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allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.
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General-purpose FPGAs are the most widely used, offering
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meet the stringent standards of the automotive industry,
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offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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• The device is reset upon exiting Flash*Freeze mode or internal state saving is not required.
• State saving is required, but data and clock management is performed external to the FPGA. In

other words, incoming data is externally guaranteed and held valid prior to entering Flash*Freeze
mode.

Type 2 Flash*Freeze mode is ideally suited for applications with the following design criteria:
• Entering Flash*Freeze mode is dependent on an internal or external signal in addition to the

external FF pin.
• State saving is required and incoming data is not externally guaranteed valid.
• The designer wants to use his/her own Flash*Freeze management IP for clock and data

management.
• The designer wants to use his/her own Flash*Freeze management logic for clock and data

management.
• Internal housekeeping is required prior to entering Flash*Freeze mode. Housekeeping activities

may include loading data to SRAM, system shutdown, completion of current task, or ensuring
valid Flash*Freeze pin assertion.

There is no downside to type 2 mode, and Microsemi's Flash*Freeze management IP offers a very low
tile count clock and data management solution. Microsemi's recommendation for most designs is to use
type 2 Flash*Freeze mode with Flash*Freeze management IP. 

Design Solutions
Clocks

• Microsemi recommends using a completely synchronous design in Type 2 mode with
Flash*Freeze management IP cleanly gating all internal and external clocks. This will prevent
narrow pulses upon entrance and exit from Flash*Freeze mode (Figure 2-5 on page 30).

• Upon entering Flash*Freeze mode, external clocks become tied off High, internal to the clock pin
(unless hold state is used on IGLOO nano or IGLOO PLUS), and PLLs are turned off. Any clock
that is externally Low will realize a Low to High transition internal to the device while entering
Flash*Freeze. If clocks will float during Flash*Freeze mode, Microsemi recommends using the
weak pull-up feature. If clocks will continue to drive the device during Flash*Freeze mode, the
clock gating (filter) available in Flash*Freeze management IP can help to filter unwanted narrow
clock pulses upon Flash*Freeze mode entry and exit.

• Clocks may continue to drive FPGA pins while the device is in Flash*Freeze mode, with virtually
no power consumption. The weak pull-up/-down configuration will result in unnecessary power
consumption if used in this scenario.

• Floating clocks can cause totem pole currents on the input I/O circuitry when the device is in
active mode. If clocks are externally gated prior to entering Flash*Freeze mode, Microsemi
recommends gating them to a known value (preferably '1', to avoid a possible narrow pulse upon
Flash*Freeze mode exit), and not leaving them floating. However, during Flash*Freeze mode, all
inputs and clocks are internally tied off to prevent totem pole currents, so they can be left floating. 

• Upon exiting Flash*Freeze mode, the design must allow maximum acquisition time for the PLL to
acquire the lock signal, and for a PLL clock to become active.  If a PLL output clock is used as the
primary clock for Flash*Freeze management IP, it is important to note that the clock gating circuit
will only release other clocks after the primary PLL output clock becomes available. 
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Flash*Freeze management IP. Additional information on this IP core can be found in the Libero online
help.
The Flash*Freeze management IP is comprised of three blocks: the Flash*Freeze finite state machine
(FSM), the clock gating (filter) block, and the ULSICC macro, as shown in Figure 2-10. 

Flash*Freeze Management FSM
The Flash*Freeze FSM block is a simple, robust, fully encoded 3-bit state machine that ensures clean
entrance to and exit from Flash*Freeze mode by controlling activities of the clock gating, ULSICC, and
optional housekeeping blocks. The state diagram for the FSM is shown in Figure 2-11 on page 38. In
normal operation, the state machine waits for Flash*Freeze pin assertion, and upon detection of a
request, it waits for a short period of time to ensure the assertion persists; then it asserts
WAIT_HOUSEKEEPING (active High) synchronous to the user’s designated system clock. This flag can
be used by user logic to perform any needed shutdown processes prior to entering Flash*Freeze mode,
such as storing data into SRAM, notifying other system components of the request, or timing/validating
the Flash*Freeze request. The FSM also asserts Flash_Freeze_Enabled whenever the device enters
Flash*Freeze mode. This occurs after all housekeeping and clock gating functions have completed. The
Flash_Freeze_Enabled signal remains asserted, even during Flash*Freeze mode, until the Flash*Freeze
pin is deasserted. Use the Flash_Freeze_Enabled signal to drive any logic in the design that needs to be
in a particular state during Flash*Freeze mode. The DONE_HOUSEKEEPING (active High) signal
should be asserted to notify the FSM when all the housekeeping tasks are completed. If the user
chooses not to use housekeeping, the Flash*Freeze management IP core generator in Libero SoC will
connect WAIT_HOUSEKEEPING to DONE_HOUSEKEEPING.

Figure 2-10 • Flash*Freeze Management IP Block Diagram
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3 – Global Resources in Low Power Flash Devices

Introduction 
IGLOO, Fusion, and ProASIC3 FPGA devices offer a powerful, low-delay VersaNet global network
scheme and have extensive support for multiple clock domains. In addition to the Clock Conditioning
Circuits (CCCs) and phase-locked loops (PLLs), there is a comprehensive global clock distribution
network called a VersaNet global network. Each logical element (VersaTile) input and output port has
access to these global networks. The VersaNet global networks can be used to distribute low-skew clock
signals or high-fanout nets. In addition, these highly segmented VersaNet global networks contain spines
(the vertical branches of the global network tree) and ribs that can reach all the VersaTiles inside their
region. This allows users the flexibility to create low-skew local clock networks using spines. This
document describes VersaNet global networks and discusses how to assign signals to these global
networks and spines in a design flow. Details concerning low power flash device PLLs are described in
the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" section on
page 77. This chapter describes the low power flash devices’ global architecture and uses of these global
networks in designs. 

Global Architecture
Low power flash devices offer powerful and flexible control of circuit timing through the use of global
circuitry. Each chip has up to six CCCs, some with PLLs.

• In IGLOOe, ProASIC3EL, and ProASIC3E devices, all CCCs have PLLs—hence, 6 PLLs per
device (except the PQ208 package, which has only 2 PLLs). 

• In IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, and ProASIC3L devices, the west CCC
contains a PLL core (except in 10 k through 30 k devices). 

• In Fusion devices, the west CCC also contains a PLL core. In the two larger devices (AFS600 and
AFS1500), the west and east CCCs each contain a PLL.

Refer to Table 4-6 on page 100 for details. Each PLL includes delay lines, a phase shifter (0°, 90°,
180°, 270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and
interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to
three chip global lines on each side of the chip (six chip global lines total). The CCCs at the four corners
each have access to three quadrant global lines in each quadrant of the chip (except in 10 k through 30 k
gate devices).
The nano 10 k, 15 k, and 20 k devices support four VersaNet global resources, and 30 k devices support
six global resources. The 10 k through 30 k devices have simplified CCCs called CCC-GLs.
The flexible use of the VersaNet global network allows the designer to address several design
requirements. User applications that are clock-resource-intensive can easily route external or gated
internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay
penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global
network.
Note: Microsemi recommends that you choose the appropriate global pin and use the appropriate global

resource so you can realize these benefits. 
The following sections give an overview of the VersaNet global network, the structure of the global
network, access point for the global networks, and the clock aggregation feature that enables a design to
have very low clock skew using spines.
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Figure 3-12 • Chip Global Region

Figure 3-13 • Quadrant Global Region
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Global Buffers with No Programmable Delays
Access to the global / quadrant global networks can be configured directly from the global I/O buffer, 
bypassing the CCC functional block (as indicated by the dotted lines in Figure 4-1 on page 77). Internal 
signals driven by the FPGA core can use the global / quadrant global networks by connecting via the 
routed clock input of the multiplexer tree.
There are many specific CLKBUF macros supporting the wide variety of single-ended I/O inputs 
(CLKBUF) and differential I/O standards (CLKBUF_LVDS/LVPECL) in the low power flash families. They 
are used when connecting global I/Os directly to the global/quadrant networks. 
Note: IGLOO nano and ProASIC nano devices do not support differential inputs.
When an internal signal needs to be connected to the global/quadrant network, the CLKINT macro is 
used to connect the signal to the routed clock input of the network's MUX tree.
To utilize direct connection from global I/Os or from internal signals to the global/quadrant networks, 
CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are used (Figure 4-2). 

• The CLKBUF and CLKBUF_LVPECL/LVDS1 macros are composite macros that include an I/O 
macro driving a global buffer, which uses a hardwired connection.

• The CLKBUF, CLKBUF_LVPECL/LVDS1 and CLKINT macros are pass-through clock sources 
and do not use the PLL or provide any programmable delay functionality.

• The CLKINT macro provides a global buffer function driven internally by the FPGA core.
The available CLKBUF macros are described in the IGLOO, ProASIC3, SmartFusion, and Fusion 
Macro Library Guide.

Global Buffer with Programmable Delay
Clocks requiring clock adjustments can utilize the programmable delay cores before connecting to the 
global / quadrant global networks. A maximum of 18 CCC global buffers can be instantiated in a device—
three per CCC and up to six CCCs per device. 
Each CCC functional block contains a programmable delay element for each of the global networks (up 
to three), and users can utilize these features by using the corresponding macro (Figure 4-3 on page 81). 

1. B-LVDS and M-LVDS are supported with the LVDS macro.

Note: IGLOO nano and ProASIC nano devices do not support differential inputs.
Figure 4-2 • CCC Options: Global Buffers with No Programmable Delay
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Each global buffer, as well as the PLL reference clock, can be driven from one of the following: 
• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not applicable for IGLOO nano and 

ProASIC3 nano devices)
• The FPGA core 

Since the architecture of the devices varies as size increases, the following list details I/O types 
supported for globals: 

IGLOO and ProASIC3
• LVDS-based clock sources are available only on 250 k gate devices and above (IGLOO nano and 

ProASIC3 nano devices do not support differential inputs).
• 60 k and 125 k gate devices support single-ended clock sources only.
• 15 k and 30 k gate devices support these inputs for CCC only and do not contain a PLL.
• nano devices:

– 10 k, 15 k, and 20 k devices do not contain PLLs in the CCCs, and support only CLKBUF and 
CLKINT.

– 60 k, 125 k, and 250 k devices support one PLL in the middle left CCC position. In the 
absence of the PLL, this CCC can be used by CLKBUF, CLKINT, and CLKDLY macros. The 
corner CCCs support CLKBUF, CLKINT, and CLKDLY.

Fusion
• AFS600 and AFS1500: All single-ended, differential, and voltage-referenced I/O standards (Pro 

I/O).
• AFS090 and AFS250: All single-ended and differential I/O standards.

Clock Sources for PLL and CLKDLY Macros
The input reference clock (CLKA for a PLL macro, CLK for a CLKDLY macro) can be accessed from 
different sources via the associated clock multiplexer tree. Each CCC has the option of choosing the 
source of the input clock from one of the following:

• Hardwired I/O
• External I/O
• Core Logic
• RC Oscillator (Fusion only)
• Crystal Oscillator (Fusion only)

The SmartGen macro builder tool allows users to easily create the PLL and CLKDLY macros with the 
desired settings. Microsemi strongly recommends using SmartGen to generate the CCC macros.

Hardwired I/O Clock Source
Hardwired I/O refers to global input pins that are hardwired to the multiplexer tree, which directly 
accesses the CCC global buffers. These global input pins have designated pin locations and are 
indicated with the I/O naming convention Gmn (m refers to any one of the positions where the PLL core 
is available, and n refers to any one of the three global input MUXes and the pin number of the 
associated global location, m). Choosing this option provides the benefit of directly connecting to the 
CCC reference clock input, which provides less delay. See Figure 4-9 on page 90 for an example 
illustration of the connections, shown in red. If a CLKDLY macro is initiated to utilize the programmable 
delay element of the CCC, the clock input can be placed at one of nine dedicated global input pin 
locations. In other words, if Hardwired I/O is chosen as the input source, the user can decide to place the 
input pin in one of the GmA0, GmA1, GmA2, GmB0, GmB1, GmB2, GmC0, GmC1, or GmC2 locations of 
the low power flash devices. When a PLL macro is used to utilize the PLL core in a CCC location, the 
clock input of the PLL can only be connected to one of three GmA* global pin locations: GmA0, GmA1, or 
GmA2.
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Table 4-9 to Table 4-15 on page 110 provide descriptions of the configuration data for the configuration 
bits.       

Table 4-9 • Input Clock Divider, FINDIV[6:0] (/n)

FINDIV<6:0> State Divisor New Frequency Factor

0 1 1.00000

1 2 0.50000

… … …

127 128 0.0078125

Table 4-10 • Feedback Clock Divider, FBDIV[6:0] (/m) 

FBDIV<6:0> State Divisor New Frequency Factor

0 1 1

1 2 2

… … …

127 128 128

Table 4-11 • Output Frequency Dividers
A Output Divider, OADIV <4:0> (/u); 
B Output Divider, OBDIV <4:0> (/v);
C Output Divider, OCDIV <4:0> (/w)

OADIV<4:0>; OBDIV<4:0>; 
CDIV<4:0> State Divisor New Frequency Factor

0 1 1.00000

1 2 0.50000

… … …

31 32 0.03125

Table 4-12 • MUXA, MUXB, MUXC
OAMUX<2:0>; OBMUX<2:0>; OCMUX<2:0> State MUX Input Selected
0 None. Six-input MUX and PLL are bypassed.

Clock passes only through global MUX and goes directly 
into HC ribs.

1 Not available

2 PLL feedback delay line output

3 Not used

4 PLL VCO 0° phase shift

5 PLL VCO 270° phase shift

6 PLL VCO 180° phase shift

7 PLL VCO 90° phase shift
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Primary Clock Output Delay from CLKA -3.020

Secondary1 Clock frequency 40.000
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKA 2.515

Next, perform simulation in ModelSim to verify the correct delays. Figure 4-30 shows the simulation 
results. The delay values match those reported in the SmartGen PLL Wizard. 

The timing can also be analyzed using SmartTime in Designer. The user should import the synthesized 
netlist to Designer, perform Compile and Layout, and then invoke SmartTime. Go to Tools > Options 
and change the maximum delay operating conditions to Typical Case. Then expand the Clock-to-Out 
paths of GLA and GLB and the individual components of the path delays are shown. The path of GLA is 
shown in Figure 4-31 on page 123 displaying the same delay value. 

Figure 4-30 • ModelSim Simulation Results
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Place-and-Route Stage Considerations
Several considerations must be noted to properly place the CCC macros for layout.
For CCCs with clock inputs configured with the Hardwired I/O–Driven option:

• PLL macros must have the clock input pad coming from one of the GmA* locations.
• CLKDLY macros must have the clock input pad coming from one of the Global I/Os.

If a PLL with a Hardwired I/O input is used at a CCC location and a Hardwired I/O–Driven CLKDLY 
macro is used at the same CCC location, the clock input of the CLKDLY macro must be chosen from one 
of the GmB* or GmC* pin locations. If the PLL is not used or is an External I/O–Driven or Core Logic–
Driven PLL, the clock input of the CLKDLY macro can be sourced from the GmA*, GmB*, or GmC* pin 
locations.
For CCCs with clock inputs configured with the External I/O–Driven option, the clock input pad can be 
assigned to any regular I/O location (IO******** pins). Note that since global I/O pins can also be used as 
regular I/Os, regardless of CCC function (CLKDLY or PLL), clock inputs can also be placed in any of 
these I/O locations.
By default, the Designer layout engine will place global nets in the design at one of the six chip globals. 
When the number of globals in the design is greater than six, the Designer layout engine will 
automatically assign additional globals to the quadrant global networks of the low power flash devices. If 
the user wishes to decide which global signals should be assigned to chip globals (six available) and 
which to the quadrant globals (three per quadrant for a total of 12 available), the assignment can be 
achieved with PinEditor, ChipPlanner, or by importing a placement constraint file. Layout will fail if the 

Figure 4-31 • Static Timing Analysis Using SmartTime
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
SRAM/FIFO Support in Flash-Based Devices 
The flash FPGAs listed in Table 6-1 support SRAM and FIFO blocks and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 6-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 6-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 6-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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The ROM emulation application is based on RAM block initialization. If the user's main design has
access only to the read ports of the RAM block (RADDR, RD, RCLK, and REN), and the contents of the
RAM are already initialized through the TAP, then the memory blocks will emulate ROM functionality for
the core design. In this case, the write ports of the RAM blocks are accessed only by the user interface
block, and the interface is activated only by the TAP Instruction Register contents.
Users should note that the contents of the RAM blocks are lost in the absence of applied power.
However, the 1 kbit of flash memory, FlashROM, in low power flash devices can be used to retain data
after power is removed from the device. Refer to the "SRAM and FIFO Memories in Microsemi's Low
Power Flash Devices" section on page 147 for more information.

Sample Verilog Code
Interface Block
`define Initialize_start 8'h22 //INITIALIZATION START COMMAND VALUE
`define Initialize_stop 8'h23 //INITIALIZATION START COMMAND VALUE

module interface(IR, rst_n, data_shift, clk_in, data_update, din_ser, dout_ser, test,
test_out,test_clk,clk_out,wr_en,rd_en,write_word,read_word,rd_addr, wr_addr);

input [7:0] IR;
input [3:0] read_word; //RAM DATA READ BACK
input rst_n, data_shift, clk_in, data_update, din_ser; //INITIALIZATION SIGNALS
input test, test_clk; //TEST PROCEDURE CLOCK AND COMMAND INPUT
output [3:0] test_out; //READ DATA
output [3:0] write_word; //WRITE DATA
output [1:0] rd_addr; //READ ADDRESS
output [1:0] wr_addr; //WRITE ADDRESS
output dout_ser; //TDO DRIVER
output clk_out, wr_en, rd_en;

wire [3:0] write_word;
wire [1:0] rd_addr;
wire [1:0] wr_addr;
wire [3:0] Q_out;
wire enable, test_active;

reg clk_out;

//SELECT CLOCK FOR INITIALIZATION OR READBACK TEST
always @(enable or test_clk or data_update)
begin

case ({test_active})
1 : clk_out = test_clk ;
0 : clk_out = !data_update;
default : clk_out = 1'b1;

endcase
end

assign test_active = test && (IR == 8'h23);
assign enable = (IR == 8'h22);
assign wr_en = !enable;
assign rd_en = !test_active;
assign test_out = read_word;
assign dout_ser = Q_out[3];

//4-bit SIN/POUT SHIFT REGISTER
shift_reg data_shift_reg (.Shiften(data_shift), .Shiftin(din_ser), .Clock(clk_in),

.Q(Q_out));

//4-bit PIPELINE REGISTER
D_pipeline pipeline_reg (.Data(Q_out), .Clock(data_update), .Q(write_word));
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I/O Architecture

I/O Tile
The I/O tile provides a flexible, programmable structure for implementing a large number of I/O
standards. In addition, the registers available in the I/O tile can be used to support high-performance
register inputs and outputs, with register enable if desired (Figure 7-2). The registers can also be used to
support the JESD-79C Double Data Rate (DDR) standard within the I/O structure (see the "DDR for
Microsemi’s Low Power Flash Devices" section on page 271 for more information). In addition, the
registers available in the I/O tile can be used to support high-performance register inputs and outputs,
with register enable if desired (Figure 7-2). 
As depicted in Figure 7-2, all I/O registers share one CLR port. The output register and output enable
register share one CLK port. 

Figure 7-2 • DDR Configured I/O Block Logical Representation
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• In Active and Static modes:
– Input buffers with pull-up, driven Low
– Input buffers with pull-down, driven High
– Bidirectional buffers with pull-up, driven Low
– Bidirectional buffers with pull-down, driven High
– Output buffers with pull-up, driven Low
– Output buffers with pull-down, driven High
– Tristate buffers with pull-up, driven Low
– Tristate buffers with pull-down, driven High

• In Flash*Freeze mode:
– Input buffers with pull-up, driven Low
– Input buffers with pull-down, driven High
– Bidirectional buffers with pull-up, driven Low
– Bidirectional buffers with pull-down, driven High

Electrostatic Discharge Protection
Low power flash devices are tested per JEDEC Standard JESD22-A114-B.
These devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all device
pads against damage from ESD as well as from excessive voltage transients. 
All IGLOO and ProASIC3 devices are tested to the Human Body Model (HBM) and the Charged Device
Model (CDM).
Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative
(N) side connected to VCCI. The second diode has its P side connected to GND and its N side
connected to the pad. During operation, these diodes are normally biased in the off state, except when
transient voltage is significantly above VCCI or below GND levels. 
In 30K gate devices, the first diode is always off. In other devices, the clamp diode is always on and
cannot be switched off.
By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 7-12 on
page 193 for more information about the I/O standards and the clamp diode.
The second diode is always connected to the pad, regardless of the I/O configuration selected.
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Note: The 30 k gate devices do not support a PLL (VCOMPLF and VCCPLF pins).
Figure 7-19 • Naming Conventions of IGLOO and ProASIC3 Devices with Two I/O Banks – Top View 

Figure 7-20 • Naming Conventions of IGLOO and ProASIC3 Devices with Four I/O Banks – Top View
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B-LVDS/M-LVDS
Bus LVDS (B-LVDS) refers to bus interface circuits based on LVDS technology. Multipoint LVDS 
(M-LVDS) specifications extend the LVDS standard to high-performance multipoint bus applications. 
Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and 
transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS 
to accommodate the loading. The driver requires series terminations for better signal quality and to 
control voltage swing. Termination is also required at both ends of the bus, since the driver can be 
located anywhere on the bus. These configurations can be implemented using TRIBUF_LVDS and 
BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS 
macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in 
Figure 8-9. The input and output buffer delays are available in the LVDS sections in the datasheet. 
Example: For a bus consisting of 20 equidistant loads, the terminations given in EQ 8-1 provide the 
required differential voltage, in worst case industrial operating conditions, at the farthest receiver:

RS = 60 Ω, RT = 70 Ω, given ZO = 50 Ω (2") and Zstub = 50 Ω (~1.5").

EQ 8-1

Figure 8-9 • A B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
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Solution 2
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage 
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term 
reliability. 
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used 
for clamping, and the voltage must be limited by the external resistors and Zener, as shown in 
Figure 8-11. Relying on the diode clamping would create an excessive pad DC voltage of 
3.3 V + 0.7 V = 4 V.

Figure 8-10 • Solution 1

Figure 8-11 • Solution 2
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Board-Level Considerations
Low power flash devices have robust I/O features that can help in reducing board-level components. The 
devices offer single-chip solutions, which makes the board layout simpler and more immune to signal 
integrity issues. Although, in many cases, these devices resolve board-level issues, special attention 
should always be given to overall signal integrity. This section covers important board-level 
considerations to facilitate optimum device performance.

Termination
Proper termination of all signals is essential for good signal quality. Nonterminated signals, especially 
clock signals, can cause malfunctioning of the device.
For general termination guidelines, refer to the Board-Level Considerations application note for 
Microsemi FPGAs. Also refer to the "Pin Descriptions" chapter of the appropriate datasheet for 
termination requirements for specific pins.
Low power flash I/Os are equipped with on-chip pull-up/-down resistors. The user can enable these 
resistors by instantiating them either in the top level of the design (refer to the IGLOO, Fusion, and 
ProASIC3 Macro Library Guide for the available I/O macros with pull-up/-down) or in the I/O Attribute 
Editor in Designer if generic input or output buffers are instantiated in the top level. Unused I/O pins are 
configured as inputs with pull-up resistors.
As mentioned earlier, low power flash devices have multiple programmable drive strengths, and the user 
can eliminate unwanted overshoot and undershoot by adjusting the drive strengths.

Figure 8-20 • User I/O Naming Conventions of IGLOOe and ProASIC3E Devices – Top View
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List of Changes
The following table lists critical changes that were made in each revision of the document.  

Date Changes Page

August 2012 Figure 8-1 • DDR Configured I/O Block Logical Representation and Figure 8-3 •
DDR Configured I/O Block Logical Representation were revised to indicate that
resets on registers 1, 3, 4, and 5 are active high rather than active low. The title of
the figures was revised from "I/O Block Logical Representation" (SAR 40685).

213, 220

AGLE1500 was removed from Table 8-2 • Supported I/O Standards because it is
not a valid offering. LVCMOS 1.2 was added to the single-ended standards.
LVCMOS 1.2 was added to Table 8-3 • VCCI Voltages and Compatible IGLOOe
and ProASIC3E Standards (SAR 33207).

215, 217

Lack of a heading for the "User I/O Naming Convention" section made the
information difficult to locate. A heading now introduces the user I/O naming
conventions (SAR 38059).

245

Figure 8-5 • Simplified I/O Buffer Circuitry and Table 8-8 • Programmable I/O
Features (user control via I/O Attribute Editor) were modified to indicate that
programmable input delay control is applicable only to ProASIC3E, IGLOOe,
ProASIC3EL, and RT ProASIC3 devices (SAR 39666).

222, 227

The hyperlink for the Board-Level Considerations application note was corrected
(SAR 36663).

246, 248

June 2011 Figure 8-1 • DDR Configured I/O Block Logical Representation and Figure 8-3 • 
DDR Configured I/O Block Logical Representation were revised so that the 
I/O_CLR and I/O_OCLK nets are no longer joined in front of Input Register 3 but 
instead on the branch of the CLR/PRE signal (SAR 26052).

213, 220

The "Pro I/Os—IGLOOe, ProASIC3EL, and ProASIC3E" section was revised. 
Formerly it stated, "3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant." This sentence 
now reads, "3.3 V PCI and 3.3 V PCI-X can be configured to be 5 V–tolerant" (SAR 
20983).

215

Table 8-5 • Legal IGLOOe and ProASIC3E I/O Usage Matrix within the Same Bank 
was revised as follows (SAR 22467):
The combination of 3.3 V I/O bank voltage with 1.50 V minibank voltage and LVDS, 
B-LVDS, M-LVDS, and DDR was made an illegal combination (now gray instead of 
white). 
The combination of 2.5 V I/O bank voltage with no minibank voltage and LVDS, 
B-LVDS, M-LVDS, and DDR was made a valid combination (now white instead of 
gray).

217

The following sentence was removed from the "LVCMOS (Low-Voltage CMOS)"
section (SAR 22634): "All these versions use a 3.3 V–tolerant CMOS input buffer
and a push-pull output buffer."

223

The "Electrostatic Discharge Protection" section was revised to remove references 
to tolerances (refer to the Reliability Report for tolerances). The Machine Model 
(MM) is not supported and was deleted from this section (SAR 24385).

231

The "I/O Interfacing" section was revised to state that low power flash devices are 
5 V–input– and 5 V–output–tolerant if certain I/O standards are selected, removing 
"without adding any extra circuitry," which was incorrect (SAR 21404).

247

July 2010 This chapter is no longer published separately with its own part number and 
version but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

The terminology in the "Low Power Flash Device I/O Support" section was revised. 214
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Programming Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 FlashPro4 is a replacement for FlashPro3 and has been added to this chapter. 
FlashPro is no longer available.

N/A

The chapter was updated to include SmartFusion devices. N/A

The following were deleted: 
"Live at Power-Up (LAPU) or Boot PROM" section
"Design Security" section
Table 14-2 • Programming Features for Actel Devices and much of the text in the 
"Programming Features for Microsemi Devices" section
"Programming Flash FPGAs" section
"Return Material Authorization (RMA) Policies" section

N/A

The "Device Programmers" section was revised. 291

The Independent Programming Centers information was removed from the "Volume 
Programming Services" section.

292

Table 11-3 • Programming Solutions was revised to add FlashPro4 and note that 
FlashPro is discontinued. A note was added for FlashPro Lite regarding power 
supply requirements.

293

Most items were removed from Table 11-4 • Programming Ordering Codes, 
including FlashPro3 and FlashPro.

294

The "Programmer Device Support" section was deleted and replaced with a 
reference to the Microsemi SoC Products Group website for the latest information.

294

The "Certified Programming Solutions" section was revised to add FlashPro4 and 
remove Silicon Sculptor I and Silicon Sculptor 6X. Reference to Programming and 
Functional Failure Guidelines was added.

294

The file type *.pdb was added to the "Use the Latest Version of the Designer 
Software to Generate Your Programming File (recommended)" section.

295

Instructions on cleaning and careful insertion were added to the "Perform Routine 
Hardware Self-Diagnostic Test" section. Information was added regarding testing 
Silicon Sculptor programmers with an adapter module installed before every 
programming session verifying their calibration annually.

295

The "Signal Integrity While Using ISP" section is new. 296

The "Programming Failure Allowances" section was revised. 296
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FlashROM and Programming Files
Each low power flash device has 1 kbit of on-chip, nonvolatile flash memory that can be accessed from
the FPGA core. This nonvolatile FlashROM is arranged in eight pages of 128 bits (Figure 13-3). Each
page can be programmed independently, with or without the 128-bit AES encryption. The FlashROM can
only be programmed via the IEEE 1532 JTAG port and cannot be programmed from the FPGA core. In
addition, during programming of the FlashROM, the FPGA core is powered down automatically by the
on-chip programming control logic.

When using FlashROM combined with AES, many subscription-based applications or device
serialization applications are possible. The FROM configurator found in the Libero SoC Catalog supports
easy management of the FlashROM contents, even over large numbers of devices. The FROM
configurator can support FlashROM contents that contain the following:

• Static values
• Random numbers
• Values read from a file
• Independent updates of each page

In addition, auto-incrementing of fields is possible. In applications where the FlashROM content is
different for each device, you have the option to generate a single STAPL file for all the devices or
individual serialization files for each device. For more information on how to generate the FlashROM
content for device serialization, refer to the "FlashROM in Microsemi’s Low Power Flash Devices" section
on page 133. 
Libero SoC includes a unique tool to support the generation and management of FlashROM and FPGA
programming files. This tool is called FlashPoint. 
Depending on the applications, designers can use the FlashPoint software to generate a STAPL file with
different contents. In each case, optional AES encryption and/or different security settings can be set. 
In Designer, when you click the Programming File icon, FlashPoint launches, and you can generate
STAPL file(s) with four different cases (Figure 13-4 on page 334). When the serialization feature is used
during the configuration of FlashROM, you can generate a single STAPL file that will program all the
devices or an individual STAPL file for each device. 
The following cases present the FPGA core and FlashROM programming file combinations that can be
used for different applications. In each case, you can set the optional security settings (FlashLock Pass
Key and/or AES Key) depending on the application.

1. A single STAPL file or multiple STAPL files with multiple FlashROM contents and the FPGA core
content. A single STAPL file will be generated if the device serialization feature is not used. You
can program the whole FlashROM or selectively program individual pages.

2. A single STAPL file for the FPGA core content

Figure 13-3 • FlashROM Architecture
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