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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.
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Within the realm of Embedded - FPGAs, several
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General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Flash*Freeze Technology and Low Power Modes
power supply and board-level configurations, the user can easily calculate how long it will take for the
core to become inactive or active. For more information, refer to the "Power-Up/-Down Behavior of Low
Power Flash Devices" section on page 373. 

Context Save and Restore in Sleep or Shutdown Mode 
In Sleep mode or Shutdown mode, the contents of the SRAM, state of the I/Os, and state of the registers
are lost when the device is powered off, if no other measure is taken. A low-cost external serial EEPROM
can be used to save and restore the contents of the device when entering and exiting Sleep mode or
Shutdown mode. In the Embedded SRAM Initialization Using External Serial EEPROM application note,
detailed information and a reference design are provided for initializing the embedded SRAM using an
external serial EEPROM. The user can easily customize the reference design to save and restore the
FPGA state when entering and exiting Sleep mode or Shutdown mode. The microcontroller will need to
manage this activity; hence, before powering down VCC, the data will be read from the FPGA and stored
externally. In a similar way, after the FPGA is powered up, the microcontroller will allow the FPGA to load
the data from external memory and restore its original state.

Flash*Freeze Design Guide
This section describes how designers can create reliable designs that use ultra-low power Flash*Freeze
modes optimally. The section below provides guidance on how to select the best Flash*Freeze mode for
any application. The "Design Solutions" section on page 35 gives specific recommendations on how to
design and configure clocks, set/reset signals, and I/Os. This section also gives an overview of the
design flow and provides details concerning Microsemi's Flash*Freeze Management IP, which enables
clean clock gating and housekeeping. The "Additional Power Conservation Techniques" section on
page 41 describes board-level considerations for entering and exiting Flash*Freeze mode.

Selecting the Right Flash*Freeze Mode
Both Flash*Freeze modes will bring an FPGA into an ultra-low power static mode that retains register
and SRAM content and sets I/Os to a predetermined configuration. There are two primary differences
that distinguish type 2 mode from type 1, and they must be considered when creating a design using
Flash*Freeze technology. 
First, with type 2 mode, the device has an opportunity to wait for a second signal to enable activation of
Flash*Freeze mode. This allows processes to complete prior to deactivating the device, and can be
useful to control task completion, data preservation, accidental Flash*Freeze activation, system
shutdown, or any other housekeeping function. The second signal may be derived from an external or in-
to-out internal source. The second difference between type 1 and type 2 modes is that a design for type
2 mode has an opportunity to cleanly manage clocks and data activity before entering and exiting
Flash*Freeze mode. This is particularly important when data preservation is needed, as it ensures valid
data is stored prior to entering, and upon exiting, Flash*Freeze mode.
Type 1 Flash*Freeze mode is ideally suited for applications with the following design criteria:

• Entering Flash*Freeze mode is not dependent on any signal other than the external FF pin.
• Internal housekeeping is not required prior to entering Flash*Freeze.

Figure 2-8 • Entering and Exiting Sleep Mode, Typical Timing Diagram

Activation Trip Point
Va = 0.85 ± 0.25 V

Deactivation Trip Point
Vd = 0.75 ± 0.25 V

VCC = 1.5 V

VCC

Sleep Modet = 50 μs t = 56.6 μs
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Global Resources in Low Power Flash Devices
Figure 3-5 shows more detailed global input connections. It shows the global input pins connection to the
northwest quadrant global networks. Each global buffer, as well as the PLL reference clock, can be
driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not supported for IGLOO nano or

ProASIC3 nano devices)
• The FPGA core

Note: Differential inputs are not supported for IGLOO nano or ProASIC3 nano devices.
Figure 3-5 • Global I/O Overview

+

+

Source for CCC
(CLKA or CLKB or CLKC)

Each shaded box represents an
INBUF or INBUF_LVDS/LVPECL
macro, as appropriate. To Core

Routed Clock
(from FPGA core)

Sample Pin Names

GAA0/IO0NDB0V01

GAA1/IO00PDB0V01

GAA2/IO13PDB7V11

GAA[0:2]: GA represents global in the northwest corner
of the device. A[0:2]: designates specific A clock source.

2
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Global Resources in Low Power Flash Devices
Table 3-2 • Chip Global Pin Name

I/O Type Beginning of I/O Name Notes

Single-Ended GFAO/IOuxwByVz
GFA1/IOuxwByVz
GFA2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time. 

GFBO/IOuxwByVz
GFB1/IOuxwByVz
GFB2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time. 

GFC0/IOuxwByVz
GFC1/IOuxwByVz
GFC2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time. 

GCAO/IOuxwByVz
GCA1/IOuxwByVz
GCA2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

GCBO/IOuxwByVz
GCB1/IOuxwByVz
GCB2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

GCC0/IOuxwByVz
GCC1/IOuxwByVz
GCC2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

Differential I/O Pairs GFAO/IOuxwByVz
GFA1/IOuxwByVz

The output of the different pair will drive the chip global.

GFBO/IOuxwByVz
GFB1/IOuxwByVz

The output of the different pair will drive the chip global.

GFCO/IOuxwByVz
GFC1/IOuxwByVz

The output of the different pair will drive the chip global.

GCAO/IOuxwByVz
GCA1/IOuxwByVz

The output of the different pair will drive the chip global.

GCBO/IOuxwByVz
GCB1/IOuxwByVz

The output of the different pair will drive the chip global.

GCCO/IOuxwByVz
GCC1/IOuxwByVz

The output of the different pair will drive the chip global.

Note: Only one of the I/Os can be directly connected to a quadrant at a time.
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ProASIC3L FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

Notes were added where appropriate to point out that IGLOO nano and
ProASIC3 nano devices do not support differential inputs (SAR 21449).

N/A

The "Global Architecture" section and "VersaNet Global Network Distribution"
section were revised for clarity (SARs 20646, 24779).

47, 49

The "I/O Banks and Global I/Os" section was moved earlier in the document,
renamed to "Chip and Quadrant Global I/Os", and revised for clarity. Figure 3-4 •
Global Connections Details, Figure 3-6 • Global Inputs, Table 3-2 • Chip Global
Pin Name, and Table 3-3 • Quadrant Global Pin Name are new (SARs 20646,
24779).

51

The "Clock Aggregation Architecture" section was revised (SARs 20646, 24779). 57

Figure 3-7 • Chip Global Aggregation was revised (SARs 20646, 24779). 59

The "Global Macro and Placement Selections" section is new (SARs 20646,
24779).

64

v1.4
(December 2008)

The "Global Architecture" section was updated to include 10 k devices, and to
include information about VersaNet global support for IGLOO nano devices.

47

The Table 3-1 • Flash-Based FPGAs was updated to include IGLOO nano and
ProASIC3 nano devices.

48

The "VersaNet Global Network Distribution" section was updated to include 10 k
devices and to note an exception in global lines for nano devices.

49

Figure 3-2 • Simplified VersaNet Global Network (30 k gates and below) is new. 50

The "Spine Architecture" section was updated to clarify support for 10 k and nano
devices.

57

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include IGLOO nano and ProASIC3 nano devices.

57

The figure in the CLKBUF_LVDS/LVPECL row of Table 3-8 • Clock Macros was
updated to change CLKBIBUF to CLKBUF.

62

v1.3
(October 2008)

A third bullet was added to the beginning of the "Global Architecture" section: In
Fusion devices, the west CCC also contains a PLL core. In the two larger devices
(AFS600 and AFS1500), the west and east CCCs each contain a PLL.

47

The "Global Resource Support in Flash-Based Devices" section was revised to
include new families and make the information more concise.

48

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include A3PE600/L in the device column.

57

Table note 1 was revised in Table 3-9 • I/O Standards within CLKBUF to include
AFS600 and AFS1500.

63

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 3-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

48
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
global assignments are not allocated properly. See the "Physical Constraints for Quadrant Clocks" 
section for information on assigning global signals to the quadrant clock networks.
Promoted global signals will be instantiated with CLKINT macros to drive these signals onto the global 
network. This is automatically done by Designer when the Auto-Promotion option is selected. If the user 
wishes to assign the signals to the quadrant globals instead of the default chip globals, this can done by 
using ChipPlanner, by declaring a physical design constraint (PDC), or by importing a PDC file.

Physical Constraints for Quadrant Clocks
If it is necessary to promote global clocks (CLKBUF, CLKINT, PLL, CLKDLY) to quadrant clocks, the user 
can define PDCs to execute the promotion. PDCs can be created using PDC commands (pre-compile) or 
the MultiView Navigator (MVN) interface (post-compile). The advantage of using the PDC flow over the 
MVN flow is that the Compile stage is able to automatically promote any regular net to a global net before 
assigning it to a quadrant. There are three options to place a quadrant clock using PDC commands:

• Place a clock core (not hardwired to an I/O) into a quadrant clock location.
• Place a clock core (hardwired to an I/O) into an I/O location (set_io) or an I/O module location 

(set_location) that drives a quadrant clock location.
• Assign a net driven by a regular net or a clock net to a quadrant clock using the following 

command:
assign_local_clock -net <net name> -type quadrant <quadrant clock region>

where
<net name> is the name of the net assigned to the local user clock region.
<quadrant clock region> defines which quadrant the net should be assigned to. Quadrant 
clock regions are defined as UL (upper left), UR (upper right), LL (lower left), and LR (lower right).

Note: If the net is a regular net, the software inserts a CLKINT buffer on the net.
For example:
assign_local_clock -net localReset -type quadrant UR

Keep in mind the following when placing quadrant clocks using MultiView Navigator:

Hardwired I/O–Driven CCCs
• Find the associated clock input port under the Ports tab, and place the input port at one of the 

Gmn* locations using PinEditor or I/O Attribute Editor, as shown in Figure 4-32. 

Figure 4-32 • Port Assignment for a CCC with Hardwired I/O Clock Input
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Recommended Board-Level Considerations
The power to the PLL core is supplied by VCCPLA/B/C/D/E/F (VCCPLx), and the associated ground 
connections are supplied by VCOMPLA/B/C/D/E/F (VCOMPLx). When the PLLs are not used, the 
Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The 
user should tie unused VCCPLx and VCOMPLx pins to ground. Optionally, the PLL can be turned on/off 
during normal device operation via the POWERDOWN port (see Table 4-3 on page 84).

PLL Power Supply Decoupling Scheme
The PLL core is designed to tolerate noise levels on the PLL power supply as specified in the datasheets. 
When operated within the noise limits, the PLL will meet the output peak-to-peak jitter specifications 
specified in the datasheets. User applications should always ensure the PLL power supply is powered 
from a noise-free or low-noise power source.
However, in situations where the PLL power supply noise level is higher than the tolerable limits, various 
decoupling schemes can be designed to suppress noise to the PLL power supply. An example is 
provided in Figure 4-38. The VCCPLx and VCOMPLx pins correspond to the PLL analog power supply 
and ground.
Microsemi strongly recommends that two ceramic capacitors (10 nF in parallel with 100 nF) be placed 
close to the power pins (less than 1 inch away). A third generic 10 µF electrolytic capacitor is 
recommended for low-frequency noise and should be placed farther away due to its large physical size. 
Microsemi recommends that a 6.8 µH inductor be placed between the supply source and the capacitors 
to filter out any low-/medium- and high-frequency noise. In addition, the PCB layers should be controlled 
so the VCCPLx and VCOMPLx planes have the minimum separation possible, thus generating a good-
quality RF capacitor.
For more recommendations, refer to the Board-Level Considerations application note.
Recommended 100 nF capacitor:

• Producer BC Components, type X7R, 100 nF, 16 V
• BC Components part number: 0603B104K160BT
• Digi-Key part number: BC1254CT-ND 
• Digi-Key part number: BC1254TR-ND

Recommended 10 nF capacitor:
• Surface-mount ceramic capacitor
• Producer BC Components, type X7R, 10 nF, 50 V
• BC Components part number: 0603B103K500BT
• Digi-Key part number: BC1252CT-ND 
• Digi-Key part number: BC1252TR-ND  

Figure 4-38 • Decoupling Scheme for One PLL (should be replicated for each PLL used)
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FlashROM in Microsemi’s Low Power Flash Devices
Figure 5-12 shows the programming file generator, which enables different STAPL file generation
methods. When you select Program FlashROM and choose the UFC file, the FlashROM Settings
window appears, as shown in Figure 5-13. In this window, you can select the FlashROM page you want
to program and the data value for the configured regions. This enables you to use a different page for
different programming files.   

The programming hardware and software can load the FlashROM with the appropriate STAPL file.
Programming software handles the single STAPL file that contains multiple FlashROM contents for
multiple devices, and programs the FlashROM in sequential order (e.g., for device serialization). This
feature is supported in the programming software. After programming with the STAPL file, you can run
DEVICE_INFO to check the FlashROM content.

Figure 5-12 • Programming File Generator

Figure 5-13 • Setting FlashROM during Programming File Generation
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Figure 6-2 • Fusion Device Architecture Overview (AFS600) 
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Example of RAM Initialization
This section of the document presents a sample design in which a 4×4 RAM block is being initialized
through the JTAG port. A test feature has been implemented in the design to read back the contents of
the RAM after initialization to verify the procedure.
The interface block of this example performs two major functions: initialization of the RAM block and
running a test procedure to read back the contents. The clock output of the interface is either the write
clock (for initialization) or the read clock (for reading back the contents). The Verilog code for the
interface block is included in the "Sample Verilog Code" section on page 167. 
For simulation purposes, users can declare the input ports of the UJTAG macro for easier assignment in
the testbench. However, the UJTAG input ports should not be declared on the top level during synthesis.
If the input ports of the UJTAG are declared during synthesis, the synthesis tool will instantiate input
buffers on these ports. The input buffers on the ports will cause Compile to fail in Designer.
Figure 6-10 shows the simulation results for the initialization step of the example design.
The CLK_OUT signal, which is the clock output of the interface block, is the inverted DR_UPDATE output
of the UJTAG macro. It is clear that it gives sufficient time (while the TAP Controller is in the Data
Register Update state) for the write address and data to become stable before loading them into the RAM
block.
Figure 6-11 presents the test procedure of the example. The data read back from the memory block
matches the written data, thus verifying the design functionality.

Figure 6-10 • Simulation of Initialization Step

Figure 6-11 • Simulation of the Test Procedure of the Example
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Advanced I/Os—IGLOO, ProASIC3L, and ProASIC3
Table 7-2 and Table 7-3 show the voltages and compatible I/O standards for the IGLOO, ProASIC3L, and
ProASIC3 families. 
I/Os provide programmable slew rates (except 30 K gate devices), drive strengths, and weak pull-up and
pull-down circuits. 3.3 V PCI and 3.3 V PCI-X can be configured to be 5 V–tolerant. See the "5 V Input
Tolerance" section on page 194 for possible implementations of 5 V tolerance.
All I/Os are in a known state during power-up, and any power-up sequence is allowed without current
impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial
and Industrial)" section in the datasheet for more information. During power-up, before reaching
activation levels, the I/O input and output buffers are disabled while the weak pull-up is enabled.
Activation levels are described in the datasheet.

I/O Banks and I/O Standards Compatibility
I/Os are grouped into I/O voltage banks. 
Each I/O voltage bank has dedicated I/O supply and ground voltages (VMV/GNDQ for input buffers and
VCCI/GND for output buffers). This isolation is necessary to minimize simultaneous switching noise from
the input and output (SSI and SSO). The switching noise (ground bounce and power bounce) is
generated by the output buffers and transferred into input buffer circuits, and vice versa. Because of
these dedicated supplies, only I/Os with compatible standards can be assigned to the same I/O voltage
bank. Table 7-3 shows the required voltage compatibility values for each of these voltages.
There are four I/O banks on the 250K gate through 1M gate devices. 
There are two I/O banks on the 30K, 60K, and 125K gate devices. 
I/O standards are compatible if their VCCI and VMV values are identical. VMV and GNDQ are "quiet"
input power supply pins and are not used on 30K gate devices (Table 7-3). 

Table 7-2 • Supported I/O Standards

IGLOO AGL015 AGL030 AGL060 AGL125 AGL250 AGL600 AGL1000

ProASIC3 A3P015 A3P030 A3P060 A3P125
A3P250/
A3P250L A3P400

A3P600/
A3P600L

A3P1000/
A3P1000L

Single-Ended

LVTTL/LVCMOS 3.3 V,
LVCMOS 2.5 V / 1.8 V /
1.5 V / 1.2 V
LVCMOS 2.5 V / 5.0 V

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3.3 V PCI/PCI-X – – ✓ ✓ ✓ ✓ ✓ ✓

Differential

LVPECL, LVDS, B-LVDS, 
M-LVDS

– – – – ✓ ✓ ✓ ✓

Table 7-3 • VCCI Voltages and Compatible IGLOO and ProASIC3 Standards

VCCI and VMV (typical) Compatible Standards

3.3 V LVTTL/LVCMOS 3.3, PCI 3.3, PCI-X 3.3 LVPECL

2.5 V LVCMOS 2.5, LVCMOS 2.5/5.0, LVDS, B-LVDS, M-LVDS

1.8 V LVCMOS 1.8

1.5 V LVCMOS 1.5

1.2 V LVCMOS 1.2
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I/O Structures in IGLOO and ProASIC3 Devices
At the system level, the skew circuit can be used in applications where transmission activities on
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that
can prevent bus contention and subsequent data loss and/or transmitter over-stress due to transmitter-
to-transmitter current shorts. Figure 7-16 presents an example of the skew circuit implementation in a
bidirectional communication system. Figure 7-17 on page 201 shows how bus contention is created, and
Figure 7-18 on page 201 shows how it can be avoided with the skew circuit.  

Figure 7-15 • Timing Diagram (option 2: enables skew circuit)
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Figure 7-16 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using 
IGLOO or ProASIC3 Devices
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Table 8-7 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in 
ProASIC3E Devices (maximum drive strength and high slew selected)

Specification

 Maximum Performance

ProASIC3E

IGLOOe V2 or V5 
Devices, 1.5 V DC Core 

Supply Voltage
IGLOOe V2, 1.2 V DC 
Core Supply Voltage

LVTTL/LVCMOS 3.3 V 200 MHz 180 MHz TBD

LVCMOS 2.5 V 250 MHz 230 MHz TBD

LVCMOS 1.8 V 200 MHz 180 MHz TBD

LVCMOS 1.5 V 130 MHz 120 MHz TBD

PCI 200 MHz 180 MHz TBD

PCI-X 200 MHz 180 MHz TBD

HSTL-I 300 MHz 275 MHz TBD

HSTL-II 300 MHz 275 MHz TBD

SSTL2-I 300 MHz 275 MHz TBD

SSTL2-II 300 MHz 275 MHz TBD

SSTL3-I 300 MHz 275 MHz TBD

SSTL3-II 300 MHz 275 MHz TBD

GTL+ 3.3 V 300 MHz 275 MHz TBD

GTL+ 2.5 V 300 MHz 275 MHz TBD

GTL 3.3 V 300 MHz 275 MHz TBD

GTL 2.5 V 300 MHz 275 MHz TBD

LVDS 350 MHz 300 MHz TBD

M-LVDS 200 MHz 180 MHz TBD

B LVDS 200 MHz 180 MHz TBD

LVPECL 350 MHz 300 MHz TBD
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I/O Structures in IGLOOe and ProASIC3E Devices
compatible, which means devices can operate at conventional PCI frequencies (33 MHz and 66 MHz). 
PCI-X is more fault-tolerant than PCI. It also does not have programmable drive strength.

Voltage-Referenced Standards
I/Os using these standards are referenced to an external reference voltage (VREF) and are supported on 
E devices only.

HSTL Class I and II (High-Speed Transceiver Logic)
These are general-purpose, high-speed 1.5 V bus standards (EIA/JESD 8-6) for signaling between 
integrated circuits. The signaling range is 0 V to 1.5 V, and signals can be either single-ended or 
differential. HSTL requires a differential amplifier input buffer and a push-pull output buffer. The reference 
voltage (VREF) is 0.75 V. These standards are used in the memory bus interface with data switching 
capability of up to 400 MHz. The other advantages of these standards are low power and fewer EMI 
concerns.
HSTL has four classes, of which low power flash devices support Class I and II. These classes are 
defined by standard EIA/JESD 8-6 from the Electronic Industries Alliance (EIA):

• Class I – Unterminated or symmetrically parallel-terminated
• Class II – Series-terminated
• Class III – Asymmetrically parallel-terminated
• Class IV – Asymmetrically double-parallel-terminated

SSTL2 Class I and II (Stub Series Terminated Logic 2.5 V)
These are general-purpose 2.5 V memory bus standards (JESD 8-9) for driving transmission lines, 
designed specifically for driving the DDR SDRAM modules used in computer memory. SSTL2 requires a 
differential amplifier input buffer and a push-pull output buffer. The reference voltage (VREF) is 1.25 V. 

SSTL3 Class I and II (Stub Series Terminated Logic 3.3 V)
These are general-purpose 3.3 V memory bus standards (JESD 8-8) for driving transmission lines. 
SSTL3 requires a differential amplifier input buffer and a push-pull output buffer. The reference voltage 
(VREF) is 1.5 V. 

Figure 8-7 • SSTL and HSTL Topology
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Solution 2
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage 
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term 
reliability. 
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used 
for clamping, and the voltage must be limited by the external resistors and Zener, as shown in 
Figure 8-11. Relying on the diode clamping would create an excessive pad DC voltage of 
3.3 V + 0.7 V = 4 V.

Figure 8-10 • Solution 1

Figure 8-11 • Solution 2
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I/O Structures in IGLOOe and ProASIC3E Devices
5 V Output Tolerance
IGLOO and ProASIC3 I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL 
receivers. It is also critical that there be NO external I/O pull-up resistor to 5 V, since this resistor would 
pull the I/O pad voltage beyond the 3.6 V absolute maximum value and consequently cause damage to 
the I/O. 
When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, the I/Os can directly drive signals into 5 V TTL 
receivers. In fact, VOL = 0.4 V and VOH = 2.4 V in both 3.3 V LVTTL and 3.3 V LVCMOS modes 
exceeds the VIL = 0.8 V and VIH = 2 V level requirements of 5 V TTL receivers. Therefore, level 1 and 
level 0 will be recognized correctly by 5 V TTL receivers.

Schmitt Trigger
A Schmitt trigger is a buffer used to convert a slow or noisy input signal into a clean one before passing it 
to the FPGA. Using Schmitt trigger buffers guarantees a fast, noise-free input signal to the FPGA.
ProASIC3E devices have Schmitt triggers built into their I/O circuitry. The Schmitt trigger is available for 
the LVTTL, LVCMOS, and 3.3 V PCI I/O standards.
This feature can be implemented by using a Physical Design Constraints (PDC) command (Table 8-6 on 
page 218) or by selecting a check box in the I/O Attribute Editor in Designer. The check box is cleared by 
default.

Selectable Skew between Output Buffer Enable and Disable Times
Low power flash devices have a configurable skew block in the output buffer circuitry that can be enabled 
to delay output buffer assertion without affecting deassertion time. Since this skew block is only available 
for the OE signal, the feature can be used in tristate and bidirectional buffers. A typical 1.2 ns delay is 
added to the OE signal to prevent potential bus contention. Refer to the appropriate family datasheet for 
detailed timing diagrams and descriptions.
The Skew feature is available for all I/O standards.
This feature can be implemented by using a PDC command (Table 8-6 on page 218) or by selecting a 
check box in the I/O Attribute Editor in Designer. The check box is cleared by default.
The configurable skew block is used to delay output buffer assertion (enable) without affecting 
deassertion (disable) time.

Figure 8-14 • Block Diagram of Output Enable Path
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DDR for Microsemi’s Low Power Flash Devices
Design Example
Figure 10-9 shows a simple example of a design using both DDR input and DDR output registers. The
user can copy the HDL code in Libero SoC software and go through the design flow. Figure 10-10 and
Figure 10-11 on page 283 show the netlist and ChipPlanner views of the ddr_test design. Diagrams may
vary slightly for different families.

Figure 10-9 • Design Example

Figure 10-10 • DDR Test Design as Seen by NetlistViewer for IGLOO/e Devices
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Security in Low Power Flash Devices
Security in Action
This section illustrates some applications of the security advantages of Microsemi’s devices (Figure 12-6).

.

Note: Flash blocks are only used in Fusion devices
Figure 12-6 • Security Options 
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ProASIC3L FPGA Fabric User’s Guide
Board-Level Considerations
A bypass capacitor is required from VPUMP to GND for all low power flash devices during programming.
This bypass capacitor protects the devices from voltage spikes that may occur on the VPUMP supplies
during the erase and programming cycles. Refer to the "Pin Descriptions and Packaging" chapter of the
appropriate device datasheet for specific recommendations. For proper programming, 0.01 µF and 0.33
µF capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and
positioned as close to the FPGA pins as possible. The bypass capacitor must be placed within 2.5 cm of
the device pins. 

Troubleshooting Signal Integrity
Symptoms of a Signal Integrity Problem
A signal integrity problem can manifest itself in many ways. The problem may show up as extra or
dropped bits during serial communication, changing the meaning of the communication. There is a
normal variation of threshold voltage and frequency response between parts even from the same lot.
Because of this, the effects of signal integrity may not always affect different devices on the same board
in the same way. Sometimes, replacing a device appears to make signal integrity problems go away, but
this is just masking the problem. Different parts on identical boards will exhibit the same problem sooner
or later. It is important to fix signal integrity problems early. Unless the signal integrity problems are
severe enough to completely block all communication between the device and the programmer, they
may show up as subtle problems. Some of the FlashPro4/3/3X exit codes that are caused by signal
integrity problems are listed below. Signal integrity problems are not the only possible cause of these

Note: *NC (FlashPro3/3X); Prog_Mode (FlashPro4). Prog_Mode on FlashPro4 is an output signal that goes High during
device programming and returns to Low when programming is complete. This signal can be used to drive a
system to provide a 1.5 V programming signal to IGLOO nano, ProASIC3L, and RT ProASIC3 devices that can
run with 1.2 V core voltage but require 1.5 V for programming. IGLOO nano V2 devices can be programmed at
1.2 V core voltage (when using FlashPro4 only), but IGLOO nano V5 devices are programmed with a VCC core
voltage of 1.5 V.

Figure 13-6 • Board Layout and Programming Header Top View
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Power-Up/-Down Behavior of Low Power Flash Devices
Transient Current on VCC 
The characterization of the transient current on VCC is performed on nearly all devices within the 
IGLOO, ProASIC3L, and ProASIC3 families. A sample size of five units is used from each device family 
member. All the device I/Os are internally pulled down while the transient current measurements are 
performed. For ProASIC3 devices, the measurements at typical conditions show that the maximum 
transient current on VCC, when the power supply is powered at ramp-rates ranging from 15 V/ms to 
0.15 V/ms, does not exceed the maximum standby current specified in the device datasheets. Refer to 
the DC and Switching Characteristics chapters of the ProASIC3 Flash Family FPGAS datasheet and 
ProASIC3E Flash Family FPGAs datasheet for more information.
Similarly, IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current 
on VCC. The transient current does not exceed the typical operating current of the device while in active 
mode. For example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the 
transient current on VCC is typically in the range of 1–5 mA.

Transient Current on VCCI 
The characterization of the transient current on VCCI is performed on devices within the IGLOO, IGLOO 
nano, IGLOO PLUS, ProASIC3, ProASIC3 nano, and ProASIC3L groups of devices, similarly to VCC 
transient current measurements. For ProASIC3 devices, the measurements at typical conditions show 
that the maximum transient current on VCCI, when the power supply is powered at ramp-rates ranging 
from 33 V/ms to 0.33 V/ms, does not exceed the maximum standby current specified in the device 
datasheet. Refer to the DC and Switching Characteristics chapters of the ProASIC3 Flash Family 
FPGAS datasheet and ProASIC3E Flash Family FPGAs datasheet for more information.
Similarly, IGLOO, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current on VCCI. The 
transient current does not exceed the typical operating current of the device while in active mode. For 
example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the transient current 
on VCCI is typically in the range of 1–2 mA.

Figure 18-1 • Types of Power Consumption in SRAM FPGAs and Microsemi Nonvolatile FPGAs
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