the
critical internal signals has many disadvantages, such as limiting the number of user I/Os. Furthermore,
adding external I/Os for test purposes may require additional or dedicated board area for testing and
debugging. 
The UJTAG tiles of low power flash devices offer a flexible and cost-effective solution for silicon test and
debug applications. In this solution, the signals under test are shifted out to the TDO pin of the TAP
Controller. The main advantage is that all the test signals are monitored from the TDO pin; no pins or
additional board-level resources are required. Figure 17-6 illustrates this technique. Multiple test nets are
brought into an internal MUX architecture. The selection of the MUX is done using the contents of the
TAP Controller instruction register, where individual instructions (values from 16 to 127) correspond to
different signals under test. The selected test signal can be synchronized with the rising or falling edge of
TCK (optional) and sent out to UTDO to drive the TDO output of JTAG. 
For flash devices, TDO (the output) is configured as low slew and the highest drive strength available in
the technology and/or device. Here are some examples: 

1. If the device is A3P1000 and VCCI is 3.3 V, TDO will be configured as LVTTL 3.3 V output,
24 mA, low slew. 

2. If the device is AGLN020 and VCCI is 1.8 V, TDO will be configured as LVCMOS 1.8 V output,
4 mA, low slew. 

3. If the device is AGLE300 and VCCI is 2.5 V, TDO will be configured as LVCMOS 2.5 V output,
24 mA, low slew. 

The test and debug procedure is not limited to the example in Figure 17-5 on page 369. Users can
customize the debug and test interface to make it appropriate for their applications. For example, multiple
test signals can be registered and then sent out through UTDO, each at a different edge of TCK. In other
words, n signals are sampled with an FTCK / n sampling rate. The bandwidth of the information sent out
to TDO is always proportional to the frequency of TCK. 

Figure 17-6 • UJTAG Usage Example in Test and Debug Applications
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Power-Up/-Down Behavior of Low Power Flash Devices
Flash Devices Support Power-Up Behavior
The flash FPGAs listed in Table 18-1 support power-up behavior and the functions described in this 
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed 
in Table 18-1. Where the information applies to only one product line or limited devices, these exclusions 
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices 
as listed in Table 18-1. Where the information applies to only one product line or limited devices, these 
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s 
Lowest Power FPGAs Portfolio.

Table 18-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, 
and packaging information.
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http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf

