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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FPGA Array Architecture in Low Power Flash Devices
Note: † Flash*Freeze mode is supported on IGLOO devices.
Figure 1-3 • IGLOO Device Architecture Overview with Two I/O Banks with RAM and PLL 

(60 k and 125 k gate densities)

Note: † Flash*Freeze mode is supported on IGLOO devices.
Figure 1-4 • IGLOO Device Architecture Overview with Three I/O Banks 

(AGLN015, AGLN020, A3PN015, and A3PN020)
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ProASIC3L FPGA Fabric User’s Guide
Table 1-4 • IGLOO nano and ProASIC3 nano Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO nano ProASIC3 nano (x, y) (x, y) (x, y) (x, y) (x, y) (x, y)

AGLN010 A3P010 (0, 2) (32, 5) None None (0, 0) (34, 5)

AGLN015 A3PN015 (0, 2) (32, 9) None None (0, 0) (34, 9)

AGLN020 A3PN020 (0, 2) 32, 13) None None (0, 0) (34, 13)

AGLN060 A3PN060 (3, 2) (66, 25) None (3, 26) (0, 0) (69, 29)

AGLN125 A3PN125 (3, 2) (130, 25) None (3, 26) (0, 0) (133, 29)

AGLN250 A3PN250 (3, 2) (130, 49) None (3, 50) (0, 0) (133, 49)

Note: The vertical I/O tile coordinates are not shown. West-side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)};
east-side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 1-9 • Array Coordinates for AGL600, AGLE600, A3P600, and A3PE600
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2 – Flash*Freeze Technology and Low Power 
Modes

Flash*Freeze Technology and Low Power Modes
Microsemi IGLOO,® IGLOO nano, IGLOO PLUS, ProASIC®3L, and Radiation-Tolerant (RT) ProASIC3
FPGAs with Flash*Freeze technology are designed to meet the most demanding power and area
challenges of today’s portable electronics products with a reprogrammable, small-footprint, full-featured
flash FPGA. These devices offer lower power consumption in static and dynamic modes, utilizing the
unique Flash*Freeze technology, than any other FPGA or CPLD.
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 devices offer various power-saving
modes that enable every system to utilize modes that achieve the lowest total system power. Low Power
Active capability (static idle) allows for ultra-low power consumption while the device is operational in the
system by maintaining SRAM, registers, I/Os, and logic functions.
Flash*Freeze technology provides an ultra-low power static mode (Flash*Freeze mode) that retains all
SRAM and register information with rapid recovery to Active (operating) mode. IGLOO nano and IGLOO
PLUS devices have an additional feature when operating in Flash*Freeze mode, allowing them to retain
I/O states as well as SRAM and register states. This mechanism enables the user to quickly (within 1 µs)
enter and exit Flash*Freeze mode by activating the Flash*Freeze (FF) pin while all power supplies are
kept in their original states. In addition, I/Os and clocks connected to the FPGA can still be toggled
without impact on device power consumption. While in Flash*Freeze mode, the device retains all core
register states and SRAM information. This mode can be configured so that no power is consumed by
the I/O banks, clocks, JTAG pins, or PLLs; and the IGLOO and IGLOO PLUS devices consume as little
as 5 µW, while IGLOO nano devices consume as little as 2 µW. Microsemi offers a state management IP
core to aid users in gating clocks and managing data before entering Flash*Freeze mode.
This document will guide users in selecting the best low power mode for their applications, and
introduces Microsemi's Flash*Freeze management IP core.
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Flash*Freeze Technology and Low Power Modes
Table 2-4 summarizes the Flash*Freeze mode implementations.

IGLOO, ProASIC3L, and RT ProASIC3 I/O State in Flash*Freeze 
Mode
In IGLOO and ProASIC3L devices, when the device enters Flash*Freeze mode, I/Os become tristated. If
the weak pull-up or pull-down feature is used, the I/Os will maintain the configured weak pull-up or pull-
down status. This feature enables the design to set the I/O state to a certain level that is determined by
the pull-up/-down configuration. 
Table 2-5 shows the I/O pad state based on the configuration and buffer type.
Note that configuring weak pull-up or pull-down for the FF pin is not allowed. The FF pin can be
configured as a Schmitt trigger input in IGLOOe, IGLOO nano, IGLOO PLUS, and ProASIC3EL devices.

Table 2-4 • Flash*Freeze Mode Usage

Flash*Freeze 
Mode Type Description

Flash*Freeze 
Pin State

Instantiate 
ULSICC Macro 

LSICC 
Signal Operating Mode

1 Flash*Freeze mode is
controlled only by the
FF pin.

Deasserted No N/A Normal operation

Asserted No N/A Flash*Freeze mode

2 Flash*Freeze mode is
controlled by the FF
pin and LSICC signal.

"Don’t care" Yes Deasserted Normal operation

Deasserted Yes "Don’t care" Normal operation

Asserted Yes Asserted Flash*Freeze mode

Note: Refer to Table 2-3 on page 26 for Flash*Freeze pin and LSICC signal assertion and deassertion
values.

Table 2-5 • IGLOO, ProASIC3L, and RT ProASIC3 Flash*Freeze Mode (type 1 and type 2)—I/O 
Pad State

Buffer Type
I/O Pad Weak 
Pull-Up/-Down I/O Pad State in Flash*Freeze Mode

Input/Global Enabled Weak pull-up/pull-down*

Disabled Tristate*

Output Enabled Weak pull-up/pull-down

Disabled Tristate

Bidirectional / Tristate
Buffer 

E = 0
(input/tristate)

Enabled Weak pull-up/pull-down*

Disabled Tristate*

E = 1 (output) Enabled Weak pull-up/pull-down

Disabled Tristate

* Internal core logic driven by this input/global buffer will be tied High as long as the device is in
Flash*Freeze mode.
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Flash*Freeze Technology and Low Power Modes
Sleep and Shutdown Modes

Sleep Mode
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 FPGAs support Sleep mode when
device functionality is not required. In Sleep mode, VCC (core voltage), VJTAG (JTAG DC voltage), and
VPUMP (programming voltage) are grounded, resulting in the FPGA core being turned off to reduce
power consumption. While the device is in Sleep mode, the rest of the system can still be operating and
driving the input buffers of the device. The driven inputs do not pull up the internal power planes, and the
current draw is limited to minimal leakage current.
Table 2-7 shows the power supply status in Sleep mode.

Refer to the "Power-Up/-Down Behavior" section on page 33 for more information about I/O states during
Sleep mode and the timing diagram for entering and exiting Sleep mode.

Shutdown Mode
Shutdown mode is supported for all IGLOO nano and IGLOO PLUS devices as well the following
IGLOO/e devices: AGL015, AGL030, AGLE600, AGLE3000, and A3PE3000L. Shutdown mode can be
used by turning off all power supplies when the device function is not needed. Cold-sparing and hot-
insertion features enable these devices to be powered down without turning off the entire system. When
power returns, the live-at-power-up feature enables operation of the device after reaching the voltage
activation point.

Table 2-7 • Sleep Mode—Power Supply Requirement for IGLOO, IGLOO nano, IGLOO PLUS, 
ProASIC3L, and RT ProASIC3 Devices

Power Supplies Power Supply State 
VCC Powered off

VCCI = VMV Powered on

VJTAG Powered off

VPUMP Powered off
32 Revision 4



3 – Global Resources in Low Power Flash Devices

Introduction 
IGLOO, Fusion, and ProASIC3 FPGA devices offer a powerful, low-delay VersaNet global network
scheme and have extensive support for multiple clock domains. In addition to the Clock Conditioning
Circuits (CCCs) and phase-locked loops (PLLs), there is a comprehensive global clock distribution
network called a VersaNet global network. Each logical element (VersaTile) input and output port has
access to these global networks. The VersaNet global networks can be used to distribute low-skew clock
signals or high-fanout nets. In addition, these highly segmented VersaNet global networks contain spines
(the vertical branches of the global network tree) and ribs that can reach all the VersaTiles inside their
region. This allows users the flexibility to create low-skew local clock networks using spines. This
document describes VersaNet global networks and discusses how to assign signals to these global
networks and spines in a design flow. Details concerning low power flash device PLLs are described in
the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" section on
page 77. This chapter describes the low power flash devices’ global architecture and uses of these global
networks in designs. 

Global Architecture
Low power flash devices offer powerful and flexible control of circuit timing through the use of global
circuitry. Each chip has up to six CCCs, some with PLLs.

• In IGLOOe, ProASIC3EL, and ProASIC3E devices, all CCCs have PLLs—hence, 6 PLLs per
device (except the PQ208 package, which has only 2 PLLs). 

• In IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, and ProASIC3L devices, the west CCC
contains a PLL core (except in 10 k through 30 k devices). 

• In Fusion devices, the west CCC also contains a PLL core. In the two larger devices (AFS600 and
AFS1500), the west and east CCCs each contain a PLL.

Refer to Table 4-6 on page 100 for details. Each PLL includes delay lines, a phase shifter (0°, 90°,
180°, 270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and
interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to
three chip global lines on each side of the chip (six chip global lines total). The CCCs at the four corners
each have access to three quadrant global lines in each quadrant of the chip (except in 10 k through 30 k
gate devices).
The nano 10 k, 15 k, and 20 k devices support four VersaNet global resources, and 30 k devices support
six global resources. The 10 k through 30 k devices have simplified CCCs called CCC-GLs.
The flexible use of the VersaNet global network allows the designer to address several design
requirements. User applications that are clock-resource-intensive can easily route external or gated
internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay
penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global
network.
Note: Microsemi recommends that you choose the appropriate global pin and use the appropriate global

resource so you can realize these benefits. 
The following sections give an overview of the VersaNet global network, the structure of the global
network, access point for the global networks, and the clock aggregation feature that enables a design to
have very low clock skew using spines.
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Global Resources in Low Power Flash Devices
Global Resource Support in Flash-Based Devices
The flash FPGAs listed in Table 3-1 support the global resources and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO products as
listed in Table 3-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 3-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 3-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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Global Resources in Low Power Flash Devices
Figure 3-2 • Simplified VersaNet Global Network (30 k gates and below)

Figure 3-3 • Simplified VersaNet Global Network (60 k gates and above)
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ProASIC3L FPGA Fabric User’s Guide
Spine Access
The physical location of each spine is identified by the letter T (top) or B (bottom) and an accompanying
number (Tn or Bn). The number n indicates the horizontal location of the spine; 1 refers to the first spine
on the left side of the die. Since there are six chip spines in each spine tree, there are up to six spines
available for each combination of T (or B) and n (for example, six T1 spines). Similarly, there are three
quadrant spines available for each combination of T (or B) and n (for example, four T1 spines), as shown
in Figure 3-7.

A spine is also called a local clock network, and is accessed by the dedicated global MUX architecture.
These MUXes define how a particular spine is driven. Refer to Figure 3-8 on page 60 for the global MUX
architecture. The MUXes for each chip global spine are located in the middle of the die. Access to the top
and bottom chip global spine is available from the middle of the die. There is no control dependency
between the top and bottom spines. If a top spine, T1, of a chip global network is assigned to a net, B1 is
not wasted and can be used by the global clock network. The signal assigned only to the top or bottom
spine cannot access the middle two rows of the architecture. However, if a spine is using the top and
bottom at the same time (T1 and B1, for instance), the previous restriction is lifted. 
The MUXes for each quadrant global spine are located in the north and south sides of the die. Access to
the top and bottom quadrant global spines is available from the north and south sides of the die. Since
the MUXes for quadrant spines are located in the north and south sides of the die, you should not try to
drive T1 and B1 quadrant spines from the same signal. 

Figure 3-7 • Chip Global Aggregation
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Implementing EXTFB in ProASIC3/E Devices
When the external feedback (EXTFB) signal of the PLL in the ProASIC3/E devices is implemented, the 
phase detector of the PLL core receives the reference clock (CLKA) and EXTFB as inputs. EXTFB must 
be sourced as an INBUF macro and located at the global/chip clock location associated with the target 
PLL by Designer software. EXTFB cannot be sourced from the FPGA fabric.
The following example shows CLKA and EXTFB signals assigned to two global I/Os in the same global 
area of ProASIC3E device.

Figure 4-5 • CLKA and EXTFB Assigned to Global I/Os
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Loading the Configuration Register
The most important part of CCC dynamic configuration is to load the shift register properly with the 
configuration bits. There are different ways to access and load the configuration shift register:

• JTAG interface
• Logic core
• Specific I/O tiles

JTAG Interface
The JTAG interface requires no additional I/O pins. The JTAG TAP controller is used to control the 
loading of the CCC configuration shift register. 
Low power flash devices provide a user interface macro between the JTAG pins and the device core 
logic. This macro is called UJTAG. A user should instantiate the UJTAG macro in his design to access the 
configuration register ports via the JTAG pins. 
For more information on CCC dynamic reconfiguration using UJTAG, refer to the "UJTAG Applications in 
Microsemi’s Low Power Flash Devices" section on page 363.

Logic Core
If the logic core is employed, the user must design a module to provide the configuration data and control 
the shifting and updating of the CCC configuration shift register. In effect, this is a user-designed TAP 
controller, which requires additional chip resources.

Specific I/O Tiles
If specific I/O tiles are used for configuration, the user must provide the external equivalent of a TAP 
controller. This does not require additional core resources but does use pins.

Shifting the Configuration Data
To enter a new configuration, all 81 bits must shift in via SDIN. After all bits are shifted, SSHIFT must go 
LOW and SUPDATE HIGH to enable the new configuration. For simulation purposes, bits <71:73> and 
<77:80> are "don't care."
The SUPDATE signal must be LOW during any clock cycle where SSHIFT is active. After SUPDATE is 
asserted, it must go back to the LOW state until a new update is required.

PLL Configuration Bits Description  
Table 4-8 • Configuration Bit Descriptions for the CCC Blocks
Config.
Bits Signal Name Description
<88:87>  GLMUXCFG [1:0]1 NGMUX configuration The configuration bits specify the input clocks 

to the NGMUX (refer to Table 4-17 on 
page 110).2

86  OCDIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by the divider factor 
in Table 4-18 on page 111.

85  OBDIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by a 0.5 factor (refer 
to Table 4-18 on page 111).

84  OADIVHALF1 Division by half When the PLL is bypassed, the 100 MHz RC 
oscillator can be divided by certain 0.5 factor 
(refer to Table 4-16 on page 110).

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set. 

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools > 
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
global assignments are not allocated properly. See the "Physical Constraints for Quadrant Clocks" 
section for information on assigning global signals to the quadrant clock networks.
Promoted global signals will be instantiated with CLKINT macros to drive these signals onto the global 
network. This is automatically done by Designer when the Auto-Promotion option is selected. If the user 
wishes to assign the signals to the quadrant globals instead of the default chip globals, this can done by 
using ChipPlanner, by declaring a physical design constraint (PDC), or by importing a PDC file.

Physical Constraints for Quadrant Clocks
If it is necessary to promote global clocks (CLKBUF, CLKINT, PLL, CLKDLY) to quadrant clocks, the user 
can define PDCs to execute the promotion. PDCs can be created using PDC commands (pre-compile) or 
the MultiView Navigator (MVN) interface (post-compile). The advantage of using the PDC flow over the 
MVN flow is that the Compile stage is able to automatically promote any regular net to a global net before 
assigning it to a quadrant. There are three options to place a quadrant clock using PDC commands:

• Place a clock core (not hardwired to an I/O) into a quadrant clock location.
• Place a clock core (hardwired to an I/O) into an I/O location (set_io) or an I/O module location 

(set_location) that drives a quadrant clock location.
• Assign a net driven by a regular net or a clock net to a quadrant clock using the following 

command:
assign_local_clock -net <net name> -type quadrant <quadrant clock region>

where
<net name> is the name of the net assigned to the local user clock region.
<quadrant clock region> defines which quadrant the net should be assigned to. Quadrant 
clock regions are defined as UL (upper left), UR (upper right), LL (lower left), and LR (lower right).

Note: If the net is a regular net, the software inserts a CLKINT buffer on the net.
For example:
assign_local_clock -net localReset -type quadrant UR

Keep in mind the following when placing quadrant clocks using MultiView Navigator:

Hardwired I/O–Driven CCCs
• Find the associated clock input port under the Ports tab, and place the input port at one of the 

Gmn* locations using PinEditor or I/O Attribute Editor, as shown in Figure 4-32. 

Figure 4-32 • Port Assignment for a CCC with Hardwired I/O Clock Input
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Notes:
1. Automotive ProASIC3 devices restrict RAM4K9 to a single port or to dual ports with the same clock 180° out of

phase (inverted) between clock pins. In single-port mode, inputs to port B should be tied to ground to prevent
errors during compile. This warning applies only to automotive ProASIC3 parts of certain revisions and earlier.
Contact Technical Support at soc_tech@microsemi.com for information on the revision number for a particular lot
and date code.

2. For FIFO4K18, the same clock 180° out of phase (inverted) between clock pins should be used.
Figure 6-3 • Supported Basic RAM Macros

FIFO4K18

RW2                                      RD17
RW1                                      RD16
RW0                   
WW2 
WW1
WW0 RD0
ESTOP
FSTOP                                  FULL

   AFULL
EMPTY

AFVAL11                      

AEMPTY

AFVAL10

AFVAL0

AEVAL11
AEVAL10

AEVAL0

REN
RBLK
RCLK

WEN
WBLK
WCLK

RPIPE

WD17
WD16

WD0

RESET

ADDRA11 DOUTA8
DOUTA7

DOUTA0

DOUTB8
DOUTB7

DOUTB0

ADDRA10

ADDRA0
DINA8
DINA7

DINA0

WIDTHA1
WIDTHA0
PIPEA
WMODEA
BLKA
WENA
CLKA

ADDRB11
ADDRB10

ADDRB0

DINB8
DINB7

DINB0

WIDTHB1
WIDTHB0
PIPEB
WMODEB
BLKB
WENB
CLKB

RAM4K9

RADDR8 RD17
RADDR7 RD16

RADDR0 RD0

WD17
WD16

WD0

WW1
WW0

RW1
RW0

PIPE

REN
RCLK

RAM512x18

WADDR8
WADDR7

WADDR0

WEN
WCLK

RESETRESET
152 Revision 4

mailto:soc_tech@microsemi.com 


I/O Structures in IGLOO and ProASIC3 Devices
I/O Bank Structure
Low power flash device I/Os are divided into multiple technology banks. The number of banks is device-
dependent. The IGLOOe, ProASIC3EL, and ProASIC3E devices have eight banks (two per side); and
IGLOO, ProASIC3L, and ProASIC3 devices have two to four banks. Each bank has its own VCCI power
supply pin. Multiple I/O standards can co-exist within a single I/O bank.
In IGLOOe, ProASIC3EL, and ProASIC3E devices, each I/O bank is subdivided into VREF minibanks.
These are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All I/Os in a given
minibank share a common VREF line (only one VREF pin is needed per VREF minibank). Therefore, if
an I/O in a VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able
to use the voltage assigned to that pin. If the location of the VREF pin is selected manually in the
software, the user must satisfy VREF rules (refer to the "I/O Software Control in Low Power Flash
Devices" section on page 251). If the user does not pick the VREF pin manually, the software
automatically assigns it.
Figure 7-3 is a snapshot of a section of the I/O ring, showing the basic elements of an I/O tile, as viewed
from the Designer place-and-route tool’s MultiView Navigator (MVN).

Low power flash device I/Os are implemented using two tile types: I/O and differential I/O (diffio).
The diffio tile is built up using two I/O tiles, which form an I/O pair (P side and N side). These I/O pairs are
used according to differential I/O standards. Both the P and N sides of the diffio tile include an I/O buffer
and two I/O logic blocks (auxiliary and main logic). 
Every minibank (E devices only) is built up from multiple diffio tiles. The number of the minibank depends
on the different-size dies. Refer to the "I/O Architecture" section on page 181 for an illustration of the
minibank structure.
Figure 7-4 on page 183 shows a simplified diagram of the I/O buffer circuitry. The Output Enable signal
(OE) enables the output buffer to pass the signal from the core logic to the pin. The output buffer contains
ESD protection circuitry, an n-channel transistor that shunts all ESD surges (up to the limit of the device
ESD specification) to GND. This transistor also serves as an output pull-down resistor.
Each output buffer also contains programmable slew rate, drive strength, programmable power-up state
(pull-up/-down resistor), hot-swap, 5 V tolerance, and clamp diode control circuitry. Multiple flash
switches (not shown in Figure 7-4 on page 183) are programmed by user selections in the software to
activate different I/O features.

Figure 7-3 • Snapshot of an I/O Tile
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ProASIC3L FPGA Fabric User’s Guide
IGLOO and ProASIC3
For boards and cards with three levels of staging, card power supplies must have time to reach their final
values before the I/Os are connected. Pay attention to the sizing of power supply decoupling capacitors
on the card to ensure that the power supplies are not overloaded with capacitance.
Cards with three levels of staging should have the following sequence: 

• Grounds
• Powers 
• I/Os and other pins

For Level 3 and Level 4 compliance with the 30K gate device, cards with two levels of staging should
have the following sequence:

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is
powered up, while the component itself is powered down, or when power supplies are floating.
The resistor value is calculated based on the decoupling capacitance on a given power supply. The RC
constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically
connected to the system that is in operation. This means that all input buffers of the subsystem must
present very high input impedance with no power applied so as not to disturb the operating portion of the
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 7-12 on
page 193). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from
the power supply to ground should be provided. This can be done with a discharge resistor or a switched
resistor. This is necessary because the 30K gate devices do not have built-in I/O clamp diodes. 
For other IGLOO and ProASIC3 devices, since the I/O clamp diode is always active, cold-sparing can be
accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system or
by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI,
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when
a weak pull-down is chosen and the input pin is driven HIGH. This current can be avoided by driving the
input LOW when a weak pull-down resistor is used and driving it HIGH when a weak pull-up resistor is
used.
This current draw can occur in the following cases:
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I/O Structures in IGLOOe and ProASIC3E Devices
Table 8-9 • Hot-Swap Level 1

Description Cold-swap

Power Applied to Device No

Bus State –

Card Ground Connection –

Device Circuitry Connected to Bus Pins –

Example Application System and card with Microsemi FPGA chip are 
powered down, and the card is plugged into the 
system. Then the power supplies are turned on for 
the system but not for the FPGA on the card.

Compliance of IGLOO and ProASIC3 Devices 30 k gate devices: Compliant 
Other IGLOO/ProASIC3 devices: Compliant if bus 
switch used to isolate FPGA I/Os from rest of 
system
IGLOOe/ProASIC3E devices: Compliant I/Os can, 
but do not have to be set to hot-insertion mode.

Table 8-10 • Hot-Swap Level 2

Description Hot-swap while reset

Power Applied to Device Yes

Bus State Held in reset state

Card Ground Connection Reset must be maintained for 1 ms before, during, 
and after insertion/removal.

Device Circuitry Connected to Bus Pins –

Example Application In the PCI hot-plug specification, reset control 
circuitry isolates the card busses until the card 
supplies are at their nominal operating levels and 
stable.

Compliance of IGLOO and ProASIC3 Devices 30 k gate devices, all IGLOOe/ProASIC3E 
devices: Compliant I/Os can but do not have to be 
set to hot-insertion mode.
Other IGLOO/ProASIC3 devices: Compliant
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DDR for Microsemi’s Low Power Flash Devices
Instantiating DDR Registers
Using SmartGen is the simplest way to generate the appropriate RTL files for use in the design.
Figure 10-4 shows an example of using SmartGen to generate a DDR SSTL2 Class I input register.
SmartGen provides the capability to generate all of the DDR I/O cells as described. The user, through the
graphical user interface, can select from among the many supported I/O standards. The output formats
supported are Verilog, VHDL, and EDIF.
Figure 10-5 on page 277 through Figure 10-8 on page 280 show the I/O cell configured for DDR using
SSTL2 Class I technology. For each I/O standard, the I/O pad is buffered by a special primitive that
indicates the I/O standard type.

Figure 10-4 • Example of Using SmartGen to Generate a DDR SSTL2 Class I Input Register 
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
errors, but this list is intended to show where problems can occur. FlashPro4/3/3X allows TCK to be
lowered from 6 MHz down to 1 MHz to allow you to address some signal integrity problems that may
occur with impedance mismatching at higher frequencies. Customers are expected to troubleshoot
board-level signal integrity issues by measuring voltages and taking scope plots.

Scan Chain Failure
Normally, the FlashPro4/3/3X Scan Chain command expects to see 0x1 on the TDO pin. If the command
reports reading 0x0 or 0x3, it is seeing the TDO pin stuck at 0 or 1. The only time the TDO pin comes out
of tristate is when the JTAG TAP state machine is in the Shift-IR or Shift-DR state. If noise or reflections
on the TCK or TMS lines have disrupted the correct state transitions, the device's TAP state controller
might not be in one of these two states when the programmer tries to read the device. When this
happens, the output is floating when it is read and does not match the expected data value. This can also
be caused by a broken TDO net. Only a small amount of data is read from the device during the Scan
Chain command, so marginal problems may not always show up during this command. Occasionally a
faulty programmer can cause intermittent scan chain failures. 

Exit 11
This error occurs during the verify stage of programming a device. After programming the design into the
device, the device is verified to ensure it is programmed correctly. The verification is done by shifting the
programming data into the device. An internal comparison is performed within the device to verify that all
switches are programmed correctly. Noise induced by poor signal integrity can disrupt the writes and
reads or the verification process and produce a verification error. While technically a verification error, the
root cause is often related to signal integrity.
Refer to the FlashPro User's Guide for other error messages and solutions. For the most up-to-date
known issues and solutions, refer to http://www.microsemi.com/soc/support.

Conclusion
IGLOO, ProASIC3, SmartFusion, and Fusion devices offer a low-cost, single-chip solution that is live at
power-up through nonvolatile flash technology. The FlashLock Pass Key and 128-bit AES Key security
features enable secure ISP in an untrusted environment. On-chip FlashROM enables a host of new
applications, including device serialization, subscription-based applications, and IP addressing.
Additionally, as the FlashROM is nonvolatile, all of these services can be provided without battery
backup. 

Related Documents

User’s Guides
FlashPro User's Guide 
http://www.microsemi.com/soc/documents/flashpro_ug.pdf
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Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming
Circuit Verification
The power switching circuit recommended above is implemented on Microsemi's Icicle board
(Figure 14-2). On the Icicle board, VJTAGENB is used to control the N-Channel Digital FET; however,
this circuit was modified to use TRST instead of VJTAGENB in this application. There are three important
aspects of this circuit that were verified:

1. The rise on VCC from 1.2 V to 1.5 V when TRST is HIGH
2. VCC rises to 1.5 V before programming begins.
3. VCC switches from 1.5 V to 1.2 V when TRST is LOW.

Verification Steps
1. The rise on VCC from 1.2 V to 1.5 V when TRST is HIGH.

In the oscilloscope plots (Figure 14-2), the TRST from FlashPro3 and the VCC core voltage of the
IGLOO device are labeled. This plot shows the rise characteristic of the TRST signal from FlashPro3.
Once the TRST signal is asserted HIGH, the LTC3025 shown in Figure 14-1 on page 343 senses the
increase in voltage and changes the output from 1.2 V to 1.5 V. It takes the circuit approximately 100 µs
to respond to TRST and change the voltage to 1.5 V on the VCC core.

Figure 14-2 • Core Voltage on the IGLOO AGL125-QNG132 Device

VCC Signal

TRST Signal
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