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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Flash*Freeze Technology and Low Power Modes
Flash*Freeze Mode
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 FPGAs offer an ultra-low static
power mode to reduce power consumption while preserving the state of the registers, SRAM contents,
and I/O states (IGLOO nano and IGLOO PLUS only) without switching off any power supplies, inputs, or
input clocks.
Flash*Freeze technology enables the user to switch to Flash*Freeze mode within 1 µs, thus simplifying
low power design implementation. The Flash*Freeze (FF) pin (active Low) is a dedicated pin used to
enter or exit Flash*Freeze mode directly; or the pin can be routed internally to the FPGA core and state
management IP to allow the user's application to decide if and when it is safe to transition to this mode. If
the FF pin is not used, it can be used as a regular I/O.
The FF pin has a built-in glitch filter and optional Schmitt trigger (not available for all devices) to prevent
entering or exiting Flash*Freeze mode accidentally.
There are two ways to use Flash*Freeze mode. In Flash*Freeze type 1, entering and exiting the mode is
exclusively controlled by the assertion and deassertion of the FF pin. This enables an external processor
or human interface device to directly control Flash*Freeze mode; however, valid data must be preserved
using standard procedures (refer to the "Flash*Freeze Mode Device Behavior" section on page 30). In
Flash*Freeze mode type 2, entering and exiting the mode is controlled by both the FF pin AND user-
defined logic. Flash*Freeze management IP may be used in type 2 mode for clock and data
management while entering and exiting Flash*Freeze mode.

Flash*Freeze Type 1: Control by Dedicated Flash*Freeze Pin
Flash*Freeze type 1 is intended for systems where either the device will be reset upon exiting
Flash*Freeze mode, or data and clock are managed externally. The device enters Flash*Freeze mode 1
µs after the dedicated FF pin is asserted (active Low), and returns to normal operation when the FF pin is
deasserted (High) (Figure 2-1 on page 25). In this mode, FF pin assertion or deassertion is the only
condition that determines entering or exiting Flash*Freeze mode.
In Libero® System-on-Chip (SoC) software v8.2 and before, this mode is implemented by enabling
Flash*Freeze mode (default setting) in the Compile options of the Microsemi Designer software. To
simplify usage of Flash*Freeze mode, beginning with Libero software v8.3, an INBUF_FF I/O macro was
introduced. An INBUF_FF I/O buffer must be used to identify the Flash*Freeze input. Microsemi
recommends switching to the new implementation. 
In Libero software v8.3 and later, the user must manually instantiate the INBUF_FF macro in the top level
of the design to implement Flash*Freeze Type 1, as shown in Figure 2-1 on page 25.
24 Revision 4



Flash*Freeze Technology and Low Power Modes
Table 2-4 summarizes the Flash*Freeze mode implementations.

IGLOO, ProASIC3L, and RT ProASIC3 I/O State in Flash*Freeze 
Mode
In IGLOO and ProASIC3L devices, when the device enters Flash*Freeze mode, I/Os become tristated. If
the weak pull-up or pull-down feature is used, the I/Os will maintain the configured weak pull-up or pull-
down status. This feature enables the design to set the I/O state to a certain level that is determined by
the pull-up/-down configuration. 
Table 2-5 shows the I/O pad state based on the configuration and buffer type.
Note that configuring weak pull-up or pull-down for the FF pin is not allowed. The FF pin can be
configured as a Schmitt trigger input in IGLOOe, IGLOO nano, IGLOO PLUS, and ProASIC3EL devices.

Table 2-4 • Flash*Freeze Mode Usage

Flash*Freeze 
Mode Type Description

Flash*Freeze 
Pin State

Instantiate 
ULSICC Macro 

LSICC 
Signal Operating Mode

1 Flash*Freeze mode is
controlled only by the
FF pin.

Deasserted No N/A Normal operation

Asserted No N/A Flash*Freeze mode

2 Flash*Freeze mode is
controlled by the FF
pin and LSICC signal.

"Don’t care" Yes Deasserted Normal operation

Deasserted Yes "Don’t care" Normal operation

Asserted Yes Asserted Flash*Freeze mode

Note: Refer to Table 2-3 on page 26 for Flash*Freeze pin and LSICC signal assertion and deassertion
values.

Table 2-5 • IGLOO, ProASIC3L, and RT ProASIC3 Flash*Freeze Mode (type 1 and type 2)—I/O 
Pad State

Buffer Type
I/O Pad Weak 
Pull-Up/-Down I/O Pad State in Flash*Freeze Mode

Input/Global Enabled Weak pull-up/pull-down*

Disabled Tristate*

Output Enabled Weak pull-up/pull-down

Disabled Tristate

Bidirectional / Tristate
Buffer 

E = 0
(input/tristate)

Enabled Weak pull-up/pull-down*

Disabled Tristate*

E = 1 (output) Enabled Weak pull-up/pull-down

Disabled Tristate

* Internal core logic driven by this input/global buffer will be tied High as long as the device is in
Flash*Freeze mode.
28 Revision 4



Flash*Freeze Technology and Low Power Modes
• The INBUF_FF must be driven by a top-level input port of the design.
• The INBUF_FF AND the ULSICC macro must be used to enable type 2 Flash*Freeze mode.
• For type 2 Flash*Freeze mode, the INBUF_FF MUST drive some logic in the design.
• For type 1 Flash*Freeze mode, the INBUF_FF may drive some logic in the design, but it may also

be left floating.
• Only one INBUF_FF may be instantiated in a device.
• The FF pin threshold voltages are defined by VCCI and the supported single-ended I/O standard

in the corresponding I/O bank.
• The FF pin Schmitt trigger option may be configured in the I/O attribute editor in Microsemi's

Designer software. The Schmitt trigger option is only available for IGLOOe, IGLOO nano, IGLOO
PLUS, ProASIC3EL, and RT ProASIC3 devices.

• A 2 ns glitch filter resides in the Flash*Freeze Technology block to filter unwanted glitches on the
FF pin. 

ULSICC
The User Low Static ICC (ULSICC) macro allows the FPGA core to access the Flash*Freeze Technology
block so that entering and exiting Flash*Freeze mode can be controlled by the user's design. The
ULSICC macro enables a hard block with an available LSICC input port, as shown in Figure 2-3 on
page 27 and Figure 2-10 on page 37. Design rules for the ULSICC macro are as follows:

• The ULSICC macro by itself cannot enable Flash*Freeze mode. The INBUF_FF AND the
ULSICC macro must both be used to enable type 2 Flash*Freeze mode.

• The ULSICC controls entering the Flash*Freeze mode by asserting the LSICC input (logic '1') of
the ULSICC macro. The FF pin must also be asserted (logic '0') to enter Flash*Freeze mode.

• When the LSICC signal is '0', the device cannot enter Flash*Freeze mode; and if already in
Flash*Freeze mode, it will exit.

• When the ULSICC macro is not instantiated in the user's design, the LSICC port will be tied High.

Flash*Freeze Management IP
The Flash*Freeze management IP can be configured with the Libero (or SmartGen) core generator in a
simple, intuitive interface. With the core configuration tool, users can select the number of clocks to be
gated, and select whether or not to implement housekeeping. All port names on the Flash*Freeze
management IP block can be renamed by the user.

• The clock gating (filter) blocks include CLKINT buffers for each gated clock output (version 8.3). 
• When housekeeping is NOT used, the WAIT_HOUSEKEEPING signal will be automatically fed

back into DONE_HOUSEKEEPING inside the core, and the ports will not be available at the IP
core interface.

• The INBUF_FF macro is automatically instantiated within the IP core.
• The INBUF_FF port (default name is "Flash_Freeze_N") must be connected to a top-level input

port of the design.
• The ULSICC macro is automatically instantiated within the IP core, and the LSICC signal is driven

by the FSM.
• Timing analysis can be performed on the clock domain of the source clock (i.e., input to the clock

gating filters). For example, if CLKin becomes CLKin_gated, the timing can be performed on the
CLKin domain in SmartTime. 

• The gated clocks can be added to the clock list if the user wishes to analyze these clocks
specifically. The user can locate the gated clocks by looking for instance names such as those
below:
Top/ff1/ff_1_wrapper_inst/user_ff_1_wrapper/Primary_Filter_Instance/
Latch_For_Clock_Gating:Q
Top/ff1/ff_1_wrapper_inst/user_ff_1_wrapper/genblk1.genblk2.secondary_filter[0].
seconday_filter_instance/Latch_For_Clock_Gating:Q
Top/ff1/ff_1_wrapper_inst/user_ff_1_wrapper/genblk1.genblk2.secondary_filter[1].
seconday_filter_instance/Latch_For_Clock_Gating:Q
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ProASIC3L FPGA Fabric User’s Guide
External I/O Clock Source
External I/O refers to regular I/O pins. The clock source is instantiated with one of the various INBUF 
options and accesses the CCCs via internal routing. The user has the option of assigning this input to 
any of the I/Os labeled with the I/O convention IOuxwByVz. Refer to the "User I/O Naming Conventions 
in I/O Structures" chapter of the appropriate device user’s guide, and for Fusion, refer to the Fusion 
Family of Mixed Signal FPGAs datasheet for more information. Figure 4-11 gives a brief explanation of 
external I/O usage. Choosing this option provides the freedom of selecting any user I/O location but 
introduces additional delay because the signal connects to the routed clock input through internal routing 
before connecting to the CCC reference clock input.
For the External I/O option, the routed signal would be instantiated with a PLLINT macro before 
connecting to the CCC reference clock input. This instantiation is conveniently done automatically by 
SmartGen when this option is selected. Microsemi recommends using the SmartGen tool to generate the 
CCC macro. The instantiation of the PLLINT macro results in the use of the routed clock input of the I/O 
to connect to the PLL clock input. If not using SmartGen, manually instantiate a PLLINT macro before the 
PLL reference clock to indicate that the regular I/O driving the PLL reference clock should be used (see 
Figure 4-11 for an example illustration of the connections, shown in red).
In the above two options, the clock source must be instantiated with one of the various INBUF macros. 
The reference clock pins of the CCC functional block core macros must be driven by regular input 
macros (INBUFs), not clock input macros. 

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal 
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users 
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input 
reference clock of the CCC block.

Figure 4-11 • Illustration of External I/O Usage
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ProASIC3L FPGA Fabric User’s Guide
Figure 4-37 shows the simulation results, where the first PLL’s output period is 3.9 ns (~256 MHz), and 
the stage 2 (final) output period is 3.56 ns (~280 MHz). 

Figure 4-36 • Second-Stage PLL Showing Input of 256 MHz from First Stage and Final Output of 280 MHz

Figure 4-37 • ModelSim Simulation Results

Stage 1 Output Clock Period Stage 2 Output Clock Period
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Conclusion
The advanced CCCs of the IGLOO and ProASIC3 devices are ideal for applications requiring precise 
clock management. They integrate easily with the internal low-skew clock networks and provide flexible 
frequency synthesis, clock deskewing, and/or time-shifting operations.
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August 2012 The "Implementing EXTFB in ProASIC3/E Devices" section is new (SAR 36647). 86

Table 4-7 • Delay Values in Libero SoC Software per Device Family was added to the 
"Clock Delay Adjustment" section (SAR 22709).

102

The "Phase Adjustment" section was rewritten to explain better why the visual 
CCC shows both the actual phase and the actual delay that is equivalent to this phase 
shift (SAR 29647).

103
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36663)
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December 2011 Figure 4-20 • PLL Block Diagram, Figure 4-22 • CCC Block Control Bits – Graphical 
Representation of Assignments, and Table 4-12 • MUXA, MUXB, MUXC were revised 
to change the phase shift assignments for PLLs 4 through 7 (SAR 33791).
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Revision 4 129

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf
http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf


ProASIC3L FPGA Fabric User’s Guide
Conclusion
Fusion, IGLOO, and ProASIC3 devices provide users with extremely flexible SRAM blocks for most
design needs, with the ability to choose between an easy-to-use dual-port memory or a wide-word two-
port memory. Used with the built-in FIFO controllers, these memory blocks also serve as highly efficient
FIFOs that do not consume user gates when implemented. The SmartGen core generator provides a fast
and easy way to configure these memory elements for use in designs.

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

August 2012 The note connected with Figure 6-3 • Supported Basic RAM Macros, regarding
RAM4K9, was revised to explain that it applies only to part numbers of certain
revisions and earlier (SAR 29574).

152

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

v1.5
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 6-1 • Flash-Based
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150
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164
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include new families and make the information more concise.

150

The "SRAM and FIFO Architecture" section was modified to remove "IGLOO and
ProASIC3E" from the description of what the memory block includes, as this
statement applies to all memory blocks.

151

Wording in the "Clocking" section was revised to change "IGLOO and ProASIC3
devices support inversion" to "Low power flash devices support inversion." The
reference to IGLOO and ProASIC3 development tools in the last paragraph of the
section was changed to refer to development tools in general.

157

The "ESTOP and FSTOP Usage" section was updated to refer to FIFO counters
in devices in general rather than only IGLOO and ProASIC3E devices.

160

v1.3
(August 2008)

The note was removed from Figure 6-7 • RAM Block with Embedded FIFO
Controller and placed in the WCLK and RCLK description.

158

The "WCLK and RCLK" description was revised. 159
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(June 2008)
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150
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The "Introduction" section was updated to include the IGLOO PLUS family. 147
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not support SRAM and FIFO.

147
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added to the second note.
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IGLOO and ProASIC3
For boards and cards with three levels of staging, card power supplies must have time to reach their final
values before the I/Os are connected. Pay attention to the sizing of power supply decoupling capacitors
on the card to ensure that the power supplies are not overloaded with capacitance.
Cards with three levels of staging should have the following sequence: 

• Grounds
• Powers 
• I/Os and other pins

For Level 3 and Level 4 compliance with the 30K gate device, cards with two levels of staging should
have the following sequence:

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is
powered up, while the component itself is powered down, or when power supplies are floating.
The resistor value is calculated based on the decoupling capacitance on a given power supply. The RC
constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically
connected to the system that is in operation. This means that all input buffers of the subsystem must
present very high input impedance with no power applied so as not to disturb the operating portion of the
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 7-12 on
page 193). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from
the power supply to ground should be provided. This can be done with a discharge resistor or a switched
resistor. This is necessary because the 30K gate devices do not have built-in I/O clamp diodes. 
For other IGLOO and ProASIC3 devices, since the I/O clamp diode is always active, cold-sparing can be
accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system or
by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI,
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when
a weak pull-down is chosen and the input pin is driven HIGH. This current can be avoided by driving the
input LOW when a weak pull-down resistor is used and driving it HIGH when a weak pull-up resistor is
used.
This current draw can occur in the following cases:
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I/O Structures in IGLOO and ProASIC3 Devices
5 V Output Tolerance
IGLOO and ProASIC3 I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL
receivers. It is also critical that there be NO external I/O pull-up resistor to 5 V, since this resistor would
pull the I/O pad voltage beyond the 3.6 V absolute maximum value and consequently cause damage to
the I/O. 
When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, the I/Os can directly drive signals into 5 V TTL
receivers. In fact, VOL = 0.4 V and VOH = 2.4 V in both 3.3 V LVTTL and 3.3 V LVCMOS modes
exceeds the VIL = 0.8 V and VIH = 2 V level requirements of 5 V TTL receivers. Therefore, level 1 and
level 0 will be recognized correctly by 5 V TTL receivers.

Schmitt Trigger
A Schmitt trigger is a buffer used to convert a slow or noisy input signal into a clean one before passing it
to the FPGA. Using Schmitt trigger buffers guarantees a fast, noise-free input signal to the FPGA.
The Schmitt trigger is available for the LVTTL, LVCMOS, and 3.3 V PCI I/O standards.
This feature can be implemented by using a Physical Design Constraints (PDC) command (Table 7-5 on
page 179) or by selecting a check box in the I/O Attribute Editor in Designer. The check box is cleared by
default.

Table 7-13 • Comparison Table for 5 V–Compliant Receiver Solutions 

Solution Board Components Speed Current Limitations

1 Two resistors Low to High1 Limited by transmitter's drive strength

2 Resistor and Zener 3.3 V Medium Limited by transmitter's drive strength

3 Bus switch High N/A

4 Minimum resistor value2,3,4,5

R = 47 Ω at TJ = 70°C
R = 150 Ω at TJ = 85°C
R = 420 Ω at TJ = 100°C

Medium Maximum diode current at 100% duty cycle, signal
constantly at 1
52.7 mA at TJ = 70°C / 10-year lifetime
16.5 mA at TJ = 85°C / 10-year lifetime
5.9 mA at TJ = 100°C / 10-year lifetime
For duty cycles other than 100%, the currents can be
increased by a factor of 1 / (duty cycle).
Example: 20% duty cycle at 70°C
Maximum current = (1 / 0.2) × 52.7 mA = 5 × 52.7 mA =
263.5 mA

Notes:
1. Speed and current consumption increase as the board resistance values decrease.
2. Resistor values ensure I/O diode long-term reliability.
3. At 70°C, customers could still use 420 Ω  on every I/O.
4. At 85°C, a 5 V solution on every other I/O is permitted, since the resistance is lower (150 Ω) and the current is

higher. Also, the designer can still use 420 Ω and use the solution on every I/O. 
5. At 100°C, the 5 V solution on every I/O is permitted, since 420 Ω are used to limit the current to 5.9 mA.
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I/O Structures in IGLOO and ProASIC3 Devices
Simultaneously Switching Outputs (SSOs) and Printed Circuit 
Board Layout

Each I/O voltage bank has a separate ground and power plane for input and output circuits (VMV/GNDQ
for input buffers and VCCI/GND for output buffers). This isolation is necessary to minimize simultaneous
switching noise from the input and output (SSI and SSO). The switching noise (ground bounce and
power bounce) is generated by the output buffers and transferred into input buffer circuits, and vice
versa.
Since voltage bounce originates on the package inductance, the VMV and VCCI supplies have separate
package pin assignments. For the same reason, GND and GNDQ also have separate pin assignments.
The VMV and VCCI pins must be shorted to each other on the board. Also, the GND and GNDQ pins
must be shorted to each other on the board. This will prevent unwanted current draw from the power
supply.
SSOs can cause signal integrity problems on adjacent signals that are not part of the SSO bus. Both
inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will
transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce
ground bounce noise and VCCI dip noise. These two noise types are caused by rapidly changing
currents through GND and VCCI package pin inductances during switching activities (EQ 2 and EQ 3).

Ground bounce noise voltage = L(GND) × di/dt
EQ 2

VCCI dip noise voltage = L(VCCI) × di/dt
EQ 3

Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The
shielding should be done both on the board and inside the package unless otherwise described. 
In-package shielding can be achieved in several ways; the required shielding will vary depending on
whether pins next to the SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or
GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to
be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus.
Also, noise generated by the SSO bus needs to be reduced inside the package. 
PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time,
maintaining signal integrity between devices.
Key issues that need to be considered are as follows:

• Power and ground plane design and decoupling network design
• Transmission line reflections and terminations

For extensive data per package on the SSO and PCB issues, refer to the "ProASIC3/E SSO and Pin
Placement and Guidelines" chapter of the ProASIC3 FPGA Fabric User’s Guide. 
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At the system level, the skew circuit can be used in applications where transmission activities on 
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that 
can prevent bus contention and subsequent data loss and/or transmitter over-stress due to transmitter-
to-transmitter current shorts. Figure 8-17 presents an example of the skew circuit implementation in a 
bidirectional communication system. Figure 8-18 on page 238 shows how bus contention is created, and 
Figure 8-19 on page 238 shows how it can be avoided with the skew circuit.  

Figure 8-15 • Timing Diagram (option 1: bypasses skew circuit)

Figure 8-16 • Timing Diagram (option 2: enables skew circuit)
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Figure 8-17 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using 
IGLOO or ProASIC3 Devices
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Software-Controlled I/O Attributes 
Users may modify these programmable I/O attributes using the I/O Attribute Editor. Modifying an I/O
attribute may result in a change of state in Designer. Table 9-2 details which steps have to be re-run as a
function of modified I/O attribute. 

Table 9-2 • Designer State (resulting from I/O attribute modification)

I/O Attribute
Designer States1

Compile Layout Fuse Timing Power
Slew Control2 No No Yes Yes Yes

Output Drive (mA) No No Yes Yes Yes

Skew Control No No Yes Yes Yes

Resistor Pull No No Yes Yes Yes

Input Delay No No Yes Yes Yes

Schmitt Trigger No No Yes Yes Yes

OUT_LOAD No No No Yes Yes

COMBINE_REGISTER Yes Yes N/A N/A N/A

Notes:
1. No = Remains the same, Yes = Re-run the step, N/A = Not applicable
2. Skew control does not apply to IGLOO nano, IGLOO PLUS, and ProASIC3 nano devices.
3. Programmable input delay is applicable only for ProASIC3E, ProASIC3EL, RT ProASIC3, and

IGLOOe devices.
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DDR for Microsemi’s Low Power Flash Devices
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
TRIBUFF_F_8U_0_inst : TRIBUFF_F_8U
port map(D => Q, E => TrienAux, PAD => PAD);

end DEF_ARCH;

DDR Bidirectional Buffer

Verilog
module DDR_BiDir_HSTL_I_LowEnb(DataR,DataF,CLR,CLK,Trien,QR,QF,PAD);

input   DataR, DataF, CLR, CLK, Trien;
output  QR, QF;
inout   PAD;

wire TrienAux, D, Q;

INV Inv_Tri(.A(Trien), .Y(TrienAux));
DDR_OUT DDR_OUT_0_inst(.DR(DataR),.DF(DataF),.CLK(CLK),.CLR(CLR),.Q(Q));
DDR_REG DDR_REG_0_inst(.D(D),.CLK(CLK),.CLR(CLR),.QR(QR),.QF(QF));
BIBUF_HSTL_I BIBUF_HSTL_I_0_inst(.PAD(PAD),.D(Q),.E(TrienAux),.Y(D));

endmodule

Figure 10-8 • DDR Bidirectional Buffer, LOW Output Enable (HSTL Class II)
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Security in Low Power Flash Devices
Security Features
IGLOO and ProASIC3 devices have two entities inside: FlashROM and the FPGA core fabric. Fusion
devices contain three entities: FlashROM, FBs, and the FPGA core fabric. The parts can be programmed
or updated independently with a STAPL programming file. The programming files can be AES-encrypted
or plaintext. This allows maximum flexibility in providing security to the entire device. Refer to the
"Programming Flash Devices" section on page 287 for information on the FlashROM structure.
Unlike SRAM-based FPGA devices, which require a separate boot PROM to store programming data,
low power flash devices are nonvolatile, and the secured configuration data is stored in on-chip flash
cells that are part of the FPGA fabric. Once programmed, this data is an inherent part of the FPGA array
and does not need to be loaded at system power-up. SRAM-based FPGAs load the configuration
bitstream upon power-up; therefore, the configuration is exposed and can be read easily.
The built-in FPGA core, FBs, and FlashROM support programming files encrypted with the 128-bit AES
(FIPS-192) block ciphers. The AES key is stored in dedicated, on-chip flash memory and can be
programmed before the device is shipped to other parties (allowing secure remote field updates).

Security in ARM-Enabled Low Power Flash Devices 
There are slight differences between the regular flash devices and the ARM®-enabled flash devices,
which have the M1 and M7 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design is encrypted along with the ARM IP, according to the details below. 

Figure 12-3 • Block Representation of the AES Decryption Core in a Fusion AFS600 FPGA 
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Security in Low Power Flash Devices
Choose the High security level to reprogram devices using both the FlashLock Pass Key and AES key
protection (Figure 12-18 on page 321). Enter the AES key and click Next.
A device that has already been secured with FlashLock and has an AES key loaded must recognize the
AES key to program the device and generate a valid bitstream in authentication. The FlashLock Key is
only required to unlock the device and change the security settings. 
This is what makes it possible to program in an untrusted environment. The AES key is protected inside
the device by the FlashLock Key, so you can only program if you have the correct AES key. In fact, the
AES key is not in the programming file either. It is the key used to encrypt the data in the file. The same
key previously programmed with the FlashLock Key matches to decrypt the file. 
An AES-encrypted file programmed to a device without FlashLock would not be secure, since without
FlashLock to protect the AES key, someone could simply reprogram the AES key first, then program with
any AES key desired or no AES key at all. This option is therefore not available in the software. 

Note: The settings in this figure are used to show the generation of an AES-encrypted programming file for the FPGA
array, FlashROM, and FB contents. One or all locations may be selected for encryption.

Figure 12-17 • Settings to Program a Device Secured with FlashLock and using AES Encryption 
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Security in ARM-Enabled Low Power Flash Devices 
There are slight differences between the regular flash device and the ARM-enabled flash devices, which
have the M1 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design will be encrypted along with the ARM IP, according to the details below. 

Cortex-M1 and Cortex-M3 Device Security
Cortex-M1–enabled and Cortex-M3 devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted write and verify
• Embedded Flash Memory enabled for AES encrypted write 

Figure 13-1 • AES-128 Security Features 
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Microprocessor Programming of Microsemi’s Low Power Flash Devices
Microprocessor Programming Support in Flash Devices 
The flash-based FPGAs listed in Table 15-1 support programming with a microprocessor and the
functions described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 15-1. Where the information applies to only one device or limited devices, these exclusions will
be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 15-1. Where the information applies to only one device or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 15-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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UJTAG Applications in Microsemi’s Low Power Flash Devices
Silicon Testing and Debugging
In many applications, the design needs to be tested, debugged, and verified on real silicon or in the final
embedded application. To debug and test the functionality of designs, users may need to monitor some
internal logic (or nets) during device operation. The approach of adding design test pins to monitor the
critical internal signals has many disadvantages, such as limiting the number of user I/Os. Furthermore,
adding external I/Os for test purposes may require additional or dedicated board area for testing and
debugging. 
The UJTAG tiles of low power flash devices offer a flexible and cost-effective solution for silicon test and
debug applications. In this solution, the signals under test are shifted out to the TDO pin of the TAP
Controller. The main advantage is that all the test signals are monitored from the TDO pin; no pins or
additional board-level resources are required. Figure 17-6 illustrates this technique. Multiple test nets are
brought into an internal MUX architecture. The selection of the MUX is done using the contents of the
TAP Controller instruction register, where individual instructions (values from 16 to 127) correspond to
different signals under test. The selected test signal can be synchronized with the rising or falling edge of
TCK (optional) and sent out to UTDO to drive the TDO output of JTAG. 
For flash devices, TDO (the output) is configured as low slew and the highest drive strength available in
the technology and/or device. Here are some examples: 

1. If the device is A3P1000 and VCCI is 3.3 V, TDO will be configured as LVTTL 3.3 V output,
24 mA, low slew. 

2. If the device is AGLN020 and VCCI is 1.8 V, TDO will be configured as LVCMOS 1.8 V output,
4 mA, low slew. 

3. If the device is AGLE300 and VCCI is 2.5 V, TDO will be configured as LVCMOS 2.5 V output,
24 mA, low slew. 

The test and debug procedure is not limited to the example in Figure 17-5 on page 369. Users can
customize the debug and test interface to make it appropriate for their applications. For example, multiple
test signals can be registered and then sent out through UTDO, each at a different edge of TCK. In other
words, n signals are sampled with an FTCK / n sampling rate. The bandwidth of the information sent out
to TDO is always proportional to the frequency of TCK. 

Figure 17-6 • UJTAG Usage Example in Test and Debug Applications
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