
Microsemi Corporation - A3P250L-1FG256 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 36864

Number of I/O 157

Number of Gates 250000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 256-LBGA

Supplier Device Package 256-FPBGA (17x17)

Purchase URL https://www.e-xfl.com/product-detail/microsemi/a3p250l-1fg256

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3p250l-1fg256-4493989
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

1 – FPGA Array Architecture in Low Power Flash
Devices

Device Architecture

Advanced Flash Switch
Unlike SRAM FPGAs, the low power flash devices use a live-at-power-up ISP flash switch as their
programming element. Flash cells are distributed throughout the device to provide nonvolatile,
reconfigurable programming to connect signal lines to the appropriate VersaTile inputs and outputs. In
the flash switch, two transistors share the floating gate, which stores the programming information
(Figure 1-1). One is the sensing transistor, which is only used for writing and verification of the floating
gate voltage. The other is the switching transistor. The latter is used to connect or separate routing nets,
or to configure VersaTile logic. It is also used to erase the floating gate. Dedicated high-performance
lines are connected as required using the flash switch for fast, low-skew, global signal distribution
throughout the device core. Maximum core utilization is possible for virtually any design. The use of the
flash switch technology also removes the possibility of firm errors, which are increasingly common in
SRAM-based FPGAs.

Figure 1-1 • Flash-Based Switch

Sensing Switching

Switch In

Switch Out

Word

Floating Gate
Revision 4 9

ProASIC3L FPGA Fabric User’s Guide
Low Power Modes Overview
Table 2-2 summarizes the low power modes that achieve power consumption reduction when the FPGA
or system is idle.

Static (Idle) Mode
In Static (Idle) mode, none of the clock inputs is switching, and static power is the only power consumed
by the device. This mode can be achieved by switching off the incoming clocks to the FPGA, thus
benefitting from reduced power consumption. In addition, I/Os draw only minimal leakage current. In this
mode, embedded SRAM, I/Os, and registers retain their values so the device can enter and exit this
mode just by switching the clocks on or off.
If the device-embedded PLL is used as the clock source, Static (Idle) mode can easily be entered by
pulling the PLL POWERDOWN pin LOW (active Low), which will turn off the PLL.

Table 2-2 • Power Modes Summary

Mode VCCI VCC Core Clocks
ULSICC
Macro

To Enter
Mode

To Resume
Operation Trigger

Active On On On On N/A Initiate clock None –

Static Idle On On On Off N/A Stop clock Initiate
clock

External

Flash*Freeze
type 1

On On On On* N/A Assert FF
pin

Deassert
FF pin

External

Flash*Freeze
type 2

On On On On* Used to
enter

Flash*Freeze
mode

Assert FF
pin and
assert
LSICC

Deassert
FF pin

External

Sleep On Off Off Off N/A Shut down
VCC

Turn on
VCC supply

External

Shutdown Off Off Off Off N/A Shut down
VCC and

VCCI
supplies

Turn on
VCC and

VCCI
supplies

External

* External clocks can be left toggling while the device is in Flash*Freeze mode. Clocks generated by the embedded
PLL will be turned off automatically.
Revision 4 23

Flash*Freeze Technology and Low Power Modes
Flash*Freeze Mode Device Behavior
Entering Flash*Freeze Mode

• IGLOO, IGLOO nano, IGLOO PLUS, ProASCI3L, and RT ProASIC3 devices are designed and
optimized to enter Flash*Freeze mode only when power supplies are stable. If the device is being
powered up while the FF pin is asserted (Flash*Freeze mode type 1), or while both FF pin and
LSICC signal are asserted (Flash*Freeze mode type 2), the device is expected to enter
Flash*Freeze mode within 5 µs after the I/Os and FPGA core have reached their activation levels.

• If the device is already powered up when the FF pin is asserted, the device will enter
Flash*Freeze mode within 1 µs (type 1). In Flash*Freeze mode type 2 operation, entering
Flash*Freeze mode is completed within 1 µs after both FF pin and LSICC signal are asserted.
Exiting Flash*Freeze mode is completed within 1 µs after deasserting the FF pin only.

PLLs
• If an embedded PLL is used, entering Flash*Freeze mode will automatically power down the PLL.
• The PLL output clocks will stop toggling within 1 µs after the assertion of the FF pin in type 1, or

after both FF pin and LSICC signal are asserted in type 2. At the same time, I/Os will transition
into the state specified in Table 2-6 on page 29. The user design must ensure it is safe to enter
Flash*Freeze mode.

I/Os and Globals
• While entering Flash*Freeze mode, inputs, globals, and PLLs will enter their Flash*Freeze state

asynchronously to each other. As a result, clock and data glitches and narrow pulses may be
generated while entering Flash*Freeze mode, as shown in Figure 2-5.

• I/O banks are not all deactivated simultaneously when entering Flash*Freeze mode. This can
cause clocks and inputs to become disabled at different times, resulting in unexpected data being
captured.

• Upon entering Flash*Freeze mode, all inputs and globals become tied High internally (except
when an input hold state is used on IGLOO nano or IGLOO PLUS devices). If any of these signals
are driven Low or tied Low externally, they will experience a Low to High transition internally when
entering Flash*Freeze mode.

• Upon entering type 2 Flash*Freeze mode, ensure the LSICC signal (active High) does not de-
assert. This can prevent the device from entering Flash*Freeze mode.

• Asynchronous input to output paths may experience output glitches. For example, on a direct in-
to-out path, if the current state is '0' and the input bank turns off first, the input and then the output
will transition to '1' before the output enters its Flash*Freeze state. This can be prevented by
using latches in asynchronous in-to-out paths.

• The above situations can cause glitches or invalid data to be clocked into and preserved in the
device. Refer to the "Flash*Freeze Design Guide" section on page 34 for solutions.

Figure 2-5 • Narrow Clock Pulses During Flash*Freeze Entrance and Exit

External Clock

Internal Clock

Enters
Flash*Freeze

Mode

Exits
Flash*Freeze

Mode

Flash*Freeze Pin
30 Revision 4

ProASIC3L FPGA Fabric User’s Guide
During Flash*Freeze Mode
• PLLs are turned off during Flash*Freeze mode.
• I/O pads are configured according to Table 2-5 on page 28 and Table 2-6 on page 29.
• Inputs and input clocks to the FPGA can toggle without any impact on static power consumption,

assuming weak pull-up or pull-down is not selected.
• If weak pull-up or pull-down is selected and the input is driven to the opposite direction, power

dissipation will occur.
• Any toggling signals will be charging and discharging the package pin capacitance.
• IGLOO and ProASIC3L outputs will be tristated unless the I/O is configured with weak pull-up or

pull-down. The output of the I/O to the FPGA core is logic High regardless of whether the I/O pin
is configured with a weak pull-up or pull-down. Refer to Table 2-5 on page 28 for more
information.

• IGLOO nano and IGLOO PLUS output behavior will be based on the configuration defined by the
user. Refer to Table 2-6 on page 29 for a description of output behavior during Flash*Freeze
mode.

• The JTAG circuit is active; however, JTAG operations, such as JTAG commands, JTAG bypass,
programming, and authentication, cannot be executed. The device must exit Flash*Freeze mode
before JTAG commands can be sent. TCK should be static to avoid extra power consumption
from the JTAG state machine.

• The FF pin must be externally asserted for the device to stay in Flash*Freeze mode.
• The FF pin is still active; i.e., the pin is used to exit Flash*Freeze mode when deasserted.

Exiting Flash*Freeze Mode
I/Os and Globals

• While exiting Flash*Freeze mode, inputs and globals will exit their Flash*Freeze state
asynchronously to each other. As a result, clock and data glitches and narrow pulses may be
generated while exiting Flash*Freeze mode, unless clock gating schemes are used.

• I/O banks are not all activated simultaneously when exiting Flash*Freeze mode. This can cause
clocks and inputs to become enabled at different times, resulting in unexpected data being
captured.

• Upon exiting Flash*Freeze mode, inputs and globals will no longer be tied High internally (does
not apply to input hold state on IGLOO nano and IGLOO PLUS). If any of these signals are driven
Low or tied Low externally, they will experience a High-to-Low transition internally when exiting
Flash*Freeze mode.

• Applies only to IGLOO nano and IGLOO PLUS: Output hold state is asynchronously controlled by
the signal driving the output buffer (output signal). This ensures a clean, glitch-free transition from
hold state to output drive. However, any glitches on the output signal during exit from
Flash*Freeze mode may result in glitches on the output pad.

• The above situations can cause glitches or invalid data to be clocked into and preserved in the
device. Refer to the "Flash*Freeze Design Guide" on page 34 for solutions.

PLLs
• If the embedded PLL is used, the design must allow maximum acquisition time (per device

datasheet) for the PLL to acquire the lock signal.

Flash*Freeze Pin Locations
Refer to the Pin Descriptions and Packaging chapter of specific device datasheets for information
regarding Flash*Freeze pin location on the available packages. The Flash*Freeze pin location is
independent of the device, allowing migration to larger or smaller devices while maintaining the same pin
location on the board.
Revision 4 31

Flash*Freeze Technology and Low Power Modes
v1.2
(continued)

Figure 2-3 • Flash*Freeze Mode Type 2 – Controlled by Flash*Freeze Pin and
Internal Logic (LSICC signal) was updated.

27

Figure 2-4 • Flash*Freeze Mode Type 2 – Timing Diagram was revised to show
deasserting LSICC after the device has exited Flash*Freeze mode.

27

The "IGLOO nano and IGLOO PLUS I/O State in Flash*Freeze Mode" section was
added to include information for IGLOO PLUS devices. Table 2-6 • IGLOO nano and
IGLOO PLUS Flash*Freeze Mode (type 1 and type 2)—I/O Pad State is new.

28, 29

The "During Flash*Freeze Mode" section was revised to include a new bullet
pertaining to output behavior for IGLOO PLUS. The bullet on JTAG operation was
revised to provide more detail.

31

Figure 2-6 • Controlling Power-On/-Off State Using Microprocessor and Power FET
and Figure 2-7 • Controlling Power-On/-Off State Using Microprocessor and Voltage
Regulator were updated to include IGLOO PLUS.

33, 33

The first sentence of the "Shutdown Mode" section was updated to list the devices
for which it is supported.

32

The first paragraph of the "Power-Up/-Down Behavior" section was revised. The
second sentence was changed to, "The I/Os remain tristated until the last voltage
supply (VCC or VCCI) is powered to its activation level." The word "activation"
replaced the word "functional." The sentence, "During power-down, device I/Os
become tristated once the first power supply (VCC or VCCI) drops below its
deactivation voltage level" was revised. The word "deactivation" replaced the word
"brownout."

33

The "Prototyping for IGLOO and ProASIC3L Devices Using ProASIC3" section was
revised to state that prototyping in ProASIC3 does not apply for the IGLOO PLUS
family.

2-21

Table 2-8 • Prototyping/Migration Solutions, Table 2-9 • Device Migration—IGLOO
Supported Packages in ProASIC3 Devices, and Table 2-10 • Device Migration—
ProASIC3L Supported Packages in ProASIC3 Devices were updated with a table
note stating that device migration is not supported for IGLOO PLUS devices.

2-21,
2-23

The text following Table 2-10 • Device Migration—ProASIC3L Supported Packages
in ProASIC3 Devices was moved to a new section: the "Flash*Freeze Design
Guide" section.

34

v1.1
(February 2008)

Table 2-1 • Flash-Based FPGAs was updated to remove the ProASIC3, ProASIC3E,
and Automotive ProASIC3 families, which were incorrectly included.

22

v1.0
(January 2008)

Detailed descriptions of low power modes are described in the advanced
datasheets. This application note was updated to describe how to use the features
in an IGLOO/e application.

N/A

Figure 2-1 • Flash*Freeze Mode Type 1 – Controlled by the Flash*Freeze Pin was
updated.

25

Figure 2-2 • Flash*Freeze Mode Type 1 – Timing Diagram is new. 25

Steps 4 and 5 are new in the "Flash*Freeze Type 2: Control by Dedicated
Flash*Freeze Pin and Internal Logic" section.

26

Date Changes Page
44 Revision 4

ProASIC3L FPGA Fabric User’s Guide
During Layout, Designer will assign two of the signals to quadrant global locations.

Step 3 (optional)
You can also assign the QCLK1_c and QCLK2_c nets to quadrant regions using the following PDC
commands:
assign_local_clock –net QCLK1_c –type quadrant UL
assign_local_clock –net QCLK2_c –type quadrant LL

Step 4
Import this PDC with the netlist and run Compile again. You will see the following in the Compile report:
The following nets have been assigned to a global resource:
Fanout Type Name

1536 INT_NET Net : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536 SET/RESET_NET Net : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256 CLK_NET Net : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256 CLK_NET Net : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

The following nets have been assigned to a quadrant clock resource using PDC:
Fanout Type Name

256 CLK_NET Net : QCLK1_c

Driver: QCLK1_pad_CLKINT
Region: quadrant_UL

256 CLK_NET Net : QCLK2_c
Driver: QCLK2_pad_CLKINT
Region: quadrant_LL

Step 5
Run Layout.

Global Management in PLL Design
This section describes the legal global network connections to PLLs in the low power flash devices. For
detailed information on using PLLs, refer to "Clock Conditioning Circuits in Low Power Flash Devices and
Mixed Signal FPGAs" section on page 77. Microsemi recommends that you use the dedicated global
pins to directly drive the reference clock input of the associated PLL for reduced propagation delays and
clock distortion. However, low power flash devices offer the flexibility to connect other signals to
reference clock inputs. Each PLL is associated with three global networks (Figure 3-5 on page 52). There
are some limitations, such as when trying to use the global and PLL at the same time:

• If you use a PLL with only primary output, you can still use the remaining two free global
networks.

• If you use three globals associated with a PLL location, you cannot use the PLL on that location.
• If the YB or YC output is used standalone, it will occupy one global, even though this signal does

not go to the global network.
Revision 4 73

ProASIC3L FPGA Fabric User’s Guide
This section outlines the following device information: CCC features, PLL core specifications, functional
descriptions, software configuration information, detailed usage information, recommended board-level
considerations, and other considerations concerning global networks in low power flash devices.

Clock Conditioning Circuits with Integrated PLLs
Each of the CCCs with integrated PLLs includes the following:

• 1 PLL core, which consists of a phase detector, a low-pass filter, and a four-phase voltage-
controlled oscillator

• 3 global multiplexer blocks that steer signals from the global pads and the PLL core onto the
global networks

• 6 programmable delays and 1 fixed delay for time advance/delay adjustments
• 5 programmable frequency divider blocks to provide frequency synthesis (automatically

configured by the SmartGen macro builder tool)

Clock Conditioning Circuits without Integrated PLLs
There are two types of simplified CCCs without integrated PLLs in low power flash devices.

1. The simplified CCC with programmable delays, which is composed of the following:
– 3 global multiplexer blocks that steer signals from the global pads and the programmable

delay elements onto the global networks
– 3 programmable delay elements to provide time delay adjustments

2. The simplified CCC (referred to as CCC-GL) without programmable delay elements, which is
composed of the following:
– A global multiplexer block that steer signals from the global pads onto the global networks
Revision 4 95

ProASIC3L FPGA Fabric User’s Guide
Phase Adjustment
The four phases available (0, 90, 180, 270) are phases with respect to VCO (PLL output). The
VCO is divided to achieve the user's CCC required output frequency (GLA, YB/GLB, YC/GLC). The
division happens after the selection of the VCO phase. The effective phase shift is actually the VCO
phase shift divided by the output divider. This is why the visual CCC shows both the actual achievable
phase and more importantly the actual delay that is equivalent to the phase shift that can be
achieved.

Dynamic PLL Configuration
The CCCs can be configured both statically and dynamically.
In addition to the ports available in the Static CCC, the Dynamic CCC has the dynamic shift register
signals that enable dynamic reconfiguration of the CCC. With the Dynamic CCC, the ports CLKB and
CLKC are also exposed. All three clocks (CLKA, CLKB, and CLKC) can be configured independently.
The CCC block is fully configurable. The following two sources can act as the CCC configuration bits.

Flash Configuration Bits
The flash configuration bits are the configuration bits associated with programmed flash switches. These
bits are used when the CCC is in static configuration mode. Once the device is programmed, these bits
cannot be modified. They provide the default operating state of the CCC.

Dynamic Shift Register Outputs
This source does not require core reprogramming and allows core-driven dynamic CCC reconfiguration.
When the dynamic register drives the configuration bits, the user-defined core circuit takes full control
over SDIN, SDOUT, SCLK, SSHIFT, and SUPDATE. The configuration bits can consequently be
dynamically changed through shift and update operations in the serial register interface. Access to the
logic core is accomplished via the dynamic bits in the specific tiles assigned to the PLLs.
Figure 4-21 illustrates a simplified block diagram of the MUX architecture in the CCCs.

The selection between the flash configuration bits and the bits from the configuration register is made
using the MODE signal shown in Figure 4-21. If the MODE signal is logic HIGH, the dynamic shift
register configuration bits are selected. There are 81 control bits to configure the different functions of the
CCC.

Note: *For Fusion, bit <88:81> is also needed.
Figure 4-21 • The CCC Configuration MUX Architecture

SDIN

SCLK

RESET_ENABLE

SDOUT

SSHIFT

MODE

SUPDATE

Configuration Bits

Dynamic Shift
Register

Flash
Programming
Configuration

Bits

<80:0>*

<80>
<79:0> <79:0>*
Revision 4 103

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Recommended Board-Level Considerations
The power to the PLL core is supplied by VCCPLA/B/C/D/E/F (VCCPLx), and the associated ground
connections are supplied by VCOMPLA/B/C/D/E/F (VCOMPLx). When the PLLs are not used, the
Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The
user should tie unused VCCPLx and VCOMPLx pins to ground. Optionally, the PLL can be turned on/off
during normal device operation via the POWERDOWN port (see Table 4-3 on page 84).

PLL Power Supply Decoupling Scheme
The PLL core is designed to tolerate noise levels on the PLL power supply as specified in the datasheets.
When operated within the noise limits, the PLL will meet the output peak-to-peak jitter specifications
specified in the datasheets. User applications should always ensure the PLL power supply is powered
from a noise-free or low-noise power source.
However, in situations where the PLL power supply noise level is higher than the tolerable limits, various
decoupling schemes can be designed to suppress noise to the PLL power supply. An example is
provided in Figure 4-38. The VCCPLx and VCOMPLx pins correspond to the PLL analog power supply
and ground.
Microsemi strongly recommends that two ceramic capacitors (10 nF in parallel with 100 nF) be placed
close to the power pins (less than 1 inch away). A third generic 10 µF electrolytic capacitor is
recommended for low-frequency noise and should be placed farther away due to its large physical size.
Microsemi recommends that a 6.8 µH inductor be placed between the supply source and the capacitors
to filter out any low-/medium- and high-frequency noise. In addition, the PCB layers should be controlled
so the VCCPLx and VCOMPLx planes have the minimum separation possible, thus generating a good-
quality RF capacitor.
For more recommendations, refer to the Board-Level Considerations application note.
Recommended 100 nF capacitor:

• Producer BC Components, type X7R, 100 nF, 16 V
• BC Components part number: 0603B104K160BT
• Digi-Key part number: BC1254CT-ND
• Digi-Key part number: BC1254TR-ND

Recommended 10 nF capacitor:
• Surface-mount ceramic capacitor
• Producer BC Components, type X7R, 10 nF, 50 V
• BC Components part number: 0603B103K500BT
• Digi-Key part number: BC1252CT-ND
• Digi-Key part number: BC1252TR-ND

Figure 4-38 • Decoupling Scheme for One PLL (should be replicated for each PLL used)

IGLOO/e or
ProASIC3/E

Device

Power
Supply

VCCPLx

VCOMPLx

10 nF 100 nF 10 μF
128 Revision 4

http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Example of RAM Initialization
This section of the document presents a sample design in which a 4×4 RAM block is being initialized
through the JTAG port. A test feature has been implemented in the design to read back the contents of
the RAM after initialization to verify the procedure.
The interface block of this example performs two major functions: initialization of the RAM block and
running a test procedure to read back the contents. The clock output of the interface is either the write
clock (for initialization) or the read clock (for reading back the contents). The Verilog code for the
interface block is included in the "Sample Verilog Code" section on page 167.
For simulation purposes, users can declare the input ports of the UJTAG macro for easier assignment in
the testbench. However, the UJTAG input ports should not be declared on the top level during synthesis.
If the input ports of the UJTAG are declared during synthesis, the synthesis tool will instantiate input
buffers on these ports. The input buffers on the ports will cause Compile to fail in Designer.
Figure 6-10 shows the simulation results for the initialization step of the example design.
The CLK_OUT signal, which is the clock output of the interface block, is the inverted DR_UPDATE output
of the UJTAG macro. It is clear that it gives sufficient time (while the TAP Controller is in the Data
Register Update state) for the write address and data to become stable before loading them into the RAM
block.
Figure 6-11 presents the test procedure of the example. The data read back from the memory block
matches the written data, thus verifying the design functionality.

Figure 6-10 • Simulation of Initialization Step

Figure 6-11 • Simulation of the Test Procedure of the Example
166 Revision 4

ProASIC3L FPGA Fabric User’s Guide
The ROM emulation application is based on RAM block initialization. If the user's main design has
access only to the read ports of the RAM block (RADDR, RD, RCLK, and REN), and the contents of the
RAM are already initialized through the TAP, then the memory blocks will emulate ROM functionality for
the core design. In this case, the write ports of the RAM blocks are accessed only by the user interface
block, and the interface is activated only by the TAP Instruction Register contents.
Users should note that the contents of the RAM blocks are lost in the absence of applied power.
However, the 1 kbit of flash memory, FlashROM, in low power flash devices can be used to retain data
after power is removed from the device. Refer to the "SRAM and FIFO Memories in Microsemi's Low
Power Flash Devices" section on page 147 for more information.

Sample Verilog Code
Interface Block
`define Initialize_start 8'h22 //INITIALIZATION START COMMAND VALUE
`define Initialize_stop 8'h23 //INITIALIZATION START COMMAND VALUE

module interface(IR, rst_n, data_shift, clk_in, data_update, din_ser, dout_ser, test,
test_out,test_clk,clk_out,wr_en,rd_en,write_word,read_word,rd_addr, wr_addr);

input [7:0] IR;
input [3:0] read_word; //RAM DATA READ BACK
input rst_n, data_shift, clk_in, data_update, din_ser; //INITIALIZATION SIGNALS
input test, test_clk; //TEST PROCEDURE CLOCK AND COMMAND INPUT
output [3:0] test_out; //READ DATA
output [3:0] write_word; //WRITE DATA
output [1:0] rd_addr; //READ ADDRESS
output [1:0] wr_addr; //WRITE ADDRESS
output dout_ser; //TDO DRIVER
output clk_out, wr_en, rd_en;

wire [3:0] write_word;
wire [1:0] rd_addr;
wire [1:0] wr_addr;
wire [3:0] Q_out;
wire enable, test_active;

reg clk_out;

//SELECT CLOCK FOR INITIALIZATION OR READBACK TEST
always @(enable or test_clk or data_update)
begin

case ({test_active})
1 : clk_out = test_clk ;
0 : clk_out = !data_update;
default : clk_out = 1'b1;

endcase
end

assign test_active = test && (IR == 8'h23);
assign enable = (IR == 8'h22);
assign wr_en = !enable;
assign rd_en = !test_active;
assign test_out = read_word;
assign dout_ser = Q_out[3];

//4-bit SIN/POUT SHIFT REGISTER
shift_reg data_shift_reg (.Shiften(data_shift), .Shiftin(din_ser), .Clock(clk_in),

.Q(Q_out));

//4-bit PIPELINE REGISTER
D_pipeline pipeline_reg (.Data(Q_out), .Clock(data_update), .Q(write_word));
Revision 4 167

I/O Structures in IGLOO and ProASIC3 Devices
I/O Banks
Advanced I/Os are divided into multiple technology banks. Each device has two to four banks, and the
number of banks is device-dependent as described above. The bank types have different characteristics,
such as drive strength, the I/O standards supported, and timing and power differences.
There are three types of banks: Advanced I/O banks, Standard Plus I/O banks, and Standard I/O banks.
Advanced I/O banks offer single-ended and differential capabilities. These banks are available on the
east and west sides of 250K, 400K, 600K, and 1M gate devices.
Standard Plus I/O banks offer LVTTL/LVCMOS and PCI single-ended I/O standards. These banks are
available on the north and south sides of 250K, 400K, 600K, and 1M gate devices as well as all sides of
125K and 60K devices.
Standard I/O banks offer LVTTL/LVCMOS single-ended I/O standards. These banks are available on all
sides of 30K gate devices.
Table 7-4 shows the I/O bank types, devices and bank locations supported, drive strength, slew rate
control, and supported standards.
All inputs and disabled outputs are voltage-tolerant up to 3.3 V.
For more information about I/O and global assignments to I/O banks in a device, refer to the specific pin
table for the device in the packaging section of the datasheet and the "User I/O Naming Convention"
section on page 206.

Table 7-4 • IGLOO and ProASIC3 Bank Type Definitions and Differences

I/O Bank Type
Device and Bank

Location Drive Strength

I/O Standards Supported

LVTTL/
LVCMOS PCI/PCI-X

LVPECL,
LVDS,

B-LVDS,
M-LVDS

Standard 30 k gate devices (all
banks)

Refer to Table 7-14
on page 203

✓ Not
Supported

Not Supported

Standard Plus 60 k and 125 k gate
devices (all banks)

Refer to Table 7-15
on page 203

✓ ✓ Not Supported

North and south banks
of 250 k and 1 M gate
devices

Refer to Table 7-15
on page 203

✓ ✓ Not Supported

Advanced East and west banks of
250 k and 1 M gate
devices

Refer to Table 7-16
on page 203

✓ ✓ ✓
178 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Example: For a bus consisting of 20 equidistant loads, the terminations given in EQ 1 provide the
required differential voltage, in worst-case industrial operating conditions, at the farthest receiver:

RS = 60 Ω, RT = 70 Ω, given ZO = 50 Ω (2") and Zstub = 50 Ω (~1.5").

EQ 1

Figure 7-8 • A B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

...

RT RT

BIBUF_LVDSR

RS RS

Z0

Receiver

+ -

Zstub

T

RS RS

Z0

Transceiver

+ -
R

RS RS

Z0

Receiver

+ -
T

Transceiver

+ -

D

RS RS

Z0

Driver

+ -

EN EN EN EN EN

Zstub Zstub Zstub Zstub Zstub Zstub Zstub

Z0 Z0 Z0Z0

RS RS

Zstub Zstub

Z0

Z0

Z0

Z0
Revision 4 187

ProASIC3L FPGA Fabric User’s Guide
Note: The 30 k gate devices do not support a PLL (VCOMPLF and VCCPLF pins).
Figure 7-19 • Naming Conventions of IGLOO and ProASIC3 Devices with Two I/O Banks – Top View

Figure 7-20 • Naming Conventions of IGLOO and ProASIC3 Devices with Four I/O Banks – Top View

CCC
"A"

CCC
"E"

CCC/PLL
"F"

CCC
"B"

CCC
"D"

CCC
"C"

AGL030/A3P030

AGL060/A3P060

AGL125/A3P125

GND

VCC
GND

VCCIB1
VCC
GND
VCCIB0

Bank 1

Bank 1

Bank 0

Bank 0

Bank 1

Bank 0

VCOMPLF
VCCPLF

GND
VCC

VCCIB1
GND

GND
VCC
VCCIB0
GNDVMV1

GNDQ
GND

G
N

D
V

C
C

IB
1

V
C

C
IB

1
V

C
C

V
C

C
IB

1
V

C
C

G
N

D

V
M

V
1

G
N

D
Q

G
N

D

TC
K

TD
I

TM
S

VJTAG
TRST
TDO
VPUMP
GND

GND
GNDQ
VMV0

G
N

D

V
C

C

G
N

D

V
C

C
I

V
C

C
I

V
C

C
V

C
C

I

G
N

D

V
M

V
0

G
N

D
Q

A3P250
A3P400
A3P600

A3P1000

GND

Vcc
GND

VCCIB3 Bank 3

Bank 3

Bank 1

Bank 1

Bank 2

Bank 0

VCOMPLF
VCCPLF

GND
VCC

VCCIB3
GND

VMV3

GNDQ
GND

G
N

D
V

C
C

I

V
C

C
I

V
C

C

V
C

C
I

V
C

C
G

N
D

V
M

V
2

G
N

D
Q

G
N

D

TC
K

TD
I

TM
S

VJTAG
TRST
TDO
VPUMP
GND

GND
VCC
VCCIB1
GND

VCC
GND
VCCIB1

GND
GNDQ
VMV1

V
C

C
V

C
C

IB
0

G
N

D

V
C

C
V

C
C

IB
0

G
N

D

V
C

C
IB

0
G

N
D

V
M

V
0

G
N

D
Q

CCC
"A"

CCC
"E"

CCC/PLL
"F"

CCC
"B"

CCC
"D"

CCC
"C"
Revision 4 207

ProASIC3L FPGA Fabric User’s Guide
Table 7-19 shows some high-level interfacing examples using low power flash devices.

Conclusion
IGLOO and ProASIC3 support for multiple I/O standards minimizes board-level components and makes
possible a wide variety of applications. The Microsemi Designer software, integrated with Libero SoC,
presents a clear visual display of I/O assignments, allowing users to verify I/O and board-level design
requirements before programming the device. The IGLOO and ProASIC3 device I/O features and
functionalities ensure board designers can produce low-cost and low power FPGA applications fulfilling
the complexities of contemporary design needs.

Table 7-19 • High-Level Interface Examples

Interface

Clock I/O

Type Frequency Type Signals In Signals Out Data I/O

GM Src Sync 125 MHz LVTTL 8 8 125 Mbps

TBI Src Sync 125 MHz LVTTL 10 10 125 Mbps

XSBI Src Sync 644 MHz LVDS 16 16 644 Mbps

XGMI Src Sync DDR 156 MHz HSTL1 32 32 312 Mbps

FlexBus 3 Sys Sync 104 MHz LVTTL ≤ 32 ≤ 32 ≤ 104

Pos-PHY3/SPI-3 Sys Sync 104 LVTTL 8, 16, 32 8, 16, 32 ≤ 104 Mbps

FlexBus 4/SPI-4.1 Src Sync 200 MHz HSTL1 16,64 16,64 200 Mbps

Pos-PHY4/SPI-4.2 Src Sync DDR ≥ 311 MHz LVDS 16 16 ≥ 622 Mbps

SFI-4.1 Src Sync 622 MHz LVDS 16 16 622 Mbps

CSIX L1 Sys Sync ≤ 250 MHz HSTL1 32,64,96,128 32,64,96,128 ≤ 250 Mbps

Hyper Transport Sys Sync DDR ≤ 800 MHz LVDS 2,4,8,16 2,4,8,16 ≤ 1.6 Gbps

Rapid I/O Parallel Sys Sync DDR 250 MHz – 1 GHz LVDS 8,16 8,16 ≤ 2 Gbps

Star Fabric CDR LVDS 4 4 622 Mbps

Note: Sys Sync = System Synchronous Clocking, Src Sync = Source Synchronous Clocking, and CDR = Clock and
Data Recovery.
Revision 4 209

ProASIC3L FPGA Fabric User’s Guide
I/O Standards

Single-Ended Standards
These I/O standards use a push-pull CMOS output stage with a voltage referenced to system ground to
designate logical states. The input buffer configuration, output drive, and I/O supply voltage (VCCI) vary
among the I/O standards (Figure 8-6).

The advantage of these standards is that a common ground can be used for multiple I/Os. This simplifies
board layout and reduces system cost. Their low-edge-rate (dv/dt) data transmission causes less
electromagnetic interference (EMI) on the board. However, they are not suitable for high-frequency
(>200 MHz) switching due to noise impact and higher power consumption.

LVTTL (Low-Voltage TTL)
This is a general-purpose standard (EIA/JESD8-B) for 3.3 V applications. It uses an LVTTL input buffer
and a push-pull output buffer. The LVTTL output buffer can have up to six different programmable drive
strengths. The default drive strength is 12 mA. VCCI is 3.3 V. Refer to "I/O Programmable Features" on
page 227 for details.

LVCMOS (Low-Voltage CMOS)
The low power flash devices provide four different kinds of LVCMOS: LVCMOS 3.3 V, LVCMOS 2.5 V,
LVCMOS 1.8 V, and LVCMOS 1.5 V. LVCMOS 3.3 V is an extension of the LVCMOS standard (JESD8-
B–compliant) used for general-purpose 3.3 V applications. LVCMOS 2.5 V is an extension of the
LVCMOS standard (JESD8-5–compliant) used for general-purpose 2.5 V applications. LVCMOS 2.5 V
for the 30 k gate devices has a clamp diode to VCCI, but for all other devices there is no clamp diode.
There is yet another standard supported by IGLOO and ProASIC3 devices (except A3P030): LVCMOS
2.5/5.0 V. This standard is similar to LVCMOS 2.5 V, with the exception that it can support up to 3.3 V on
the input side (2.5 V output drive).
LVCMOS 1.8 V is an extension of the LVCMOS standard (JESD8-7–compliant) used for general-purpose
1.8 V applications. LVCMOS 1.5 V is an extension of the LVCMOS standard (JESD8-11–compliant) used
for general-purpose 1.5 V applications.
The VCCI values for these standards are 3.3 V, 2.5 V, 1.8 V, and 1.5 V, respectively. Like LVTTL, the
output buffer has up to seven different programmable drive strengths (2, 4, 6, 8, 12, 16, and 24 mA).
Refer to "I/O Programmable Features" on page 227 for details.

3.3 V PCI (Peripheral Component Interface)
This standard specifies support for both 33 MHz and 66 MHz PCI bus applications. It uses an LVTTL
input buffer and a push-pull output buffer. With the aid of an external resistor, this I/O standard can be
5 V–compliant for low power flash devices. It does not have programmable drive strength.

3.3 V PCI-X (Peripheral Component Interface Extended)
An enhanced version of the PCI specification, 3.3 V PCI-X can support higher average bandwidths; it
increases the speed that data can move within a computer from 66 MHz to 133 MHz. It is backward-

Figure 8-6 • Single-Ended I/O Standard Topology

OUT

GND

IN

GND

Device 1 Device 2

VCCI VCCI
Revision 4 223

I/O Structures in IGLOOe and ProASIC3E Devices
5 V Input and Output Tolerance
IGLOO and ProASIC3 devices are both 5 V-input– and 5 V–output–tolerant if certain I/O standards are
selected. Table 8-6 on page 218 shows the I/O standards that support 5 V input tolerance. Only 3.3 V
LVTTL/LVCMOS standards support 5 V output tolerance. Refer to the appropriate family datasheet for
detailed description and configuration information.
This feature is not shown in the I/O Attribute Editor.

5 V Input Tolerance
I/Os can support 5 V input tolerance when LVTTL 3.3 V, LVCMOS 3.3 V, LVCMOS 2.5 V, and LVCMOS
2.5 V / 5.0 V configurations are used (see Table 8-13 on page 231). There are four recommended
solutions for achieving 5 V receiver tolerance (see Figure 8-10 on page 233 to Figure 8-13 on page 235
for details of board and macro setups). All the solutions meet a common requirement of limiting the
voltage at the input to 3.6 V or less. In fact, the I/O absolute maximum voltage rating is 3.6 V, and any
voltage above 3.6 V may cause long-term gate oxide failures.

Solution 1
The board-level design must ensure that the reflected waveform at the pad does not exceed the limits
provided in the recommended operating conditions in the datasheet. This is a requirement to ensure
long-term reliability.
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used for
clamping, and the voltage must be limited by the two external resistors as explained below. Relying on
the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.
This solution requires two board resistors, as demonstrated in Figure 8-10 on page 233. Here are some
examples of possible resistor values (based on a simplified simulation model with no line effects and
10 Ω transmitter output resistance, where Rtx_out_high = [VCCI – VOH] / IOH and
Rtx_out_low = VOL / IOL).
Example 1 (high speed, high current):

Rtx_out_high = Rtx_out_low = 10 Ω

R1 = 36 Ω (±5%), P(r1)min = 0.069 Ω

R2 = 82 Ω (±5%), P(r2)min = 0.158 Ω

Imax_tx = 5.5 V / (82 × 0.95 + 36 × 0.95 + 10) = 45.04 mA

tRISE = tFALL = 0.85 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

tRISE = tFALL = 4 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Example 2 (low-medium speed, medium current):

Rtx_out_high = Rtx_out_low = 10 Ω

R1 = 220 Ω (±5%), P(r1)min = 0.018 Ω

R2 = 390 Ω (±5%), P(r2)min = 0.032 Ω

Imax_tx = 5.5 V / (220 × 0.95 + 390 × 0.95 + 10) = 9.17 mA

tRISE = tFALL = 4 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

tRISE = tFALL = 20 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Other values of resistors are also allowed as long as the resistors are sized appropriately to limit the
voltage at the receiving end to 2.5 V < Vin(rx) < 3.6 V when the transmitter sends a logic 1. This range of
Vin_dc(rx) must be assured for any combination of transmitter supply (5 V ± 0.5 V), transmitter output
resistance, and board resistor tolerances.
Temporary overshoots are allowed according to the overshoot and undershoot table in the datasheet.
232 Revision 4

ProASIC3L FPGA Fabric User’s Guide
FlashROM Security Use Models
Each of the subsequent sections describes in detail the available selections in Microsemi Designer as an
aid to understanding security applications and generating appropriate programming files for those
applications. Before proceeding, it is helpful to review Figure 12-7 on page 309, which gives a general
overview of the programming file generation flow within the Designer software as well as what occurs
during the device programming stage. Specific settings are discussed in the following sections.
In Figure 12-7 on page 309, the flow consists of two sub-flows. Sub-flow 1 describes programming
security settings to the device only, and sub-flow 2 describes programming the design contents only.
In Application 1, described in the "Application 1: Trusted Environment" section on page 309, the user
does not need to generate separate files but can generate one programming file containing both security
settings and design contents. Then programming of the security settings and design contents is done in
one step. Both sub-flow 1 and sub-flow 2 are used.
In Application 2, described in the "Application 2: Nontrusted Environment—Unsecured Location" section
on page 309, the trusted site should follow sub-flows 1 and 2 separately to generate two separate
programming files. The programming file from sub-flow 1 will be used at the trusted site to program the
device(s) first. The programming file from sub-flow 2 will be sent off-site for production programming.
In Application 3, described in the "Application 3: Nontrusted Environment—Field Updates/Upgrades"
section on page 310, typically only sub-flow 2 will be used, because only updates to the design content
portion are needed and no security settings need to be changed.
In the event that update of the security settings is necessary, see the "Reprogramming Devices" section
on page 321 for details. For more information on programming low power flash devices, refer to the "In-
System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X" section on
page 327.
Revision 4 311

Security in Low Power Flash Devices
Note: If programming the Security Header only, just perform sub-flow 1.
If programming design content only, just perform sub-flow 2.

Figure 12-9 • Security Programming Flows

Software Generates Programming File
with Desired Security Settings:
 – Encrypted with AES and Protected
 with FlashLock Pass Key
 – Protected with FlashLock Pass Key Only

Program
Design
Contents

Program
Security
Settings

User

1

2

Designer Software Programming Software

Programming
Previously
Secured

Device(s)?

Yes

No

No

Software Generates
Programming File

with Desired
Design Contents

(FPGA Array,
FlashROM, FB,

or All) Yes

No

Device
Previously

Programmed?

Software Performs
Comparison of

FlashLock Pass Key
between

Programming File
and Device

Software Performs
Comparison of

FlashLock Pass Key
between

Programming File
and Device

Encrypted Design
Content Passes
through MAC for
Authentication

Software
Programs
Selected

Security Settings
into Device

No

Does
FlashLock
Pass Key
Match?

Does
FlashLock
Pass Key
Match?

Yes

No

Returns Error

Returns Error

Yes

Correct?

Yes

No

AES Key Used
Previously?

Yes

User Assigns Desired Security Settings
To FPGA/FlashROM/FB/All:
 – AES Key and FlashLock Pass Key
 – FlashLock Pass Key Only

User Must
Reassign Exact

FlashLock Pass Key
Previously

Programmed
into the Device

User Must
Reassign Exact

AES Key
Previously

Programmed
into the Device

Software Generates
Programming File

with FlashLock
Pass Key and

Design Contents

Design Content
Programmed
into Device

Software Generates
Programming File

with Encrypted
Design Contents

Design Content
Decrypted and
Programmed
into Device
312 Revision 4

Security in Low Power Flash Devices
3. Choose the desired settings for the FlashROM configurations to be programmed (Figure 12-13).
Click Finish to generate the STAPL programming file for the design.

Generation of Security Header Programming File Only—
Application 2
As mentioned in the "Application 2: Nontrusted Environment—Unsecured Location" section on page 309,
the designer may employ FlashLock Pass Key protection or FlashLock Pass Key with AES encryption on
the device before sending it to a nontrusted or unsecured location for device programming. To achieve
this, the user needs to generate a programming file containing only the security settings desired (Security
Header programming file).
Note: If AES encryption is configured, FlashLock Pass Key protection must also be configured.
The available security options are indicated in Table 12-4 and Table 12-5 on page 317.

Figure 12-13 • FlashROM Configuration Settings for Low Power Flash Devices

Table 12-4 • FlashLock Security Options for IGLOO and ProASIC3

Security Option FlashROM Only FPGA Core Only
Both FlashROM

and FPGA

No AES / no FlashLock – – –

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓
316 Revision 4

