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distinct advantages, making the choice dependent on the
specific needs of the application.
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Flash*Freeze Technology and Low Power Modes
Table 2-4 summarizes the Flash*Freeze mode implementations.

IGLOO, ProASIC3L, and RT ProASIC3 I/O State in Flash*Freeze 
Mode
In IGLOO and ProASIC3L devices, when the device enters Flash*Freeze mode, I/Os become tristated. If
the weak pull-up or pull-down feature is used, the I/Os will maintain the configured weak pull-up or pull-
down status. This feature enables the design to set the I/O state to a certain level that is determined by
the pull-up/-down configuration. 
Table 2-5 shows the I/O pad state based on the configuration and buffer type.
Note that configuring weak pull-up or pull-down for the FF pin is not allowed. The FF pin can be
configured as a Schmitt trigger input in IGLOOe, IGLOO nano, IGLOO PLUS, and ProASIC3EL devices.

Table 2-4 • Flash*Freeze Mode Usage

Flash*Freeze 
Mode Type Description

Flash*Freeze 
Pin State

Instantiate 
ULSICC Macro 

LSICC 
Signal Operating Mode

1 Flash*Freeze mode is
controlled only by the
FF pin.

Deasserted No N/A Normal operation

Asserted No N/A Flash*Freeze mode

2 Flash*Freeze mode is
controlled by the FF
pin and LSICC signal.

"Don’t care" Yes Deasserted Normal operation

Deasserted Yes "Don’t care" Normal operation

Asserted Yes Asserted Flash*Freeze mode

Note: Refer to Table 2-3 on page 26 for Flash*Freeze pin and LSICC signal assertion and deassertion
values.

Table 2-5 • IGLOO, ProASIC3L, and RT ProASIC3 Flash*Freeze Mode (type 1 and type 2)—I/O 
Pad State

Buffer Type
I/O Pad Weak 
Pull-Up/-Down I/O Pad State in Flash*Freeze Mode

Input/Global Enabled Weak pull-up/pull-down*

Disabled Tristate*

Output Enabled Weak pull-up/pull-down

Disabled Tristate

Bidirectional / Tristate
Buffer 

E = 0
(input/tristate)

Enabled Weak pull-up/pull-down*

Disabled Tristate*

E = 1 (output) Enabled Weak pull-up/pull-down

Disabled Tristate

* Internal core logic driven by this input/global buffer will be tied High as long as the device is in
Flash*Freeze mode.
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VersaNet Global Network Distribution
One of the architectural benefits of low power flash architecture is the set of powerful, low-delay
VersaNet global networks that can access the VersaTiles, SRAM, and I/O tiles of the device. Each device
offers a chip global network with six global lines (except for nano 10 k, 15 k, and 20 k gate devices) that
are distributed from the center of the FPGA array. In addition, each device (except the 10 k through 30 k
gate device) has four quadrant global networks, each consisting of three quadrant global net resources.
These quadrant global networks can only drive a signal inside their own quadrant. Each VersaTile has
access to nine global line resources—three quadrant and six chip-wide (main) global networks—and a
total of 18 globals are available on the device (3 × 4 regional from each quadrant and 6 global). 
Figure 3-1 shows an overview of the VersaNet global network and device architecture for devices 60 k
and above. Figure 3-2 and Figure 3-3 on page 50 show simplified VersaNet global networks. 
The VersaNet global networks are segmented and consist of spines, global ribs, and global multiplexers
(MUXes), as shown in Figure 3-1. The global networks are driven from the global rib at the center of the
die or quadrant global networks at the north or south side of the die. The global network uses the MUX
trees to access the spine, and the spine uses the clock ribs to access the VersaTile. Access is available
to the chip or quadrant global networks and the spines through the global MUXes. Access to the spine
using the global MUXes is explained in the "Spine Architecture" section on page 57. 
These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including
clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-
skew local clock networks using spines for up to 252 internal/external clocks or other high-fanout nets in
low power flash devices. Optimal usage of these low-skew networks can result in significant
improvement in design performance.

Note: Not applicable to 10 k through 30 k gate devices
Figure 3-1 • Overview of VersaNet Global Network and Device Architecture
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ProASIC3L FPGA Fabric User’s Guide
You can use the syn_global_buffers attribute in Synplify to specify a maximum number of global macros
to be inserted in the netlist. This can also be used to restrict the number of global buffers inserted. In the
Synplicity 8.1 version or newer, a new attribute, syn_global_minfanout, has been added for low power
flash devices. This enables you to promote only the high-fanout signal to global. However, be aware that
you can only have six signals assigned to chip global networks, and the rest of the global signals should
be assigned to quadrant global networks. So, if the netlist has 18 global macros, the remaining 12 global
macros should have fanout that allows the instances driven by these globals to be placed inside a
quadrant.

Global Promotion and Demotion Using PDC
The HDL source file or schematic is the preferred place for defining which signals should be assigned to
a clock network using clock macro instantiation. This method is preferred because it is guaranteed to be
honored by the synthesis tools and Designer software and stop any replication on this net by the
synthesis tool. Note that a signal with fanout may have logic replication if it is not promoted to global
during synthesis. In that case, the user cannot promote that signal to global using PDC. See Synplicity
Help for details on using this attribute. To help you with global management, Designer allows you to
promote a signal to a global network or demote a global macro to a regular macro from the user netlist
using the compile options and/or PDC commands. 
The following are the PDC constraints you can use to promote a signal to a global network:

1. PDC syntax to promote a regular net to a chip global clock:
assign_global_clock –net netname

The following will happen during promotion of a regular signal to a global network:
– If the net is external, the net will be driven by a CLKINT inserted automatically by Compile. 
– The I/O macro will not be changed to CLKBUF macros. 
– If the net is an internal net, the net will be driven by a CLKINT inserted automatically by

Compile.
2. PDC syntax to promote a net to a quadrant clock: 

assign_local_clock –net netname –type quadrant UR|UL|LR|LL

This follows the same rule as the chip global clock network.
The following PDC command demotes the clock nets to regular nets.
unassign_global_clock -net netname

Note: OAVDIVRST exists only in the Fusion PLL.
Figure 3-15 • PLLs in Low Power Flash Devices 
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4 – Clock Conditioning Circuits in Low Power 
Flash Devices and Mixed Signal FPGAs

Introduction
This document outlines the following device information: Clock Conditioning Circuit (CCC) features, PLL 
core specifications, functional descriptions, software configuration information, detailed usage 
information, recommended board-level considerations, and other considerations concerning clock 
conditioning circuits and global networks in low power flash devices or mixed signal FPGAs.

Overview of Clock Conditioning Circuitry
In Fusion, IGLOO, and ProASIC3 devices, the CCCs are used to implement frequency division, 
frequency multiplication, phase shifting, and delay operations. The CCCs are available in six chip 
locations—each of the four chip corners and the middle of the east and west chip sides. For device-
specific variations, refer to the "Device-Specific Layout" section on page 94.
The CCC is composed of the following:

• PLL core
• 3 phase selectors
• 6 programmable delays and 1 fixed delay that advances/delays phase
• 5 programmable frequency dividers that provide frequency multiplication/division (not shown in 

Figure 4-6 on page 87 because they are automatically configured based on the user's required 
frequencies)

• 1 dynamic shift register that provides CCC dynamic reconfiguration capability
Figure 4-1 provides a simplified block diagram of the physical implementation of the building blocks in 
each of the CCCs. 

Figure 4-1 • Overview of the CCCs Offered in Fusion, IGLOO, and ProASIC3
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CCC Support in Microsemi’s Flash Devices
The flash FPGAs listed in Table 4-1 support the CCC feature and the functions described in this 
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed 
in Table 4-1. Where the information applies to only one product line or limited devices, these exclusions 
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices 
as listed in Table 4-1. Where the information applies to only one product line or limited devices, these 
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s 
Lowest Power FPGAs Portfolio.

Table 4-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable 
analog block, support for ARM® Cortex™-M1 soft processors, and flash 
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, 
and packaging information.
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Global Buffers with No Programmable Delays
Access to the global / quadrant global networks can be configured directly from the global I/O buffer, 
bypassing the CCC functional block (as indicated by the dotted lines in Figure 4-1 on page 77). Internal 
signals driven by the FPGA core can use the global / quadrant global networks by connecting via the 
routed clock input of the multiplexer tree.
There are many specific CLKBUF macros supporting the wide variety of single-ended I/O inputs 
(CLKBUF) and differential I/O standards (CLKBUF_LVDS/LVPECL) in the low power flash families. They 
are used when connecting global I/Os directly to the global/quadrant networks. 
Note: IGLOO nano and ProASIC nano devices do not support differential inputs.
When an internal signal needs to be connected to the global/quadrant network, the CLKINT macro is 
used to connect the signal to the routed clock input of the network's MUX tree.
To utilize direct connection from global I/Os or from internal signals to the global/quadrant networks, 
CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are used (Figure 4-2). 

• The CLKBUF and CLKBUF_LVPECL/LVDS1 macros are composite macros that include an I/O 
macro driving a global buffer, which uses a hardwired connection.

• The CLKBUF, CLKBUF_LVPECL/LVDS1 and CLKINT macros are pass-through clock sources 
and do not use the PLL or provide any programmable delay functionality.

• The CLKINT macro provides a global buffer function driven internally by the FPGA core.
The available CLKBUF macros are described in the IGLOO, ProASIC3, SmartFusion, and Fusion 
Macro Library Guide.

Global Buffer with Programmable Delay
Clocks requiring clock adjustments can utilize the programmable delay cores before connecting to the 
global / quadrant global networks. A maximum of 18 CCC global buffers can be instantiated in a device—
three per CCC and up to six CCCs per device. 
Each CCC functional block contains a programmable delay element for each of the global networks (up 
to three), and users can utilize these features by using the corresponding macro (Figure 4-3 on page 81). 

1. B-LVDS and M-LVDS are supported with the LVDS macro.

Note: IGLOO nano and ProASIC nano devices do not support differential inputs.
Figure 4-2 • CCC Options: Global Buffers with No Programmable Delay
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
PLL Macro Signal Descriptions
The PLL macro supports two inputs and up to six outputs. Table 4-3 gives a description of each signal.  

Input Clock
The inputs to the input reference clock (CLKA) of the PLL can come from global input pins, regular I/O 
pins, or internally from the core. For Fusion families, the input reference clock can also be from the 
embedded RC oscillator or crystal oscillator.

Global Output Clocks
GLA (Primary), GLB (Secondary 1), and GLC (Secondary 2) are the outputs of Global Multiplexer 1, 
Global Multiplexer 2, and Global Multiplexer 3, respectively. These signals (GLx) can be used to drive the 
high-speed global and quadrant networks of the low power flash devices.
A global multiplexer block consists of the input routing for selecting the input signal for the GLx clock and 
the output multiplexer, as well as delay elements associated with that clock.

Core Output Clocks
YB and YC are known as Core Outputs and can be used to drive internal logic without using global 
network resources. This is especially helpful when global network resources must be conserved and 
utilized for other timing-critical paths.

Table 4-3 • Input and Output Signals of the PLL Block
Signal Name I/O Description
CLKA Reference Clock Input Reference clock input for PLL core; input clock for primary output 

clock, GLA
OADIVRST Reset Signal for the 

Output Divider A 
Input For Fusion only. OADIVRST can be used when you bypass the PLL 

core (i.e., OAMUX = 001). The purpose of the OADIVRST signals is 
to reset the output of the final clock divider to synchronize it with the 
input to that divider when the PLL is bypassed. The signal is active 
on a low to high transition. The signal must be low for at least one 
divider input. If PLL core is used, this signal is "don't care" and the 
internal circuitry will generate the reset signal for the 
synchronization purpose.

OADIVHALF Output A Division by 
Half

Input For Fusion only. Active high. Division by half feature. This feature 
can only be used when users bypass the PLL core (i.e., OAMUX = 
001) and the RC Oscillator (RCOSC) drives the CLKA input. This 
can be used to divide the 100 MHz RC oscillator by a factor of 1.5, 
2.5, 3.5, 4.5 ... 14.5). Refer to Table 4-18 on page 111 for more 
information.

EXTFB External Feedback Input Allows an external signal to be compared to a reference clock in the 
PLL core's phase detector.

POWERDOWN Power Down Input Active low input that selects power-down mode and disables the 
PLL. With the POWERDOWN signal asserted, the PLL core sends 
0 V signals on all of the outputs.

GLA Primary Output Output Primary output clock to respective global/quadrant clock networks
GLB Secondary 1 Output Output Secondary 1 output clock to respective global/quadrant clock 

networks
YB Core 1 Output Output Core 1 output clock to local routing network
GLC Secondary 2 Output Output Secondary 2 output clock to respective global/quadrant clock 

networks
YC Core 2 Output Output Core 2 output clock to local routing network
LOCK PLL Lock Indicator Output Active high signal indicating that steady-state lock has been 

achieved between CLKA and the PLL feedback signal
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FIFO Flag Usage Considerations
The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values. The
FIFO contains separate 12-bit write address (WADDR) and read address (RADDR) counters. WADDR is
incremented every time a write operation is performed, and RADDR is incremented every time a read
operation is performed. Whenever the difference between WADDR and RADDR is greater than or equal
to AFVAL, the AFULL output is asserted. Likewise, whenever the difference between WADDR and
RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To handle different read and
write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits instead of total data
words. When users specify AFVAL and AEVAL in terms of read or write words, the SmartGen tool
translates them into bit addresses and configures these signals automatically. SmartGen configures the
AFULL flag to assert when the write address exceeds the read address by at least a predefined value. In
a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag will be asserted after a
write when the difference between the write address and the read address reaches 1,500 (there have
been at least 1,500 more writes than reads). It will stay asserted until the difference between the write
and read addresses drops below 1,500.   
The AEMPTY flag is asserted when the difference between the write address and the read address is
less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY
flag will be asserted when a read causes the difference between the write address and the read address
to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be
configured with different read and write widths; in this case, the AFVAL setting is based on the number of
write data entries, and the AEVAL setting is based on the number of read data entries. For aspect ratios
of 512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The
number of words must be multiplied by 8 and 16 instead of 9 and 18. The SmartGen tool automatically
uses the proper values. To avoid halfwords being written or read, which could happen if different read
and write aspect ratios were specified, the FIFO will assert FULL or EMPTY as soon as at least one word
cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read, the
FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not
completely empty, because in this case, a complete word cannot be read. The same is applicable in the
full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The
FULL flag will remain asserted because a complete word cannot be written at this point.

Variable Aspect Ratio and Cascading
Variable aspect ratio and cascading allow users to configure the memory in the width and depth required.
The memory block can be configured as a FIFO by combining the basic memory block with dedicated
FIFO controller logic. The FIFO macro is named FIFO4KX18. Low power flash device RAM can be
configured as 1, 2, 4, 9, or 18 bits wide. By cascading the memory blocks, any multiple of those widths
can be created. The RAM blocks can be from 256 to 4,096 bits deep, depending on the aspect ratio, and
the blocks can also be cascaded to create deeper areas. Refer to the aspect ratios available for each
macro cell in the "SRAM Features" section on page 153. The largest continuous configurable memory
area is equal to half the total memory available on the device, because the RAM is separated into two
groups, one on each side of the device. 
The SmartGen core generator will automatically configure and cascade both RAM and FIFO blocks.
Cascading is accomplished using dedicated memory logic and does not consume user gates for depths
up to 4,096 bits deep and widths up to 18, depending on the configuration. Deeper memory will utilize
some user gates to multiplex the outputs.
Generated RAM and FIFO macros can be created as either structural VHDL or Verilog for easy
instantiation into the design. Users of Libero SoC can create a symbol for the macro and incorporate it
into a design schematic.
Table 6-10 on page 163 shows the number of memory blocks required for each of the supported depth
and width memory configurations, and for each depth and width combination. For example, a 256-bit
deep by 32-bit wide two-port RAM would consist of two 256×18 RAM blocks. The first 18 bits would be
stored in the first RAM block, and the remaining 14 bits would be implemented in the other 256×18 RAM
block. This second RAM block would have four bits of unused storage. Similarly, a dual-port memory
block that is 8,192 bits deep and 8 bits wide would be implemented using 16 memory blocks. The dual-
port memory would be configured in a 4,096×1 aspect ratio. These blocks would then be cascaded two
deep to achieve 8,192 bits of depth, and eight wide to achieve the eight bits of width.
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Figure 7-17 • Timing Diagram (bypasses skew circuit)

Figure 7-18 • Timing Diagram (with skew circuit selected)
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I/O Structures in IGLOOe and ProASIC3E Devices
IGLOOe and ProASIC3E
For devices requiring Level 3 and/or Level 4 compliance, the board drivers connected to the I/Os must 
have 10 kΩ (or lower) output drive resistance at hot insertion, and 1 kΩ (or lower) output drive resistance 
at hot removal. This resistance is the transmitter resistance sending a signal toward the I/O, and no 
additional resistance is needed on the board. If that cannot be assured, three levels of staging can be 
used to achieve Level 3 and/or Level 4 compliance. Cards with two levels of staging should have the 
following sequence: 

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is 
powered up, while the component itself is powered down, or when power supplies are floating.
Cold-sparing is supported on ProASIC3E devices only when the user provides resistors from each power 
supply to ground. The resistor value is calculated based on the decoupling capacitance on a given power 
supply. The RC constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with 
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically 
connected to the system that is in operation. This means that all input buffers of the subsystem must 
present very high input impedance with no power applied so as not to disturb the operating portion of the 
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 8-13 on 
page 231). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from 
the power supply to ground should be provided. This can be done with a discharge resistor or a switched 
resistor. This is necessary because the 30 k gate devices do not have built-in I/O clamp diodes. 
For other IGLOOe and ProASIC3E devices, since the I/O clamp diode is always active, cold-sparing can 
be accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system 
or by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on 
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel 
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing 
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground 
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI, 
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get 
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured 
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is 
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current 
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC 
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the 
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will 
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is 
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when 
a weak pull-down is chosen and the input pin is driven High. This current can be avoided by driving the 
input Low when a weak pull-down resistor is used and driving it High when a weak pull-up resistor is 
used.
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I/O Software Control in Low Power Flash Devices
Output Buffers
There are two variations: Regular and Special.
If the Regular variation is selected, only the Width (1 to 128) needs to be entered. The default value for
Width is 1.
The Special variation has Width, Technology, Output Drive, and Slew Rate options.

Bidirectional Buffers
There are two variations: Regular and Special.
The Regular variation has Enable Polarity (Active High, Active Low) in addition to the Width option.
The Special variation has Width, Technology, Output Drive, Slew Rate, and Resistor Pull-Up/-Down
options.

Tristate Buffers
Same as Bidirectional Buffers.

DDR
There are eight variations: DDR with Regular Input Buffers, Special Input Buffers, Regular Output
Buffers, Special Output Buffers, Regular Tristate Buffers, Special Tristate Buffers, Regular Bidirectional
Buffers, and Special Bidirectional Buffers.
These variations resemble the options of the previous I/O macro. For example, the Special Input Buffers
variation has Width, Technology, Voltage Level, and Resistor Pull-Up/-Down options. DDR is not
available on IGLOO PLUS devices. 

4. Once the desired configuration is selected, click the Generate button. The Generate Core
window opens (Figure 9-4).

5. Enter a name for the macro. Click OK. The core will be generated and saved to the appropriate
location within the project files (Figure 9-5 on page 257). 

6. Instantiate the I/O macro in the top-level code.
The user must instantiate the DDR_REG or DDR_OUT macro in the design. Use SmartGen to
generate both these macros and then instantiate them in your top level. To combine the DDR
macros with the I/O, the following rules must be met:

Figure 9-4 • Generate Core Window
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I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is 

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin 

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero SoC integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero SoC. Refer to the Libero SoC User’s Guide or Libero online help for details on how to set up the
Libero tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 9-6 on page 259).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist. 
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ProASIC3L FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 10-1 • Flash-Based
FPGAs.

272

The "I/O Cell Architecture" section was updated with information applicable to nano
devices.

273

The output buffer (OUTBUF_SSTL3_I) input was changed to D, instead of Q, in
Figure 10-1 • DDR Support in Low Power Flash Devices, Figure 10-3 • DDR Output
Register (SSTL3 Class I), Figure 10-6 • DDR Output Register (SSTL3 Class I),
Figure 10-7 • DDR Tristate Output Register, LOW Enable, 8 mA, Pull-Up (LVTTL),
and the output from the DDR_OUT macro was connected to the input of the
TRIBUFF macro in Figure 10-7 • DDR Tristate Output Register, LOW Enable, 8 mA,
Pull-Up (LVTTL).

271, 
275, 

278, 279

v1.3
(October 2008)

The "Double Data Rate (DDR) Architecture" section was updated to include mention
of the AFS600 and AFS1500 devices.

271

The "DDR Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

272

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 10-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

272

v1.1
(March 2008)

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 272
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Programming Flash Devices
Signal Integrity While Using ISP
For ISP of flash devices, customers are expected to follow the board-level guidelines provided on the 
Microsemi SoC Products Group website. These guidelines are discussed in the datasheets and 
application notes (refer to the “Related Documents” section of the datasheet for application note links). 
Customers are also expected to troubleshoot board-level signal integrity issues by measuring voltages 
and taking oscilloscope plots.

Programming Failure Allowances
Microsemi has strict policies regarding programming failure allowances. Please refer to Programming 
and Functional Failure Guidelines on the Microsemi SoC Products Group website for details.

Contacting the Customer Support Group
Highly skilled engineers staff the Customer Applications Center from 7:00 A.M. to 6:00 P.M., Pacific time, 
Monday through Friday. You can contact the center by one of the following methods:

Electronic Mail 
You can communicate your technical questions to our email address and receive answers back by email, 
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. 
Microsemi monitors the email account throughout the day. When sending your request to us, please be 
sure to include your full name, company name, and contact information for efficient processing of your 
request. The technical support email address is soc_tech@microsemi.com.

Telephone 
Our Technical Support Hotline answers all calls. The center retrieves information, such as your name, 
company name, telephone number, and question. Once this is done, a case number is assigned. Then 
the center forwards the information to a queue where the first available applications engineer receives 
the data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific time, Monday 
through Friday.
The Customer Applications Center number is (800) 262-1060.
European customers can call +44 (0) 1256 305 600.
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Security in Low Power Flash Devices
Choose the High security level to reprogram devices using both the FlashLock Pass Key and AES key
protection (Figure 12-18 on page 321). Enter the AES key and click Next.
A device that has already been secured with FlashLock and has an AES key loaded must recognize the
AES key to program the device and generate a valid bitstream in authentication. The FlashLock Key is
only required to unlock the device and change the security settings. 
This is what makes it possible to program in an untrusted environment. The AES key is protected inside
the device by the FlashLock Key, so you can only program if you have the correct AES key. In fact, the
AES key is not in the programming file either. It is the key used to encrypt the data in the file. The same
key previously programmed with the FlashLock Key matches to decrypt the file. 
An AES-encrypted file programmed to a device without FlashLock would not be secure, since without
FlashLock to protect the AES key, someone could simply reprogram the AES key first, then program with
any AES key desired or no AES key at all. This option is therefore not available in the software. 

Note: The settings in this figure are used to show the generation of an AES-encrypted programming file for the FPGA
array, FlashROM, and FB contents. One or all locations may be selected for encryption.

Figure 12-17 • Settings to Program a Device Secured with FlashLock and using AES Encryption 
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
Figure 13-2 shows different applications for ISP programming.
1. In a trusted programming environment, you can program the device using the unencrypted

(plaintext) programming file.
2. You can program the AES Key in a trusted programming environment and finish the final

programming in an untrusted environment using the AES-encrypted (cipher text) programming
file.

3. For the remote ISP updating/reprogramming, the AES Key stored in the device enables the
encrypted programming bitstream to be transmitted through the untrusted network connection. 

Microsemi low power flash devices also provide the unique Microsemi FlashLock feature, which protects
the Pass Key and AES Key. Unless the original FlashLock Pass Key is used to unlock the device,
security settings cannot be modified. Microsemi does not support read-back of FPGA core-programmed
data; however, the FlashROM contents can selectively be read back (or disabled) via the JTAG port
based on the security settings established by the Microsemi Designer software. Refer to the "Security in
Low Power Flash Devices" section on page 301 for more information.

Figure 13-2 • Different ISP Use Models
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Microprocessor Programming of Microsemi’s Low Power Flash Devices
Remote Upgrade via TCP/IP
Transmission Control Protocol (TCP) provides a reliable bitstream transfer service between two
endpoints on a network. TCP depends on Internet Protocol (IP) to move packets around the network on
its behalf. TCP protects against data loss, data corruption, packet reordering, and data duplication by
adding checksums and sequence numbers to transmitted data and, on the receiving side, sending back
packets and acknowledging the receipt of data.
The system containing the low power flash device can be assigned an IP address when deployed in the
field. When the device requires an update (core or FlashROM), the programming instructions along with
the new programming data (AES-encrypted cipher text) can be sent over the Internet to the target system
via the TCP/IP protocol. Once the MCU receives the instruction and data, it can proceed with the FPGA
update. Low power flash devices support Message Authentication Code (MAC), which can be used to
validate data for the target device. More details are given in the "Message Authentication Code (MAC)
Validation/Authentication" section.

Hardware Requirement
To facilitate the programming of the low power flash families, the system must have a microprocessor
(with access to the device JTAG pins) to process the programming algorithm, memory to store the
programming algorithm, programming data, and the necessary programming voltage. Refer to the
relevant datasheet for programming voltages.

Security

Encrypted Programming
As an additional security measure, the devices are equipped with AES decryption. AES works in two
steps. The first step is to program a key into the devices in a secure or trusted programming center (such
as Microsemi SoC Products Group In-House Programming (IHP) center). The second step is to encrypt
any programming files with the same encryption key. The encrypted programming file will only work with
the devices that have the same key. The AES used in the low power flash families is the 128-bit AES
decryption engine (Rijndael algorithm).

Message Authentication Code (MAC) Validation/Authentication
As part of the AES decryption flow, the devices are equipped with a MAC validation/authentication
system. MAC is an authentication tag, also called a checksum, derived by applying an on-chip
authentication scheme to a STAPL file as it is loaded into the FPGA. MACs are computed and verified
with the same key so they can only be verified by the intended recipient. When the MCU system receives
the AES-encrypted programming data (cipher text), it can validate the data by loading it into the FPGA
and performing a MAC verification prior to loading the data, via a second programming pass, into the
FPGA core cells. This prevents erroneous or corrupt data from getting into the FPGA. 
Low power flash devices with AES and MAC are superior to devices with only DES or 3DES encryption.
Because the MAC verifies the correctness of the data, the FPGA is protected from erroneous loading of
invalid programming data that could damage a device (Figure 15-5 on page 355).
The AES with MAC enables field updates over public networks without fear of having the design stolen.
An encrypted programming file can only work on devices with the correct key, rendering any stolen files
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UJTAG Applications in Microsemi’s Low Power Flash Devices
UJTAG Operation
There are a few basic functions of the UJTAG macro that users must understand before designing with it.
The most important fundamental concept of the UJTAG design is its connection with the TAP Controller
state machine. 

TAP Controller State Machine
The 16 states of the TAP Controller state machine are shown in Figure 17-4 on page 367. The 1s and 0s,
shown adjacent to the state transitions, represent the TMS values that must be present at the time of a
rising TCK edge for a state transition to occur. In the states that include the letters "IR," the instruction
register operates; in the states that contain the letters "DR," the test data register operates. The TAP
Controller receives two control inputs, TMS and TCK, and generates control and clock signals for the rest
of the test logic. 
On power-up (or the assertion of TRST), the TAP Controller enters the Test-Logic-Reset state. To reset
the controller from any other state, TMS must be held HIGH for at least five TCK cycles. After reset, the
TAP state changes at the rising edge of TCK, based on the value of TMS. 

Note: Do not connect JTAG pins (TDO, TDI, TMS, TCK, or TRST) to I/Os in the design.
Figure 17-3 • Connectivity Method of UJTAG Macro
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ProASIC3L FPGA Fabric User’s Guide
Power-Up/-Down Sequence and Transient Current
Microsemi's low power flash devices use the following main voltage pins during normal operation:2

• VCCPLX
• VJTAG
• VCC: Voltage supply to the FPGA core

– VCC is 1.5 V ± 0.075 V for IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3 devices 
operating at 1.5 V.

– VCC is 1.2 V ± 0.06 V for IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices 
operating at 1.2 V.

– V5 devices will require a 1.5 V VCC supply, whereas V2 devices can utilize either a 1.2 V or 
1.5 V VCC.

• VCCIBx: Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number.
• VMVx: Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. (Note: 

IGLOO nano, IGLOO PLUS, and ProASIC3 nano devices do not have VMVx supply pins.)
The I/O bank VMV pin must be tied to the VCCI pin within the same bank. Therefore, the supplies that 
need to be powered up/down during normal operation are VCC and VCCI. These power supplies can be 
powered up/down in any sequence during normal operation of IGLOO, IGLOO nano, IGLOO PLUS, 
ProASIC3L, ProASIC3, and ProASIC3 nano FPGAs. During power-up, I/Os in each bank will remain 
tristated until the last supply (either VCCIBx or VCC) reaches its functional activation voltage. Similarly, 
during power-down, I/Os of each bank are tristated once the first supply reaches its brownout 
deactivation voltage.
Although Microsemi's low power flash devices have no power-up or power-down sequencing 
requirements, Microsemi identifies the following power conditions that will result in higher than normal 
transient current. Use this information to help maximize power savings:
Microsemi recommends tying VCCPLX to VCC and using proper filtering circuits to decouple VCC noise 
from the PLL.

a. If VCCPLX is powered up before VCC, a static current of up to 5 mA (typical) per PLL may be
measured on VCCPLX.
The current vanishes as soon as VCC reaches the VCCPLX voltage level.
The same current is observed at power-down (VCC before VCCPLX).

b. If VCCPLX is powered up simultaneously or after VCC:
i. Microsemi's low power flash devices exhibit very low transient current on VCC. For

ProASIC3 devices, the maximum transient current on VCC does not exceed the maximum
standby current specified in the device datasheet.

The source of transient current, also known as inrush current, varies depending on the FPGA technology. 
Due to their volatile technology, the internal registers in SRAM FPGAs must be initialized before 
configuration can start. This initialization is the source of significant inrush current in SRAM FPGAs 
during power-up. Due to the nonvolatile nature of flash technology, low power flash devices do not 
require any initialization at power-up, and there is very little or no crossbar current through PMOS and 
NMOS devices. Therefore, the transient current at power-up is significantly less than for SRAM FPGAs. 
Figure 18-1 on page 376 illustrates the types of power consumption by SRAM FPGAs compared to 
Microsemi's antifuse and flash FPGAs. 

2. For more information on Microsemi FPGA voltage supplies, refer to the appropriate datasheet located at
http://www.microsemi.com/soc/techdocs/ds.
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The following devices and families do not support cold-sparing:
• IGLOO: AGL060, AGL125, AGL250, AGL600, AGL1000
• ProASIC3: A3P060, A3P125, A3P250, A3P400, A3P600, A3P1000
• ProASIC3L: A3P250L, A3P600L, A3P1000L
• Military ProASIC3: A3P1000

Hot-Swapping
Hot-swapping is the operation of hot insertion or hot removal of a card in a powered-up system. The I/Os 
need to be configured in hot-insertion mode if hot-swapping compliance is required. For more details on 
the levels of hot-swap compatibility in low power flash devices, refer to the "Hot-Swap Support" section in 
the I/O Structures chapter of the user’s guide for the device you are using.
The following devices and families support hot-swapping:

• IGLOO: AGL015 and AGL030
• All IGLOO nano
• All IGLOO PLUS
• All IGLOOe
• ProASIC3L: A3PE3000L
• ProASIC3: A3P015 and A3P030
• All ProASIC3 nano
• All ProASIC3E
• Military ProASIC3EL: A3PE600L and A3PE3000L
• RT ProASIC3: RT3PE600L and RT3PE3000L

The following devices and families do not support hot-swapping:
• IGLOO: AGL060, AGL125, AGL250, AGL400, AGL600, AGL1000
• ProASIC3: A3P060, A3P125, A3P250, A3P400, A3P600, A3P1000
• ProASIC3L: A3P250L, A3P600L, A3P1000L
• Military ProASIC3: A3P1000

Conclusion
Microsemi's low power flash FPGAs provide an excellent programmable logic solution for a broad range 
of applications. In addition to high performance, low cost, security, nonvolatility, and single chip, they are 
live at power-up (meet Level 0 of the LAPU classification) and offer clear and easy-to-use power-up/-
down characteristics. Unlike SRAM FPGAs, low power flash devices do not require any specific power-
up/-down sequencing and have extremely low power-up inrush current in any power-up sequence. 
Microsemi low power flash FPGAs also support both cold-sparing and hot-swapping for applications 
requiring these capabilities.
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