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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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VersaNet Global Network Distribution
One of the architectural benefits of low power flash architecture is the set of powerful, low-delay
VersaNet global networks that can access the VersaTiles, SRAM, and I/O tiles of the device. Each device
offers a chip global network with six global lines (except for nano 10 k, 15 k, and 20 k gate devices) that
are distributed from the center of the FPGA array. In addition, each device (except the 10 k through 30 k
gate device) has four quadrant global networks, each consisting of three quadrant global net resources.
These quadrant global networks can only drive a signal inside their own quadrant. Each VersaTile has
access to nine global line resources—three quadrant and six chip-wide (main) global networks—and a
total of 18 globals are available on the device (3 × 4 regional from each quadrant and 6 global). 
Figure 3-1 shows an overview of the VersaNet global network and device architecture for devices 60 k
and above. Figure 3-2 and Figure 3-3 on page 50 show simplified VersaNet global networks. 
The VersaNet global networks are segmented and consist of spines, global ribs, and global multiplexers
(MUXes), as shown in Figure 3-1. The global networks are driven from the global rib at the center of the
die or quadrant global networks at the north or south side of the die. The global network uses the MUX
trees to access the spine, and the spine uses the clock ribs to access the VersaTile. Access is available
to the chip or quadrant global networks and the spines through the global MUXes. Access to the spine
using the global MUXes is explained in the "Spine Architecture" section on page 57. 
These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including
clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-
skew local clock networks using spines for up to 252 internal/external clocks or other high-fanout nets in
low power flash devices. Optimal usage of these low-skew networks can result in significant
improvement in design performance.

Note: Not applicable to 10 k through 30 k gate devices
Figure 3-1 • Overview of VersaNet Global Network and Device Architecture
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Table 3-3 • Quadrant Global Pin Name 

I/O Type Beginning of I/O Name Notes

Single-Ended GAAO/IOuxwByVz
GAA1/IOuxwByVz
GAA2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time

GABO/IOuxwByVz
GAB1/IOuxwByVz
GAB2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GAC0/IOuxwByVz
GAC1/IOuxwByVz
GAC2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GBAO/IOuxwByVz
GBA1/IOuxwByVz
GBA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBBO/IOuxwByVz
GBB1/IOuxwByVz
GBB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBC0/IOuxwByVz
GBC1/IOuxwByVz
GBC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDAO/IOuxwByVz
GDA1/IOuxwByVz
GDA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDBO/IOuxwByVz
GDB1/IOuxwByVz
GDB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDC0/IOuxwByVz
GDC1/IOuxwByVz
GDC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEAO/IOuxwByVz
GEA1/IOuxwByVz
GEA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEBO/IOuxwByVz
GEB1/IOuxwByVz
GEB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEC0/IOuxwByVz
GEC1/IOuxwByVz
GEC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

Note: Only one of the I/Os can be directly connected to a quadrant at a time. 
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

Notes were added where appropriate to point out that IGLOO nano and
ProASIC3 nano devices do not support differential inputs (SAR 21449).

N/A

The "Global Architecture" section and "VersaNet Global Network Distribution"
section were revised for clarity (SARs 20646, 24779).

47, 49

The "I/O Banks and Global I/Os" section was moved earlier in the document,
renamed to "Chip and Quadrant Global I/Os", and revised for clarity. Figure 3-4 •
Global Connections Details, Figure 3-6 • Global Inputs, Table 3-2 • Chip Global
Pin Name, and Table 3-3 • Quadrant Global Pin Name are new (SARs 20646,
24779).

51

The "Clock Aggregation Architecture" section was revised (SARs 20646, 24779). 57

Figure 3-7 • Chip Global Aggregation was revised (SARs 20646, 24779). 59

The "Global Macro and Placement Selections" section is new (SARs 20646,
24779).

64

v1.4
(December 2008)

The "Global Architecture" section was updated to include 10 k devices, and to
include information about VersaNet global support for IGLOO nano devices.

47

The Table 3-1 • Flash-Based FPGAs was updated to include IGLOO nano and
ProASIC3 nano devices.

48

The "VersaNet Global Network Distribution" section was updated to include 10 k
devices and to note an exception in global lines for nano devices.

49

Figure 3-2 • Simplified VersaNet Global Network (30 k gates and below) is new. 50

The "Spine Architecture" section was updated to clarify support for 10 k and nano
devices.

57

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include IGLOO nano and ProASIC3 nano devices.

57

The figure in the CLKBUF_LVDS/LVPECL row of Table 3-8 • Clock Macros was
updated to change CLKBIBUF to CLKBUF.

62

v1.3
(October 2008)

A third bullet was added to the beginning of the "Global Architecture" section: In
Fusion devices, the west CCC also contains a PLL core. In the two larger devices
(AFS600 and AFS1500), the west and east CCCs each contain a PLL.

47

The "Global Resource Support in Flash-Based Devices" section was revised to
include new families and make the information more concise.

48

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include A3PE600/L in the device column.

57

Table note 1 was revised in Table 3-9 • I/O Standards within CLKBUF to include
AFS600 and AFS1500.

63

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 3-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

48
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• Use quadrant global region assignments by finding the clock net associated with the CCC macro 
under the Nets tab and creating a quadrant global region for the net, as shown in Figure 4-33. 

External I/O–Driven CCCs
The above-mentioned recommendation for proper layout techniques will ensure the correct assignment. 
It is possible that, especially with External I/O–Driven CCC macros, placement of the CCC macro in a 
desired location may not be achieved. For example, assigning an input port of an External I/O–Driven 
CCC near a particular CCC location does not guarantee global assignments to the desired location. This 
is because the clock inputs of External I/O–Driven CCCs can be assigned to any I/O location; therefore, 
it is possible that the CCC connected to the clock input will be routed to a location other than the one 
closest to the I/O location, depending on resource availability and placement constraints.

Clock Placer
The clock placer is a placement engine for low power flash devices that places global signals on the chip 
global and quadrant global networks. Based on the clock assignment constraints for the chip global and 
quadrant global clocks, it will try to satisfy all constraints, as well as creating quadrant clock regions when 
necessary. If the clock placer fails to create the quadrant clock regions for the global signals, it will report 
an error and stop Layout. 
The user must ensure that the constraints set to promote clock signals to quadrant global networks are 
valid.

Cascading CCCs
The CCCs in low power flash devices can be cascaded. Cascading CCCs can help achieve more 
accurate PLL output frequency results than those achievable with a single CCC. In addition, this 
technique is useful when the user application requires the output clock of the PLL to be a multiple of the 
reference clock by an integer greater than the maximum feedback divider value of the PLL (divide by 
128) to achieve the desired frequency.
For example, the user application may require a 280 MHz output clock using a 2 MHz input reference 
clock, as shown in Figure 4-34 on page 126. 

Figure 4-33 • Quadrant Clock Assignment for a Global Net
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FlashROM Security
Low power flash devices have an on-chip Advanced Encryption Standard (AES) decryption core,
combined with an enhanced version of the Microsemi flash-based lock technology (FlashLock®).
Together, they provide unmatched levels of security in a programmable logic device. This security
applies to both the FPGA core and FlashROM content. These devices use the 128-bit AES (Rijndael)
algorithm to encrypt programming files for secure transmission to the on-chip AES decryption core. The
same algorithm is then used to decrypt the programming file. This key size provides approximately 3.4 ×
1038 possible 128-bit keys. A computing system that could find a DES key in a second would take
approximately 149 trillion years to crack a 128-bit AES key. The 128-bit FlashLock feature in low power
flash devices works via a FlashLock security Pass Key mechanism, where the user locks or unlocks the
device with a user-defined key. Refer to the "Security in Low Power Flash Devices" section on page 301. 
If the device is locked with certain security settings, functions such as device read, write, and erase are
disabled. This unique feature helps to protect against invasive and noninvasive attacks. Without the
correct Pass Key, access to the FPGA is denied. To gain access to the FPGA, the device first must be
unlocked using the correct Pass Key. During programming of the FlashROM or the FPGA core, you can
generate the security header programming file, which is used to program the AES key and/or FlashLock
Pass Key. The security header programming file can also be generated independently of the FlashROM
and FPGA core content. The FlashLock Pass Key is not stored in the FlashROM. 
Low power flash devices with AES-based security allow for secure remote field updates over public
networks such as the Internet, and ensure that valuable intellectual property (IP) remains out of the
hands of IP thieves. Figure 5-5 shows this flow diagram.  

Figure 5-5 • Programming FlashROM Using AES
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FlashROM Generation and Instantiation in the Design
The SmartGen core generator, available in Libero SoC and Designer, is the only tool that can be used to
generate the FlashROM content. SmartGen has several user-friendly features to help generate the
FlashROM contents. Instead of selecting each byte and assigning values, you can create a region within
a page, modify the region, and assign properties to that region. The FlashROM user interface, shown in
Figure 5-10, includes the configuration grid, existing regions list, and properties field. The properties field
specifies the region-specific information and defines the data used for that region. You can assign values
to the following properties: 

1. Static Fixed Data—Enables you to fix the data so it cannot be changed during programming time.
This option is useful when you have fixed data stored in this region, which is required for the
operation of the design in the FPGA. Key storage is one example. 

2. Static Modifiable Data—Select this option when the data in a particular region is expected to be
static data (such as a version number, which remains the same for a long duration but could
conceivably change in the future). This option enables you to avoid changing the value every time
you enter new data. 

3. Read from File—This provides the full flexibility of FlashROM usage to the customer. If you have
a customized algorithm for generating the FlashROM data, you can specify this setting. You can
then generate a text file with data for as many devices as you wish to program, and load that into
the FlashPoint programming file generation software to get programming files that include all the
data. SmartGen will optionally pass the location of the file where the data is stored if the file is
specified in SmartGen. Each text file has only one type of data format (binary, decimal, hex, or
ASCII text). The length of each data file must be shorter than or equal to the selected region
length. If the data is shorter than the selected region length, the most significant bits will be
padded with 0s. For multiple text files for multiple regions, the first lines are for the first device. In
SmartGen, Load Sim. Value From File allows you to load the first device data in the MEM file for
simulation.

4. Auto Increment/Decrement—This scenario is useful when you specify the contents of FlashROM
for a large number of devices in a series. You can specify the step value for the serial number and
a maximum value for inventory control. During programming file generation, the actual number of
devices to be programmed is specified and a start value is fed to the software. 

Figure 5-10 • SmartGen GUI of the FlashROM 
Revision 4 141



FlashROM in Microsemi’s Low Power Flash Devices
Figure 5-12 shows the programming file generator, which enables different STAPL file generation
methods. When you select Program FlashROM and choose the UFC file, the FlashROM Settings
window appears, as shown in Figure 5-13. In this window, you can select the FlashROM page you want
to program and the data value for the configured regions. This enables you to use a different page for
different programming files.   

The programming hardware and software can load the FlashROM with the appropriate STAPL file.
Programming software handles the single STAPL file that contains multiple FlashROM contents for
multiple devices, and programs the FlashROM in sequential order (e.g., for device serialization). This
feature is supported in the programming software. After programming with the STAPL file, you can run
DEVICE_INFO to check the FlashROM content.

Figure 5-12 • Programming File Generator

Figure 5-13 • Setting FlashROM during Programming File Generation
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Example: For a bus consisting of 20 equidistant loads, the terminations given in EQ 1 provide the
required differential voltage, in worst-case industrial operating conditions, at the farthest receiver:

RS = 60 Ω, RT = 70 Ω, given ZO = 50 Ω (2") and Zstub = 50 Ω (~1.5").

EQ 1

Figure 7-8 • A B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
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IGLOO and ProASIC3
For boards and cards with three levels of staging, card power supplies must have time to reach their final
values before the I/Os are connected. Pay attention to the sizing of power supply decoupling capacitors
on the card to ensure that the power supplies are not overloaded with capacitance.
Cards with three levels of staging should have the following sequence: 

• Grounds
• Powers 
• I/Os and other pins

For Level 3 and Level 4 compliance with the 30K gate device, cards with two levels of staging should
have the following sequence:

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is
powered up, while the component itself is powered down, or when power supplies are floating.
The resistor value is calculated based on the decoupling capacitance on a given power supply. The RC
constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically
connected to the system that is in operation. This means that all input buffers of the subsystem must
present very high input impedance with no power applied so as not to disturb the operating portion of the
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 7-12 on
page 193). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from
the power supply to ground should be provided. This can be done with a discharge resistor or a switched
resistor. This is necessary because the 30K gate devices do not have built-in I/O clamp diodes. 
For other IGLOO and ProASIC3 devices, since the I/O clamp diode is always active, cold-sparing can be
accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system or
by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI,
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when
a weak pull-down is chosen and the input pin is driven HIGH. This current can be avoided by driving the
input LOW when a weak pull-down resistor is used and driving it HIGH when a weak pull-up resistor is
used.
This current draw can occur in the following cases:
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I/O Structures in IGLOO and ProASIC3 Devices
Simultaneously Switching Outputs (SSOs) and Printed Circuit 
Board Layout

Each I/O voltage bank has a separate ground and power plane for input and output circuits (VMV/GNDQ
for input buffers and VCCI/GND for output buffers). This isolation is necessary to minimize simultaneous
switching noise from the input and output (SSI and SSO). The switching noise (ground bounce and
power bounce) is generated by the output buffers and transferred into input buffer circuits, and vice
versa.
Since voltage bounce originates on the package inductance, the VMV and VCCI supplies have separate
package pin assignments. For the same reason, GND and GNDQ also have separate pin assignments.
The VMV and VCCI pins must be shorted to each other on the board. Also, the GND and GNDQ pins
must be shorted to each other on the board. This will prevent unwanted current draw from the power
supply.
SSOs can cause signal integrity problems on adjacent signals that are not part of the SSO bus. Both
inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will
transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce
ground bounce noise and VCCI dip noise. These two noise types are caused by rapidly changing
currents through GND and VCCI package pin inductances during switching activities (EQ 2 and EQ 3).

Ground bounce noise voltage = L(GND) × di/dt
EQ 2

VCCI dip noise voltage = L(VCCI) × di/dt
EQ 3

Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The
shielding should be done both on the board and inside the package unless otherwise described. 
In-package shielding can be achieved in several ways; the required shielding will vary depending on
whether pins next to the SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or
GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to
be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus.
Also, noise generated by the SSO bus needs to be reduced inside the package. 
PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time,
maintaining signal integrity between devices.
Key issues that need to be considered are as follows:

• Power and ground plane design and decoupling network design
• Transmission line reflections and terminations

For extensive data per package on the SSO and PCB issues, refer to the "ProASIC3/E SSO and Pin
Placement and Guidelines" chapter of the ProASIC3 FPGA Fabric User’s Guide. 
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List of Changes
The following table lists critical changes that were made in each revision of the document.  

Date Changes Page

August 2012 Figure 8-1 • DDR Configured I/O Block Logical Representation and Figure 8-3 •
DDR Configured I/O Block Logical Representation were revised to indicate that
resets on registers 1, 3, 4, and 5 are active high rather than active low. The title of
the figures was revised from "I/O Block Logical Representation" (SAR 40685).

213, 220

AGLE1500 was removed from Table 8-2 • Supported I/O Standards because it is
not a valid offering. LVCMOS 1.2 was added to the single-ended standards.
LVCMOS 1.2 was added to Table 8-3 • VCCI Voltages and Compatible IGLOOe
and ProASIC3E Standards (SAR 33207).

215, 217

Lack of a heading for the "User I/O Naming Convention" section made the
information difficult to locate. A heading now introduces the user I/O naming
conventions (SAR 38059).

245

Figure 8-5 • Simplified I/O Buffer Circuitry and Table 8-8 • Programmable I/O
Features (user control via I/O Attribute Editor) were modified to indicate that
programmable input delay control is applicable only to ProASIC3E, IGLOOe,
ProASIC3EL, and RT ProASIC3 devices (SAR 39666).

222, 227

The hyperlink for the Board-Level Considerations application note was corrected
(SAR 36663).

246, 248

June 2011 Figure 8-1 • DDR Configured I/O Block Logical Representation and Figure 8-3 • 
DDR Configured I/O Block Logical Representation were revised so that the 
I/O_CLR and I/O_OCLK nets are no longer joined in front of Input Register 3 but 
instead on the branch of the CLR/PRE signal (SAR 26052).

213, 220

The "Pro I/Os—IGLOOe, ProASIC3EL, and ProASIC3E" section was revised. 
Formerly it stated, "3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant." This sentence 
now reads, "3.3 V PCI and 3.3 V PCI-X can be configured to be 5 V–tolerant" (SAR 
20983).

215

Table 8-5 • Legal IGLOOe and ProASIC3E I/O Usage Matrix within the Same Bank 
was revised as follows (SAR 22467):
The combination of 3.3 V I/O bank voltage with 1.50 V minibank voltage and LVDS, 
B-LVDS, M-LVDS, and DDR was made an illegal combination (now gray instead of 
white). 
The combination of 2.5 V I/O bank voltage with no minibank voltage and LVDS, 
B-LVDS, M-LVDS, and DDR was made a valid combination (now white instead of 
gray).

217

The following sentence was removed from the "LVCMOS (Low-Voltage CMOS)"
section (SAR 22634): "All these versions use a 3.3 V–tolerant CMOS input buffer
and a push-pull output buffer."

223

The "Electrostatic Discharge Protection" section was revised to remove references 
to tolerances (refer to the Reliability Report for tolerances). The Machine Model 
(MM) is not supported and was deleted from this section (SAR 24385).

231

The "I/O Interfacing" section was revised to state that low power flash devices are 
5 V–input– and 5 V–output–tolerant if certain I/O standards are selected, removing 
"without adding any extra circuitry," which was incorrect (SAR 21404).

247

July 2010 This chapter is no longer published separately with its own part number and 
version but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

The terminology in the "Low Power Flash Device I/O Support" section was revised. 214
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4. Right-click and then choose Highlight VREF range. All the pins covered by that VREF pin will be
highlighted (Figure 9-14).  

Using PinEditor or ChipPlanner, VREF pins can also be assigned (Figure 9-15).  

To unassign a VREF pin:
1. Select the pin to unassign.
2. Right-click and choose Use Pin for VREF. The check mark next to the command disappears. The

VREF pin is now a regular pin.
Resetting the pin may result in unassigning I/O cores, even if they are locked. In this case, a warning
message appears so you can cancel the operation.
After you assign the VREF pins, right-click a VREF pin and choose Highlight VREF Range to see how
many I/Os are covered by that pin. To unhighlight the range, choose Unhighlight All from the Edit
menu.

Figure 9-14 • VREF Range

Figure 9-15 • Assigning VREF from PinEditor
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I/O Software Control in Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 The notes in Table 9-2 • Designer State (resulting from I/O attribute modification)
were revised to clarify which device families support programmable input delay
(SAR 39666).

253

June 2011 Figure 9-2 • SmartGen Catalog was updated (SAR 24310). Figure 8-3 • Expanded
I/O Section and the step associated with it were deleted to reflect changes in the
software.

254

The following rule was added to the "VREF Rules for the Implementation of
Voltage-Referenced I/O Standards" section: 
Only minibanks that contain input or bidirectional I/Os require a VREF. A VREF is
not needed for minibanks composed of output or tristated I/Os (SAR 24310).

265

July 2010 Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 9-1 • Flash-Based
FPGAs.

252

The notes for Table 9-2 • Designer State (resulting from I/O attribute modification)
were revised to indicate that skew control and input delay do not apply to nano
devices.

253

v1.3
(October 2008)

The "Flash FPGAs I/O Support" section was revised to include new families and
make the information more concise.

252

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 9-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

252

v1.1
(March 2008)

This document was previously part of the I/O Structures in IGLOO and ProASIC3
Devices document. The content was separated and made into a new document.

N/A

Table 9-2 • Designer State (resulting from I/O attribute modification) was updated
to include note 2 for IGLOO PLUS.

253
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I/O Cell Architecture
Low power flash devices support DDR in the I/O cells in four different modes: Input, Output, Tristate, and
Bidirectional pins. For each mode, different I/O standards are supported, with most I/O standards having
special sub-options. For the ProASIC3 nano and IGLOO nano devices, DDR is supported only in the
60 k, 125 k, and 250 k logic densities. Refer to Table 10-2 for a sample of the available I/O options.
Additional I/O options can be found in the relevant family datasheet.

Table 10-2 • DDR I/O Options

DDR Register 
Type I/O Type I/O Standard Sub-Options Comments

Receive Register Input Normal None 3.3 V TTL (default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

Pull-Up None (default)

PCI/PCI-X None

GTL/GTL+ Voltage 2.5 V, 3.3 V (3.3 V default)

HSTL Class  I / II (I default)

SSTL2/SSTL3 Class  I / II (I default)

LVPECL None  

LVDS None  

Transmit Register Output Normal None 3.3 V TTL (default)

LVTTL Output Drive 2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

PCI/PCI-X None  

GTL/GTL+ Voltage 1.8 V, 2.5 V, 3.3 V (3.3 V default)

HSTL Class  I / II (I default)

SSTL2/SSTL3 Class  I / II (I default)

LVPECL* None  

LVDS* None  

Note: *IGLOO nano and ProASIC3 nano devices do not support differential inputs.
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11 – Programming Flash Devices

Introduction
This document provides an overview of the various programming options available for the Microsemi 
flash families. The electronic version of this document includes active links to all programming resources, 
which are available at http://www.microsemi.com/soc/products/hardware/default.aspx. For Microsemi 
antifuse devices, refer to the Programming Antifuse Devices document.

Summary of Programming Support 
FlashPro4 and FlashPro3 are high-performance in-system programming (ISP) tools targeted at the latest 
generation of low power flash devices offered by the SmartFusion,® Fusion, IGLOO,® and ProASIC®3 
families, including ARM-enabled devices. FlashPro4 and FlashPro3 offer extremely high performance 
through the use of USB 2.0, are high-speed compliant for full use of the 480 Mbps bandwidth, and can 
program ProASIC3 devices in under 30 seconds. Powered exclusively via USB, FlashPro4 and 
FlashPro3 provide a VPUMP voltage of 3.3 V for programming these devices. 
FlashPro4 replaced FlashPro3 in 2010. FlashPro4 supports SmartFusion, Fusion, ProASIC3,and IGLOO 
devices as well as future generation flash devices. FlashPro4 also adds 1.2 V programming for IGLOO 
nano V2 devices. FlashPro4 is compatible with FlashPro3; however it adds a programming mode 
(PROG_MODE) signal to the previously unused pin 4 of the JTAG connector. The PROG_MODE goes 
high during programming and can be used to turn on a 1.5 V external supply for those devices that 
require 1.5 V for programming. If both FlashPro3 and FlashPro4 programmers are used for programming 
the same boards, pin 4 of the JTAG connector must not be connected to anything on the board because 
FlashPro4 uses pin 4 for PROG_MODE. 

Figure 11-1 • FlashPro Programming Setup
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2. Choose the appropriate security level setting and enter a FlashLock Pass Key. The default is the
Medium security level (Figure 12-12). Click Next.
If you want to select different options for the FPGA and/or FlashROM, this can be set by clicking
Custom Level. Refer to the "Advanced Options" section on page 322 for different custom
security level options and descriptions of each.  

Figure 12-12 • Medium Security Level Selected for Low Power Flash Devices
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Programming File Header Definition
In each STAPL programming file generated, there will be information about how the AES key and
FlashLock Pass Key are configured. Table 12-8 shows the header definitions in STAPL programming
files for different security levels.

Example File Headers 
STAPL Files Generated with FlashLock Key and AES Key Containing Key Information

• FlashLock Key / AES key indicated in STAPL file header definition
• Intended ONLY for secured/trusted environment programming applications

=============================================
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EDB9";
NOTE "SAVE_DATA" "FRomStream";
NOTE "SECURITY" "KEYED ENCRYPT ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "20000000";
NOTE "SILSIG" "$00000000";
NOTE "PASS_KEY" "$00123456789012345678901234567890";
NOTE "AES_KEY" "$ABCDEFABCDEFABCDEFABCDEFABCDEFAB";
==============================================

Table 12-8 • STAPL Programming File Header Definitions by Security Level

Security Level STAPL File Header Definition 

No security (no FlashLock Pass Key or AES key) NOTE "SECURITY" "Disable"; 

FlashLock Pass Key with no AES key NOTE "SECURITY" "KEYED "; 

FlashLock Pass Key with AES key NOTE "SECURITY" "KEYED ENCRYPT "; 

Permanent Security Settings option enabled NOTE "SECURITY" "PERMLOCK ENCRYPT ";

AES-encrypted FPGA array (for programming updates) NOTE "SECURITY" "ENCRYPT CORE ";

AES-encrypted FlashROM (for programming updates) NOTE "SECURITY" "ENCRYPT FROM ";

AES-encrypted FPGA array and FlashROM (for
programming updates)

NOTE "SECURITY" "ENCRYPT FROM CORE ";
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17 – UJTAG Applications in Microsemi’s Low 
Power Flash Devices

Introduction
In Fusion, IGLOO, and ProASIC3 devices, there is bidirectional access from the JTAG port to the core
VersaTiles during normal operation of the device (Figure 17-1). User JTAG (UJTAG) is the ability for the
design to use the JTAG ports for access to the device for updates, etc. While regular JTAG is used, the
UJTAG tiles, located at the southeast area of the die, are directly connected to the JTAG Test Access
Port (TAP) Controller in normal operating mode. As a result, all the functional blocks of the device, such
as Clock Conditioning Circuits (CCCs) with PLLs, SRAM blocks, embedded FlashROM, flash memory
blocks, and I/O tiles, can be reached via the JTAG ports. The UJTAG functionality is available by
instantiating the UJTAG macro directly in the source code of a design. Access to the FPGA core
VersaTiles from the JTAG ports enables users to implement different applications using the TAP
Controller (JTAG port). This document introduces the UJTAG tile functionality and discusses a few
application examples. However, the possible applications are not limited to what is presented in this
document. UJTAG can serve different purposes in many designs as an elementary or auxiliary part of the
design. For detailed usage information, refer to the "Boundary Scan in Low Power Flash Devices"
section on page 357.

Figure 17-1 • Block Diagram of Using UJTAG to Read FlashROM Contents
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Power-Up/-Down Behavior of Low Power Flash Devices
Flash Devices Support Power-Up Behavior
The flash FPGAs listed in Table 18-1 support power-up behavior and the functions described in this 
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed 
in Table 18-1. Where the information applies to only one product line or limited devices, these exclusions 
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices 
as listed in Table 18-1. Where the information applies to only one product line or limited devices, these 
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s 
Lowest Power FPGAs Portfolio.

Table 18-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, 
and packaging information.
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