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ProASIC3L FPGA Fabric User’s Guide
51900147-2/5.07 In the following sentence, located in the "Flash*Freeze Mode" section, the bold text
was changed from active high to active Low.
The Flash*Freeze pin (active low) is a dedicated pin used to enter or exit
Flash*Freeze mode directly, or alternatively the pin can be routed internally to the
FPGA core to allow the user's logic to decide if it is safe to transition to this mode.

24

Figure 2-2 • Flash*Freeze Mode Type 1 – Timing Diagram was updated. 25

Information about ULSICC was added to the "Prototyping for IGLOO and
ProASIC3L Devices Using ProASIC3" section.

2-21

51900147-1/3.07 In the "Flash*Freeze Mode" section, "active high" was changed to "active low." 24

The "Prototyping for IGLOO and ProASIC3L Devices Using ProASIC3" section was
updated with information concerning the Flash*Freeze pin.

2-21
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ProASIC3L FPGA Fabric User’s Guide
Spine Architecture
The low power flash device architecture allows the VersaNet global networks to be segmented. Each of
these networks contains spines (the vertical branches of the global network tree) and ribs that can reach
all the VersaTiles inside its region. The nine spines available in a vertical column reside in global
networks with two separate regions of scope: the quadrant global network, which has three spines, and
the chip (main) global network, which has six spines. Note that the number of quadrant globals and
globals/spines per tree varies depending on the specific device. Refer to Table 3-4 for the clocking
resources available for each device. The spines are the vertical branches of the global network tree,
shown in Figure 3-3 on page 50. Each spine in a vertical column of a chip (main) global network is further
divided into two spine segments of equal lengths: one in the top and one in the bottom half of the die
(except in 10 k through 30 k gate devices).
Top and bottom spine segments radiating from the center of a device have the same height. However,
just as in the ProASICPLUS® family, signals assigned only to the top and bottom spine cannot access the
middle two rows of the die. The spines for quadrant clock networks do not cross the middle of the die and
cannot access the middle two rows of the architecture. 
Each spine and its associated ribs cover a certain area of the device (the "scope" of the spine; see
Figure 3-3 on page 50). Each spine is accessed by the dedicated global network MUX tree architecture,
which defines how a particular spine is driven—either by the signal on the global network from a CCC, for
example, or by another net defined by the user. Details of the chip (main) global network spine-selection
MUX are presented in Figure 3-8 on page 60. The spine drivers for each spine are located in the middle
of the die.
Quadrant spines can be driven from user I/Os or an internal signal from the north and south sides of the
die. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. Access to the top quadrant spine regions is from the top
of the die, and access to the bottom quadrant spine regions is from the bottom of the die. The A3PE3000
device has 28 clock trees and each tree has nine spines; this flexible global network architecture enables
users to map up to 252 different internal/external clocks in an A3PE3000 device.

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices

ProASIC3/
ProASIC3L
Devices

IGLOO 
Devices

Chip
Globals 

Quadrant
Globals 

(4×3)
Clock
Trees 

Globals/
Spines

per
Tree

Total
Spines

per
Device

VersaTiles
in Each

Tree 
Total

VersaTiles 

Rows
in

Each
Spine

A3PN010 AGLN010 4 0 1 0 0 260 260 4

A3PN015 AGLN015 4 0 1 0 0 384 384 6

A3PN020 AGLN020 4 0 1 0 0 520 520 6

A3PN060 AGLN060 6 12 4 9 36 384 1,536 12

A3PN125 AGLN125 6 12 8 9 72 384 3,072 12

A3PN250 AGLN250 6 12 8 9 72 768 6,144 24

A3P015 AGL015 6 0 1 9 9 384 384 12

A3P030 AGL030 6 0 2 9 18 384 768 12

A3P060 AGL060 6 12 4 9 36 384 1,536 12

A3P125 AGL125 6 12 8 9 72 384 3,072 12

A3P250/L AGL250 6 12 8 9 72 768 6,144 24

A3P400 AGL400 6 12 12 9 108 768 9,216 24

A3P600/L AGL600 6 12 12 9 108 1,152 13,824 36

A3P1000/L AGL1000 6 12 16 9 144 1,536 24,576 48

A3PE600/L AGLE600 6 12 12 9 108 1,120 13,440 35

A3PE1500 6 12 20 9 180 1,888 37,760 59

A3PE3000/L AGLE3000 6 12 28 9 252 2,656 74,368 83
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The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to 
delay the clock input using a programmable delay. The CLKDLY macro takes the selected clock input 
and adds a user-defined delay element. This macro generates an output clock phase shift from the input 
clock.
The CLKDLY macro can be driven by an INBUF* macro to create a composite macro, where the I/O 
macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the 
software will automatically place the dedicated global I/O in the appropriate locations. Many specific 
INBUF macros support the wide variety of single-ended and differential I/O standards supported by the 
low power flash family. The available INBUF macros are described in the IGLOO, ProASIC3, 
SmartFusion, and Fusion Macro Library Guide. 
The CLKDLY macro can be driven directly from the FPGA core. The CLKDLY macro can also be driven 
from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a 
special macro, PLLINT, to differentiate the clock input driven by the hardwired I/O connection.
The visual CLKDLY configuration in the SmartGen area of the Microsemi Libero System-on-Chip (SoC) 
and Designer tools allows the user to select the desired amount of delay and configures the delay 
elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will 
automatically instantiate the special macro, PLLINT, when needed.

CLKDLY Macro Signal Descriptions 
The CLKDLY macro supports one input and one output. Each signal is described in Table 4-2.  

Notes:
1. For INBUF* driving a PLL macro or CLKDLY macro, the I/O will be hard-routed to the CCC; i.e., will be placed by 

software to a dedicated Global I/O.
2. IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Figure 4-3 • CCC Options: Global Buffers with Programmable Delay
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Input LVDS/LVPECL Macro
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Table 4-2 • Input and Output Description of the CLKDLY Macro

Signal Name I/O Description

CLK Reference Clock Input Reference clock input 

GL Global Output Output Primary output clock to respective global/quadrant clock networks
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External I/O Clock Source
External I/O refers to regular I/O pins. The clock source is instantiated with one of the various INBUF 
options and accesses the CCCs via internal routing. The user has the option of assigning this input to 
any of the I/Os labeled with the I/O convention IOuxwByVz. Refer to the "User I/O Naming Conventions 
in I/O Structures" chapter of the appropriate device user’s guide, and for Fusion, refer to the Fusion 
Family of Mixed Signal FPGAs datasheet for more information. Figure 4-11 gives a brief explanation of 
external I/O usage. Choosing this option provides the freedom of selecting any user I/O location but 
introduces additional delay because the signal connects to the routed clock input through internal routing 
before connecting to the CCC reference clock input.
For the External I/O option, the routed signal would be instantiated with a PLLINT macro before 
connecting to the CCC reference clock input. This instantiation is conveniently done automatically by 
SmartGen when this option is selected. Microsemi recommends using the SmartGen tool to generate the 
CCC macro. The instantiation of the PLLINT macro results in the use of the routed clock input of the I/O 
to connect to the PLL clock input. If not using SmartGen, manually instantiate a PLLINT macro before the 
PLL reference clock to indicate that the regular I/O driving the PLL reference clock should be used (see 
Figure 4-11 for an example illustration of the connections, shown in red).
In the above two options, the clock source must be instantiated with one of the various INBUF macros. 
The reference clock pins of the CCC functional block core macros must be driven by regular input 
macros (INBUFs), not clock input macros. 

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal 
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users 
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input 
reference clock of the CCC block.

Figure 4-11 • Illustration of External I/O Usage
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Loading the Configuration Register
The most important part of CCC dynamic configuration is to load the shift register properly with the 
configuration bits. There are different ways to access and load the configuration shift register:

• JTAG interface
• Logic core
• Specific I/O tiles

JTAG Interface
The JTAG interface requires no additional I/O pins. The JTAG TAP controller is used to control the 
loading of the CCC configuration shift register. 
Low power flash devices provide a user interface macro between the JTAG pins and the device core 
logic. This macro is called UJTAG. A user should instantiate the UJTAG macro in his design to access the 
configuration register ports via the JTAG pins. 
For more information on CCC dynamic reconfiguration using UJTAG, refer to the "UJTAG Applications in 
Microsemi’s Low Power Flash Devices" section on page 363.

Logic Core
If the logic core is employed, the user must design a module to provide the configuration data and control 
the shifting and updating of the CCC configuration shift register. In effect, this is a user-designed TAP 
controller, which requires additional chip resources.

Specific I/O Tiles
If specific I/O tiles are used for configuration, the user must provide the external equivalent of a TAP 
controller. This does not require additional core resources but does use pins.

Shifting the Configuration Data
To enter a new configuration, all 81 bits must shift in via SDIN. After all bits are shifted, SSHIFT must go 
LOW and SUPDATE HIGH to enable the new configuration. For simulation purposes, bits <71:73> and 
<77:80> are "don't care."
The SUPDATE signal must be LOW during any clock cycle where SSHIFT is active. After SUPDATE is 
asserted, it must go back to the LOW state until a new update is required.

PLL Configuration Bits Description  
Table 4-8 • Configuration Bit Descriptions for the CCC Blocks
Config.
Bits Signal Name Description
<88:87>  GLMUXCFG [1:0]1 NGMUX configuration The configuration bits specify the input clocks 

to the NGMUX (refer to Table 4-17 on 
page 110).2

86  OCDIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by the divider factor 
in Table 4-18 on page 111.

85  OBDIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by a 0.5 factor (refer 
to Table 4-18 on page 111).

84  OADIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by certain 0.5 factor 
(refer to Table 4-16 on page 110).

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set. 

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools > 
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
106 Revision 4
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Figure 5-2 • Fusion Device Architecture Overview (AFS600) 

Figure 5-3 • ProASIC3 and IGLOO Device Architecture 
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SmartGen enables the user to configure the desired RAM element to use either a single clock for read
and write, or two independent clocks for read and write. The user can select the type of RAM as well as
the width/depth and several other parameters (Figure 6-13).

SmartGen also has a Port Mapping option that allows the user to specify the names of the ports
generated in the memory block (Figure 6-14).

SmartGen also configures the FIFO according to user specifications. Users can select no flags, static
flags, or dynamic flags. Static flag settings are configured using configuration flash and cannot be altered

Figure 6-13 • SmartGen Memory Configuration Interface 

Figure 6-14 • Port Mapping Interface for SmartGen-Generated Memory
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I/O Architecture

I/O Tile
The I/O tile provides a flexible, programmable structure for implementing a large number of I/O
standards. In addition, the registers available in the I/O tile can be used to support high-performance
register inputs and outputs, with register enable if desired (Figure 7-2). The registers can also be used to
support the JESD-79C Double Data Rate (DDR) standard within the I/O structure (see the "DDR for
Microsemi’s Low Power Flash Devices" section on page 271 for more information). In addition, the
registers available in the I/O tile can be used to support high-performance register inputs and outputs,
with register enable if desired (Figure 7-2). 
As depicted in Figure 7-2, all I/O registers share one CLR port. The output register and output enable
register share one CLK port. 

Figure 7-2 • DDR Configured I/O Block Logical Representation
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Table 7-12 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in IGLOO and ProASIC3 Devices

I/O Assignment

Clamp Diode 1 Hot Insertion 5 V Input Tolerance 2 

Input and Output 
Buffer

AGL030 
and 

A3P030

Other 
IGLOO 

and 
ProASIC3 
Devices

AGL015 
and 

AGL030 

Other 
IGLOO 
Devices 
and All 

ProASIC3 

AGL030 
and 

A3P030

Other 
IGLOO 

and 
ProASIC3 
Devices

3.3 V LVTTL/LVCMOS No Yes Yes No Yes 2 Yes 2 Enabled/Disabled

3.3 V PCI, 3.3 V PCI-X N/A Yes N/A No N/A Yes 2 Enabled/Disabled

LVCMOS 2.5 V 5 No Yes Yes No Yes 2 Yes 4 Enabled/Disabled

LVCMOS 2.5 V/5.0 V 6 N/A Yes N/A No N/A Yes 4 Enabled/Disabled

LVCMOS 1.8 V No Yes Yes No No No Enabled/Disabled

LVCMOS 1.5 V No Yes Yes No No No Enabled/Disabled

Differential, LVDS/
B-LVDS/M-
LVDS/LVPECL 

N/A Yes N/A No N/A No Enabled/Disabled

Notes:
1. The clamp diode is always off for the AGL030 and A3P030 device and always active for other IGLOO and

ProASIC3 devices.
2. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
3. Refer to Table 7-8 on page 189 to Table 7-11 on page 190 for device-compliant information.
4. Can be implemented with an external resistor and an internal clamp diode.
5. The LVCMOS 2.5 V I/O standard is supported by the 30 k gate devices only; select the LVCMOS25 macro.
6. The LVCMOS 2.5 V / 5.0 V I/O standard is supported by all IGLOO and ProASIC3 devices except 30K gate

devices; select the LVCMOS5 macro.
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Solution 4
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term
reliability.

Figure 7-12 • Solution 4
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Selectable Skew between Output Buffer Enable and Disable Times
Low power flash devices have a configurable skew block in the output buffer circuitry that can be enabled
to delay output buffer assertion without affecting deassertion time. Since this skew block is only available
for the OE signal, the feature can be used in tristate and bidirectional buffers. A typical 1.2 ns delay is
added to the OE signal to prevent potential bus contention. Refer to the appropriate family datasheet for
detailed timing diagrams and descriptions.
The skew feature is available for all I/O standards.
This feature can be implemented by using a PDC command (Table 7-5 on page 179) or by selecting a
check box in the I/O Attribute Editor in Designer. The check box is cleared by default.
The configurable skew block is used to delay output buffer assertion (enable) without affecting
deassertion (disable) time.

Figure 7-13 • Block Diagram of Output Enable Path

Figure 7-14 • Timing Diagram (option 1: bypasses skew circuit)
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Figure 7-17 • Timing Diagram (bypasses skew circuit)

Figure 7-18 • Timing Diagram (with skew circuit selected)

EN (b1)

EN (b2)

ENABLE (r1)

Transmitter 1: ON

ENABLE (t2) 

Transmitter 2: ON

ENABLE (t1)

Bus
Contention

Transmitter 1: OFF Transmitter 1: OFF

Transmitter 2: OFF

EN (b1) 

EN (b2) 

Transmitter 1: ON 

ENABLE (t2)  

Transmitter 2: ON Transmitter 2: OFF 

ENABLE (t1)
 

Result: No Bus Contention

Transmitter 1: OFF Transmitter 1: OFF
Revision 4 201



ProASIC3L FPGA Fabric User’s Guide
June 2011
(continued)

The following sentence was removed from the "LVCMOS (Low-Voltage CMOS)"
section (SAR 22634): "All these versions use a 3.3 V–tolerant CMOS input buffer
and a push-pull output buffer."

184

Hot-insertion was changed to "No" for other IGLOO and all ProASIC3 devices in
Table 7-12 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in IGLOO and
ProASIC3 Devices (SAR 24526).

193

The "Electrostatic Discharge Protection" section was revised to remove references
to tolerances (refer to the Reliability Report for tolerances). The Machine Model
(MM) is not supported and was deleted from this section (SAR 24385).

192

The "I/O Interfacing" section was revised to state that low power flash devices are 
5 V–input– and 5 V–output–tolerant if certain I/O standards are selected, removing 
"without adding any extra circuitry," which was incorrect (SAR 21404).

208

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

The terminology in the "Low Power Flash Device I/O Support" section was revised. 176

v1.3
(October 2008)

The "Low Power Flash Device I/O Support" section was revised to include new
families and make the information more concise.

176

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 7-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

176

v1.1
(March 2008)

Originally, this document contained information on all IGLOO and ProASIC3
families. With the addition of new families and to highlight the differences between
the features, the document has been separated into 3 documents:
This document contains information specific to IGLOO, ProASIC3, and
ProASIC3L.
"I/O Structures in IGLOOe and ProASIC3E Devices" in the ProASIC3E FPGA
Fabric User’s Guide contains information specific to IGLOOe, ProASIC3E, and
ProASIC3EL I/O features.
"I/O Structures in IGLOO PLUS Devices" in the IGLOO PLUS FPGA Fabric User’s
Guide contains information specific to IGLOO PLUS I/O features.

N/A

Date Change Page
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I/O Structures in IGLOOe and ProASIC3E Devices
I/O Banks and I/O Standards Compatibility
I/Os are grouped into I/O voltage banks. 
Each I/O voltage bank has dedicated I/O supply and ground voltages (VMV/GNDQ for input buffers and 
VCCI/GND for output buffers). Because of these dedicated supplies, only I/Os with compatible standards 
can be assigned to the same I/O voltage bank. Table 8-3 on page 217 shows the required voltage 
compatibility values for each of these voltages.
There are eight I/O banks (two per side).
Every I/O bank is divided into minibanks. Any user I/O in a VREF minibank (a minibank is the region of 
scope of a VREF pin) can be configured as a VREF pin (Figure 8-2). Only one VREF pin is needed to 
control the entire VREF minibank. The location and scope of the VREF minibanks can be determined by 
the I/O name. For details, see the user I/O naming conventions for "IGLOOe and ProASIC3E" on 
page 245. Table 8-5 on page 217 shows the I/O standards supported by IGLOOe and ProASIC3E 
devices, and the corresponding voltage levels. 
I/O standards are compatible if they comply with the following:

• Their VCCI and VMV values are identical.
• Both of the standards need a VREF, and their VREF values are identical.
• All inputs and disabled outputs are voltage tolerant up to 3.3 V.

For more information about I/O and global assignments to I/O banks in a device, refer to the specific pin 
table for the device in the packaging section of the datasheet, and see the user I/O naming conventions 
for "IGLOOe and ProASIC3E" on page 245.  

Figure 8-2 • Typical IGLOOe and ProASIC3E I/O Bank Detail Showing VREF Minibanks
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I/O Software Control in Low Power Flash Devices
Output Buffers
There are two variations: Regular and Special.
If the Regular variation is selected, only the Width (1 to 128) needs to be entered. The default value for
Width is 1.
The Special variation has Width, Technology, Output Drive, and Slew Rate options.

Bidirectional Buffers
There are two variations: Regular and Special.
The Regular variation has Enable Polarity (Active High, Active Low) in addition to the Width option.
The Special variation has Width, Technology, Output Drive, Slew Rate, and Resistor Pull-Up/-Down
options.

Tristate Buffers
Same as Bidirectional Buffers.

DDR
There are eight variations: DDR with Regular Input Buffers, Special Input Buffers, Regular Output
Buffers, Special Output Buffers, Regular Tristate Buffers, Special Tristate Buffers, Regular Bidirectional
Buffers, and Special Bidirectional Buffers.
These variations resemble the options of the previous I/O macro. For example, the Special Input Buffers
variation has Width, Technology, Voltage Level, and Resistor Pull-Up/-Down options. DDR is not
available on IGLOO PLUS devices. 

4. Once the desired configuration is selected, click the Generate button. The Generate Core
window opens (Figure 9-4).

5. Enter a name for the macro. Click OK. The core will be generated and saved to the appropriate
location within the project files (Figure 9-5 on page 257). 

6. Instantiate the I/O macro in the top-level code.
The user must instantiate the DDR_REG or DDR_OUT macro in the design. Use SmartGen to
generate both these macros and then instantiate them in your top level. To combine the DDR
macros with the I/O, the following rules must be met:

Figure 9-4 • Generate Core Window
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ProASIC3L FPGA Fabric User’s Guide
Security Architecture
Fusion, IGLOO, and ProASIC3 devices have been designed with the most comprehensive programming
logic design security in the industry. In the architecture of these devices, security has been designed into
the very fabric. The flash cells are located beneath seven metal layers, and the use of many device
design and layout techniques makes invasive attacks difficult. Since device layers cannot be removed
without disturbing the charge on the programmed (or erased) flash gates, devices cannot be easily
deconstructed to decode the design. Low power flash devices are unique in being reprogrammable and
having inherent resistance to both invasive and noninvasive attacks on valuable IP. Secure, remote ISP
is now possible with AES encryption capability for the programming file during electronic transfer.
Figure 12-2 shows a view of the AES decryption core inside an IGLOO device; Figure 12-3 on page 304
shows the AES decryption core inside a Fusion device. The AES core is used to decrypt the encrypted
programming file when programming.

Note: *ISP AES Decryption is not supported by 30 k gate devices and smaller. For details of other architecture features
by device, refer to the appropriate family datasheet. 

Figure 12-2 • Block Representation of the AES Decryption Core in IGLOO and ProASIC3 Devices 
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ProASIC3L FPGA Fabric User’s Guide
FlashROM Security Use Models
Each of the subsequent sections describes in detail the available selections in Microsemi Designer as an
aid to understanding security applications and generating appropriate programming files for those
applications. Before proceeding, it is helpful to review Figure 12-7 on page 309, which gives a general
overview of the programming file generation flow within the Designer software as well as what occurs
during the device programming stage. Specific settings are discussed in the following sections.
In Figure 12-7 on page 309, the flow consists of two sub-flows. Sub-flow 1 describes programming
security settings to the device only, and sub-flow 2 describes programming the design contents only. 
In Application 1, described in the "Application 1: Trusted Environment" section on page 309, the user
does not need to generate separate files but can generate one programming file containing both security
settings and design contents. Then programming of the security settings and design contents is done in
one step. Both sub-flow 1 and sub-flow 2 are used. 
In Application 2, described in the "Application 2: Nontrusted Environment—Unsecured Location" section
on page 309, the trusted site should follow sub-flows 1 and 2 separately to generate two separate
programming files. The programming file from sub-flow 1 will be used at the trusted site to program the
device(s) first. The programming file from sub-flow 2 will be sent off-site for production programming. 
In Application 3, described in the "Application 3: Nontrusted Environment—Field Updates/Upgrades"
section on page 310, typically only sub-flow 2 will be used, because only updates to the design content
portion are needed and no security settings need to be changed.
In the event that update of the security settings is necessary, see the "Reprogramming Devices" section
on page 321 for details. For more information on programming low power flash devices, refer to the "In-
System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X" section on
page 327.
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15 – Microprocessor Programming of Microsemi’s 
Low Power Flash Devices

Introduction
The Fusion, IGLOO, and ProASIC3 families of flash FPGAs support in-system programming (ISP) with
the use of a microprocessor. Flash-based FPGAs store their configuration information in the actual cells
within the FPGA fabric. SRAM-based devices need an external configuration memory, and hybrid
nonvolatile devices store the configuration in a flash memory inside the same package as the SRAM
FPGA. Since the programming of a true flash FPGA is simpler, requiring only one stage, it makes sense
that programming with a microprocessor in-system should be simpler than with other SRAM FPGAs.
This reduces bill-of-materials costs and printed circuit board (PCB) area, and increases system reliability.
Nonvolatile flash technology also gives the low power flash devices the advantage of a secure, low
power, live-at-power-up, and single-chip solution. Low power flash devices are reprogrammable and offer
time-to-market benefits at an ASIC-level unit cost. These features enable engineers to create high-
density systems using existing ASIC or FPGA design flows and tools.
This document is an introduction to microprocessor programming only. To explain the difference between
the options available, user's guides for DirectC and STAPL provide more detail on implementing each
style.

Figure 15-1 • ISP Using Microprocessor 
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16 – Boundary Scan in Low Power Flash Devices 

Boundary Scan
Low power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware
architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during
boundary scan testing. 
The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and
instruction register (Figure 16-2 on page 360). 
Low power flash devices support three types of test data registers: bypass, device identification, and
boundary scan. The bypass register is selected when no other register needs to be accessed in a device.
This speeds up test data transfer to other devices in a test data path. The 32-bit device identification
register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan
register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register
cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine 
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 16-1.
The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given
state transition to occur. IR and DR indicate that the instruction register or the data register is operating in
that state. 
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Figure 16-1 • TAP Controller State Machine
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A – Summary of Changes

History of Revision to Chapters
The following table lists chapters that were affected in each revision of this document. Each chapter
includes its own change history because it may appear in other device family user’s guides. Refer to the
individual chapter for a list of specific changes. 

Revision
(month/year) Chapter Affected

List of Changes
(page number)

Revision 4
(September 2012)

"Microprocessor Programming of Microsemi’s Low Power Flash Devices" was
revised.

356

Revision 3
(August 2012)

"FPGA Array Architecture in Low Power Flash Devices" was revised. 20

"Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal
FPGAs" was revised. 

129

"SRAM and FIFO Memories in Microsemi's Low Power Flash Devices" was
revised.

173

"I/O Structures in IGLOO and ProASIC3 Devices" was revised. 210

"I/O Structures in IGLOOe and ProASIC3E Devices" was revised. 249

The "Pin Descriptions" and "Packaging" chapters were removed. This
information is now published in the datasheet for each product line (SAR
34773).

"In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using
FlashPro4/3/3X" was revised.

339

"Boundary Scan in Low Power Flash Devices" was revised. 362

Revision 2
(December 2011)

"Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal
FPGAs" was revised.

129

"UJTAG Applications in Microsemi’s Low Power Flash Devices" was revised. 372

Revision 1
(June 2011)

"Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal
FPGAs" was revised. 

129

"I/O Structures in IGLOO and ProASIC3 Devices" was revised. 210

"I/O Structures in IGLOOe and ProASIC3E Devices" was revised. 249

"I/O Software Control in Low Power Flash Devices" was revised. 270

"In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using
FlashPro4/3/3X" was revised.

339

Revision 0
(July 2010)

The ProASIC3L Flash Family FPGAs Handbook was divided into two parts to
create the ProASIC3L Low Power Flash FPGAs Datasheet and the ProASIC3L
FPGA Fabric User’s Guide. 

N/A

"Global Resources in Low Power Flash Devices" was revised. 75

"Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal
FPGAs" was revised.

129

"I/O Software Control in Low Power Flash Devices" was revised. 270
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